
Example sheet 3

1 Weak convergence

Exercise 1.1. Let (Xn, n ≥ 1) be a sequence of independent random variables with uniform
distribution on [0, 1]. Let Mn = max(X1, . . . , Xn). Show that n(1 − Mn) converges in
distribution as n→∞ and determine the limit law.

Exercise 1.2. Let (Xn, n ≥ 0) be a sequence of random variables defined on some probability
space (Ω,F ,P) with values in a metric space (M,d).

1. Suppose that Xn → X∞ a.s. as n→∞. Show that Xn converges to X∞ in distribution.

2. Suppose that Xn converges in probability to X∞. Show that Xn converges in distribution
to X∞.
Hint: use the fact that (Xn, n ≥ 0) converges in probability to X∞ if and only if for every
subsequence extracted from (Xn, n ≥ 0), there exists a further subsequence converging a.s.
to X∞.

3. If Xn converges in distribution to a constant X∞ = c, then Xn converges in probability
to c.

Exercise 1.3. Suppose given sequences (Xn, n ≥ 0) and (Yn, n ≥ 0) of real valued random
variables, and two extra random variables X, Y , such that Xn, Yn respectively converge in
distribution to X, Y . Is it true that (Xn, Yn) converges in distribution to (X, Y )? Show that
this is true in the following cases:
1. For every n, the random variables Xn and Yn are independent, as well as X and Y .

2. Y is a.s. constant (Hint: use 3 of the previous question).

Exercise 1.4. Let d ≥ 1.

1. Show that a finite family of probability measures on Rd is tight.

2. Assuming Prohorov’s theorem for probability measures on Rd, show that if (µn, n ≥ 0) is
a sequence of non-negative measures on Rd which is tight and such that

sup
n≥0

µn(Rd) <∞,

then there exists a subsequence nk along which µn converges weakly to a limit µ.
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2 Brownian motion

Exercise 2.1. Show that the standard Brownian motion in Rd is the unique Gaussian process
(Bt, t ≥ 0) with E[Bt] = 0 for all t ≥ 0 and Cov(Bs, Bt) = (s ∧ t)Id for every s, t ≥ 0.

Exercise 2.2. Let B be a standard Brownian in 1 dimension.

(1) Show that a.s.

lim sup
t↓0

Bt√
t

=∞ and lim inf
t↓0

Bt√
t

= −∞.

(2) Show that a.s. Bn/n→ 0 as n→∞. Then show that a.s. for n large enough

sup
t∈[n,n+1]

|Bt −Bn| ≤
√
n

and conclude that Bt/t→ 0 as t→∞ a.s.

(3) Using the time inversion theorem, show that a.s.

lim sup
t→∞

Bt√
t

=∞ and lim inf
t→∞

Bt√
t

= −∞.

Exercise 2.3. Let B be a standard Brownian motion in 1 dimension. Show that a.s. for all
0 < a < b <∞, the Brownian motion B is not monotone on the interval [a, b].

Exercise 2.4. Let (Bt, t ≥ 0) be a standard Brownian motion in 1 dimension. Let Tx =
inf{t ≥ 0 : Bt = x} for x ∈ R.

1. Prove that Tx has the same distribution as (x/B1)
2 and compute its probability dis-

tribution function.

2. For x, y > 0, show that

P(T−y < Tx) =
x

x+ y
and E[T−y ∧ Tx] = xy.

3. Show that if 0 < x < y, the random variable Ty − Tx has the same law as Ty−x and is
independent of FTx (where (Ft, t ≥ 0) is the natural filtration of Brownian motion).

Hint: the three questions are independent.

Exercise 2.5. Let (Bt, t ≥ 0) be a standard Brownian motion in 1 dimension, and let
0 ≤ a < b.

1. Compute the mean and variance of

Xn :=
2n∑
k=1

(Ba+k(b−a)2−n −Ba+(k−1)(b−a)2−n)2.
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2. Show that Xn converges a.s. and give its limit.

3. Deduce that a.s. there exists no interval [a, b] with a < b such that B is Hölder contin-
uous with exponent α > 1/2 on [a, b], i.e. supa≤s,t≤b(|Bt −Bs|/|t− s|α) <∞.

Exercise 2.6. Let (Bt, t ≥ 0) be a standard Brownian motion in 1 dimension. Define
G1 = sup{t ≤ 1 : Bt = 0} and D1 = inf{t ≥ 1 : Bt = 0}.

1. Are these random variables stopping times? Show that G1 has the same distribution
as D−11 .

2. By applying the Markov property at time 1, compute the law of D1. Deduce that of
G1 (this is called the arcsine law).

Exercise 2.7. Let (Bt, t ≥ 0) be a standard Brownian motion in 1 dimension. Define

τ = inf{t ≥ 0 : Bt = max
0≤s≤1

Bs}.

Is this a stopping time? Hint: First show that τ < 1 a.s.
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