Example sheet 2

1 Discrete-time martingales

Exercise 1.1 (Polya’s urn). At time 0, an urn contains 1 black ball and 1 white ball. At
each time 1,2,3, ..., a ball is chosen at random from the urn and is replaced together with
a new ball of the same colour. Just after time n, there are therefore n + 2 balls in the urn,
of which B, + 1 are black, where B, is the number of black balls chosen by time n. Let
M, = (B, + 1)/(n + 2) the proportion of black balls in the urn just after time n. Prove
that, relative to a natural filtration which you should specify, M is a martingale. Show that
it converges a.s. and in £L? for all p > 1 to a [0, 1]-valued random variable X .

Show that for every k, the process

(Bu+ D(Bat2)... (Buth)
(n+2)(n+3).. .+ k+1) "

is a martingale. Deduce the value of E[X* ], and finally the law of X.
Reobtain this result by showing directly that P(B, = k) = (n +1)~! for 0 < k < n.
Prove that for 0 < 6 < 1, (N,(6))n>0 is a martingale, where

N,y (6) = % 6% (1 — g)" B,

Exercise 1.2 (Bayes’ urn). A random number O is chosen uniformly between 0 and 1, and
a coin with probability © of heads is minted. The coin is tossed repeatedly. Let B, be the
number of heads in n tosses. Prove that (B,,) has exactly the same probabilistic structure
as the (B,,) sequence in Exercise 1.1. Prove that N, () is a conditional density function of
© given By, By, ..., B,.

Exercise 1.3 (ABRACADABRA). At each of times 1,2,3,. .., a monkey types a capital
letter at random, the sequence of letters typed forming a sequence of independent random
variables, each chosen uniformly from amongst the 26 possible capital letters.

Just before each time n = 1,2, ..., a new gambler arrives on the scene. He bets $1 that
the n'" letter will be A.
If he loses, he leaves. If he wins, he receives $26 all of which he bets on the event that

the (n + 1) letter will be B.
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If he loses, he leaves. If he wins, he bets his whole current fortune $26% that
the (n + 2)™ letter will be R

and so on through the ABRACADABRA sequence. Let T' be the first time by which the
monkey has produced the consecutive sequence ABRACADABRA. Prove, by a martingale

argument, that
E[T] = 26" + 26 + 26.

Exercise 1.4. Let (X,,,n > 0) be a sequence of [0, 1]-valued random variables, which satisfy
the following property. First, Xy = a a.s. for some a € (0,1) and for n > 0,

X
]P (Xn+1 = 7

]-"n> :1—Xn:1—IP><XnH:

where F,, = 0(X,0 < k < n). Here, we have denoted P(A|G) = E[1(A)|G].
1. Prove that (X,,n > 0) is a martingale that converges in £? for every p > 1.

2. Check that E[(X, 11 — X,,)?] = E[X,,(1 — X,,)]/4. Then determine E[X, (1 — X,)] and
deduce that law of X .

Exercise 1.5. Let (X,,,n > 0) be a martingale in £2. Show that its increments (X,,41 — X, :
n > 0) are pairwise orthogonal, i.e. for all n # m the increments satisfy

E[(Xos1 = Xo) (X1 — Xo)] = 0.

Conclude that X is bounded in £? if and only if

D E[(Xn — Xa)?) < 0.

n>0

Exercise 1.6 (Wald’s identity). Let (X,,,n > 0) be a sequence of independent and identi-
cally distributed real integrable random variables. We let S,, = X7 + ...+ X,, (with Sy = 0)
be the associated random walk and 7" an (F,)-stopping time, where F,, = o(Xy, k < n).

1. Show that if the variables X; are non-negative, then

E[Sr] = E[T]E[X4].

2. Show that if E[T] < oo, then

E[Sr] = E[T]E[X4].

3. Suppose that E[X;] = 0 and set T, = inf{n > 0 : S,, > a}, for some a > 0. Show that
E[T,] = cc.

4. Suppose that P(X; = +1) =2/3 =1—-P(X; = —1) and set T, = inf{n > 0: 5, > a},
for some a > 0. Find E[T,]. (You cannot assume that E[T,] < o0.)



Exercise 1.7 (Gambler’s ruin). Suppose that X, Xy, ... are independent random vari-
ables with
P(X =+1)=p, P(X =-1) =g,

where p € (0,1), ¢ = 1 —p and p # ¢q. Suppose that a and b are integers with 0 < a < b.
Define
Spi=a+Xi+---+X,, T:=inf{n:S,=0o0r S, =b}.

Let F, = o(Xy,...,X,). Prove that

Sn
M, = (%) and N, = S, —n(p — q)

define martingales M and N. Deduce the values of P(Sy = 0) and E[T7].

Exercise 1.8 (Azuma—Hoeffding Inequality). (a) Show that if Y is a random variable
with values in [—c, ¢] and with E[Y] = 0, then, for § € R,

1
E[e?] < coshfc < exp (5 0202> :

(b) Prove that if M is a martingale, with M, = 0 and such that for some sequence (¢, : n € N)
of positive constants, |M, — M, 41| < ¢, for all n, then, for x > 0,

1 n
]P’(supMk > :U) < exp(—§ x2/20i>
k=1

k<n
Hint for (a). Let f(z) :=exp(0z), z € [—¢,c]. Then, since f is convex,

) < 5710+ 5.7 1),

ct+y
2c

Hint for (b). Optimize over 6.

Exercise 1.9. Let f : [0,1] — R be Lipschitz, that is, suppose that, for some K < oo and
all z,y € [0,1]

[f(z) = f(y)] < K|z —yl.
Denote by f, the simplest piecewise linear function agreeing with f on {k27™ : k =
0,1,...,2"}. Set M,, = f!. Show that M, converges a.e. and in £' and deduce that f
is the indefinite integral of a bounded function.

Exercise 1.10 (Doob’s decomposition of submartingales). Let (X,,n > 0) be a sub-
martingale.

1. Show that there exists a unique martingale M,, and a unique previsible process (A4,,n > 0)
(i.e. A, is F,_1 measurable) such that Ag = 0, A is increasing and X = M + A.

2. Show that M, A are bounded in £! if and only if X is, and that A, < oo a.s. in this case
(and even that E[A,] < 00), where A, is the increasing limit of A, as n — oo.

Exercise 1.11. Let (X,,n > 0) be a Ul submartingale.
1. Show that if X = M + A is the Doob decomposition of X, then M is UI.
2. Show that for every pair of stopping times S, T with S < T,

E[Xr|Fs] > Xs.



2 Weak convergence

Exercise 2.1. Let (X,,,n > 1) be a sequence of independent random variables with uniform
distribution on [0,1]. Let M, = max(Xy,...,X,). Show that n(1 — M,) converges in
distribution as n — oo and determine the limit law.

Exercise 2.2. Let (X,,,n > 0) be a sequence of random variables defined on some probability
space (§2, F,P) with values in a metric space (M, d).

1. Suppose that X,, =& X, a.s. as n — oo. Show that X, converges to X, in distribution.

2. Suppose that X,, converges in probability to X.,. Show that X,, converges in distribution
to Xoo.
Hint: use the fact that (X,,n > 0) converges in probability to X, if and only if for every
subsequence extracted from (X,,n > 0), there exists a further subsequence converging a.s.
to Xo.

3. If X, converges in distribution to a constant X., = ¢, then X,, converges in probability
to c.

Exercise 2.3. Suppose given sequences (X,,,n > 0) and (Y,,,n > 0) of real valued random
variables, and two extra random variables X,Y, such that X,,Y,, respectively converge in
distribution to X, Y. Is it true that (X,,Y;) converges in distribution to (X,Y")? Show that
this is true in the following cases:

1. For every n, the random variables X,, and Y,, are independent, as well as X and Y.

2. Y is a.s. constant (Hint: use 3 of the previous question).

Exercise 2.4. Let d > 1.
1. Show that a finite family of probability measures on R? is tight.

2. Assuming Prohorov’s theorem for probability measures on R?, show that if (u,,n > 0) is
a sequence of non-negative measures on R? which is tight and such that

sup i, (R?) < oo,
n>0

then there exists a subsequence n; along which pu, converges weakly to a limit u.



