Example sheet 2

1 Discrete-time martingales

Exercise 1.1 (Polya's urn). At time 0, an urn contains 1 black ball and 1 white ball. At each time $1,2,3, \ldots$, a ball is chosen at random from the urn and is replaced together with a new ball of the same colour. Just after time n, there are therefore $n+2$ balls in the urn, of which $B_{n}+1$ are black, where B_{n} is the number of black balls chosen by time n. Let $M_{n}=\left(B_{n}+1\right) /(n+2)$ the proportion of black balls in the urn just after time n. Prove that, relative to a natural filtration which you should specify, M is a martingale. Show that it converges a.s. and in \mathcal{L}^{p} for all $p \geq 1$ to a $[0,1]$-valued random variable X_{∞}.
Show that for every k, the process

$$
\frac{\left(B_{n}+1\right)\left(B_{n}+2\right) \ldots\left(B_{n}+k\right)}{(n+2)(n+3) \ldots(n+k+1)}, n \geq 1
$$

is a martingale. Deduce the value of $\mathbb{E}\left[X_{\infty}^{k}\right]$, and finally the law of X_{∞}.
Reobtain this result by showing directly that $\mathbb{P}\left(B_{n}=k\right)=(n+1)^{-1}$ for $0 \leq k \leq n$.
Prove that for $0<\theta<1,\left(N_{n}(\theta)\right)_{n \geq 0}$ is a martingale, where

$$
N_{n}(\theta):=\frac{(n+1)!}{B_{n}!\left(n-B_{n}\right)!} \theta^{B_{n}}(1-\theta)^{n-B_{n}} .
$$

Exercise 1.2 (Bayes' urn). A random number Θ is chosen uniformly between 0 and 1 , and a coin with probability Θ of heads is minted. The coin is tossed repeatedly. Let B_{n} be the number of heads in n tosses. Prove that $\left(B_{n}\right)$ has exactly the same probabilistic structure as the $\left(B_{n}\right)$ sequence in Exercise 1.1. Prove that $N_{n}(\theta)$ is a conditional density function of Θ given $B_{1}, B_{2}, \ldots, B_{n}$.

Exercise 1.3 (ABRACADABRA). At each of times $1,2,3, \ldots$, a monkey types a capital letter at random, the sequence of letters typed forming a sequence of independent random variables, each chosen uniformly from amongst the 26 possible capital letters.
Just before each time $n=1,2, \ldots$, a new gambler arrives on the scene. He bets $\$ 1$ that

$$
\text { the } n^{\text {th }} \text { letter will be } A \text {. }
$$

If he loses, he leaves. If he wins, he receives $\$ 26$ all of which he bets on the event that the $(n+1)^{\text {th }}$ letter will be B.

If he loses, he leaves. If he wins, he bets his whole current fortune $\$ 26^{2}$ that

$$
\text { the }(n+2)^{\text {th }} \text { letter will be } R
$$

and so on through the ABRACADABRA sequence. Let T be the first time by which the monkey has produced the consecutive sequence ABRACADABRA. Prove, by a martingale argument, that

$$
\mathbb{E}[T]=26^{11}+26^{4}+26
$$

Exercise 1.4. Let $\left(X_{n}, n \geq 0\right)$ be a sequence of $[0,1]$-valued random variables, which satisfy the following property. First, $X_{0}=a$ a.s. for some $a \in(0,1)$ and for $n \geq 0$,

$$
\mathbb{P}\left(\left.X_{n+1}=\frac{X_{n}}{2} \right\rvert\, \mathcal{F}_{n}\right)=1-X_{n}=1-\mathbb{P}\left(\left.X_{n+1}=\frac{X_{n}+1}{2} \right\rvert\, \mathcal{F}_{n}\right)
$$

where $\mathcal{F}_{n}=\sigma\left(X_{k}, 0 \leq k \leq n\right)$. Here, we have denoted $\mathbb{P}(A \mid \mathcal{G})=\mathbb{E}[\mathbf{I}(A) \mid \mathcal{G}]$.

1. Prove that $\left(X_{n}, n \geq 0\right)$ is a martingale that converges in \mathcal{L}^{p} for every $p \geq 1$.
2. Check that $\mathbb{E}\left[\left(X_{n+1}-X_{n}\right)^{2}\right]=\mathbb{E}\left[X_{n}\left(1-X_{n}\right)\right] / 4$. Then determine $\mathbb{E}\left[X_{\infty}\left(1-X_{\infty}\right)\right]$ and deduce that law of X_{∞}.

Exercise 1.5. Let $\left(X_{n}, n \geq 0\right)$ be a martingale in \mathcal{L}^{2}. Show that its increments ($X_{n+1}-X_{n}$: $n \geq 0$) are pairwise orthogonal, i.e. for all $n \neq m$ the increments satisfy

$$
\mathbb{E}\left[\left(X_{n+1}-X_{n}\right)\left(X_{m+1}-X_{m}\right)\right]=0
$$

Conclude that X is bounded in \mathcal{L}^{2} if and only if

$$
\sum_{n \geq 0} \mathbb{E}\left[\left(X_{n+1}-X_{n}\right)^{2}\right]<\infty
$$

Exercise 1.6 (Wald's identity). Let $\left(X_{n}, n \geq 0\right)$ be a sequence of independent and identically distributed real integrable random variables. We let $S_{n}=X_{1}+\ldots+X_{n}\left(\right.$ with $\left.S_{0}=0\right)$ be the associated random walk and T an $\left(\mathcal{F}_{n}\right)$-stopping time, where $\mathcal{F}_{n}=\sigma\left(X_{k}, k \leq n\right)$.

1. Show that if the variables X_{i} are non-negative, then

$$
\mathbb{E}\left[S_{T}\right]=\mathbb{E}[T] \mathbb{E}\left[X_{1}\right]
$$

2. Show that if $\mathbb{E}[T]<\infty$, then

$$
\mathbb{E}\left[S_{T}\right]=\mathbb{E}[T] \mathbb{E}\left[X_{1}\right]
$$

3. Suppose that $\mathbb{E}\left[X_{1}\right]=0$ and set $T_{a}=\inf \left\{n \geq 0: S_{n} \geq a\right\}$, for some $a>0$. Show that $\mathbb{E}\left[T_{a}\right]=\infty$.
4. Suppose that $\mathbb{P}\left(X_{1}=+1\right)=2 / 3=1-\mathbb{P}\left(X_{1}=-1\right)$ and set $T_{a}=\inf \left\{n \geq 0: S_{n} \geq a\right\}$, for some $a>0$. Find $\mathbb{E}\left[T_{a}\right]$. (You cannot assume that $\mathbb{E}\left[T_{a}\right]<\infty$.)

Exercise 1.7 (Gambler's ruin). Suppose that X_{1}, X_{2}, \ldots are independent random variables with

$$
\mathbb{P}(X=+1)=p, \mathbb{P}(X=-1)=q
$$

where $p \in(0,1), q=1-p$ and $p \neq q$. Suppose that a and b are integers with $0<a<b$. Define

$$
S_{n}:=a+X_{1}+\cdots+X_{n}, T:=\inf \left\{n: S_{n}=0 \text { or } S_{n}=b\right\} .
$$

Let $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$. Prove that

$$
M_{n}:=\left(\frac{q}{p}\right)^{S_{n}} \text { and } N_{n}=S_{n}-n(p-q)
$$

define martingales M and N. Deduce the values of $\mathbb{P}\left(S_{T}=0\right)$ and $\mathbb{E}[T]$.
Exercise 1.8 (Azuma-Hoeffding Inequality). (a) Show that if Y is a random variable with values in $[-c, c]$ and with $\mathbb{E}[Y]=0$, then, for $\theta \in \mathbb{R}$,

$$
\mathbb{E}\left[e^{\theta Y}\right] \leq \cosh \theta c \leq \exp \left(\frac{1}{2} \theta^{2} c^{2}\right)
$$

(b) Prove that if M is a martingale, with $M_{0}=0$ and such that for some sequence ($c_{n}: n \in \mathbb{N}$) of positive constants, $\left|M_{n}-M_{n-1}\right| \leq c_{n}$ for all n, then, for $x>0$,

$$
\mathbb{P}\left(\sup _{k \leq n} M_{k} \geq x\right) \leq \exp \left(-\frac{1}{2} x^{2} / \sum_{k=1}^{n} c_{k}^{2}\right)
$$

Hint for (a). Let $f(z):=\exp (\theta z), z \in[-c, c]$. Then, since f is convex,

$$
f(y) \leq \frac{c-y}{2 c} f(-c)+\frac{c+y}{2 c} f(c) .
$$

Hint for (b). Optimize over θ.
Exercise 1.9. Let $f:[0,1] \rightarrow \mathbb{R}$ be Lipschitz, that is, suppose that, for some $K<\infty$ and all $x, y \in[0,1]$

$$
|f(x)-f(y)| \leq K|x-y|
$$

Denote by f_{n} the simplest piecewise linear function agreeing with f on $\left\{k 2^{-n}: k=\right.$ $\left.0,1, \ldots, 2^{n}\right\}$. Set $M_{n}=f_{n}^{\prime}$. Show that M_{n} converges a.e. and in \mathcal{L}^{1} and deduce that f is the indefinite integral of a bounded function.

Exercise 1.10 (Doob's decomposition of submartingales). Let ($X_{n}, n \geq 0$) be a submartingale.

1. Show that there exists a unique martingale M_{n} and a unique previsible process $\left(A_{n}, n \geq 0\right)$ (i.e. A_{n} is \mathcal{F}_{n-1} measurable) such that $A_{0}=0, A$ is increasing and $X=M+A$.
2. Show that M, A are bounded in \mathcal{L}^{1} if and only if X is, and that $A_{\infty}<\infty$ a.s. in this case (and even that $\mathbb{E}\left[A_{\infty}\right]<\infty$), where A_{∞} is the increasing limit of A_{n} as $n \rightarrow \infty$.
Exercise 1.11. Let $\left(X_{n}, n \geq 0\right)$ be a UI submartingale.
3. Show that if $X=M+A$ is the Doob decomposition of X, then M is UI.
4. Show that for every pair of stopping times S, T with $S \leq T$,

$$
\mathbb{E}\left[X_{T} \mid \mathcal{F}_{S}\right] \geq X_{S}
$$

2 Weak convergence

Exercise 2.1. Let $\left(X_{n}, n \geq 1\right)$ be a sequence of independent random variables with uniform distribution on $[0,1]$. Let $M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$. Show that $n\left(1-M_{n}\right)$ converges in distribution as $n \rightarrow \infty$ and determine the limit law.

Exercise 2.2. Let $\left(X_{n}, n \geq 0\right)$ be a sequence of random variables defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with values in a metric space (M, d).

1. Suppose that $X_{n} \rightarrow X_{\infty}$ a.s. as $n \rightarrow \infty$. Show that X_{n} converges to X_{∞} in distribution.
2. Suppose that X_{n} converges in probability to X_{∞}. Show that X_{n} converges in distribution to X_{∞}.
Hint: use the fact that $\left(X_{n}, n \geq 0\right)$ converges in probability to X_{∞} if and only if for every subsequence extracted from $\left(X_{n}, n \geq 0\right)$, there exists a further subsequence converging a.s. to X_{∞}.
3. If X_{n} converges in distribution to a constant $X_{\infty}=c$, then X_{n} converges in probability to c.

Exercise 2.3. Suppose given sequences $\left(X_{n}, n \geq 0\right)$ and $\left(Y_{n}, n \geq 0\right)$ of real valued random variables, and two extra random variables X, Y, such that X_{n}, Y_{n} respectively converge in distribution to X, Y. Is it true that $\left(X_{n}, Y_{n}\right)$ converges in distribution to (X, Y) ? Show that this is true in the following cases:

1. For every n, the random variables X_{n} and Y_{n} are independent, as well as X and Y.
2. Y is a.s. constant (Hint: use 3 of the previous question).

Exercise 2.4. Let $d \geq 1$.

1. Show that a finite family of probability measures on \mathbb{R}^{d} is tight.
2. Assuming Prohorov's theorem for probability measures on \mathbb{R}^{d}, show that if $\left(\mu_{n}, n \geq 0\right)$ is a sequence of non-negative measures on \mathbb{R}^{d} which is tight and such that

$$
\sup _{n \geq 0} \mu_{n}\left(\mathbb{R}^{d}\right)<\infty
$$

then there exists a subsequence n_{k} along which μ_{n} converges weakly to a limit μ.

