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1 Discrete-time martingales

Exercise 1.1 (Polya’s urn). At time 0, an urn contains 1 black ball and 1 white ball. At
each time 1, 2, 3, . . ., a ball is chosen at random from the urn and is replaced together with
a new ball of the same colour. Just after time n, there are therefore n + 2 balls in the urn,
of which Bn + 1 are black, where Bn is the number of black balls chosen by time n. Let
Mn = (Bn + 1)/(n + 2) the proportion of black balls in the urn just after time n. Prove
that, relative to a natural filtration which you should specify, M is a martingale. Show that
it converges a.s. and in Lp for all p ≥ 1 to a [0, 1]-valued random variable X∞.

Show that for every k, the process

(Bn + 1)(Bn + 2) . . . (Bn + k)

(n+ 2)(n+ 3) . . . (n+ k + 1)
, n ≥ 1

is a martingale. Deduce the value of E[Xk
∞], and finally the law of X∞.

Reobtain this result by showing directly that P(Bn = k) = (n+ 1)−1 for 0 ≤ k ≤ n.

Prove that for 0 < θ < 1, (Nn(θ))n≥0 is a martingale, where

Nn(θ) :=
(n+ 1)!

Bn!(n−Bn)!
θBn(1− θ)n−Bn .

Exercise 1.2 (Bayes’ urn). A random number Θ is chosen uniformly between 0 and 1, and
a coin with probability Θ of heads is minted. The coin is tossed repeatedly. Let Bn be the
number of heads in n tosses. Prove that (Bn) has exactly the same probabilistic structure
as the (Bn) sequence in Exercise 1.1. Prove that Nn(θ) is a conditional density function of
Θ given B1, B2, . . . , Bn.

Exercise 1.3 (ABRACADABRA). At each of times 1, 2, 3, . . ., a monkey types a capital
letter at random, the sequence of letters typed forming a sequence of independent random
variables, each chosen uniformly from amongst the 26 possible capital letters.

Just before each time n = 1, 2, . . ., a new gambler arrives on the scene. He bets $1 that

the nth letter will be A.

If he loses, he leaves. If he wins, he receives $26 all of which he bets on the event that

the (n+ 1)th letter will be B.
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If he loses, he leaves. If he wins, he bets his whole current fortune $262 that

the (n+ 2)th letter will be R

and so on through the ABRACADABRA sequence. Let T be the first time by which the
monkey has produced the consecutive sequence ABRACADABRA. Prove, by a martingale
argument, that

E[T ] = 2611 + 264 + 26.

Exercise 1.4. Let (Xn, n ≥ 0) be a sequence of [0, 1]-valued random variables, which satisfy
the following property. First, X0 = a a.s. for some a ∈ (0, 1) and for n ≥ 0,

P

(
Xn+1 =

Xn

2

∣∣∣∣∣Fn
)

= 1−Xn = 1− P

(
Xn+1 =

Xn + 1

2

∣∣∣∣∣Fn
)
,

where Fn = σ(Xk, 0 ≤ k ≤ n). Here, we have denoted P(A|G) = E[1(A)|G].

1. Prove that (Xn, n ≥ 0) is a martingale that converges in Lp for every p ≥ 1.

2. Check that E[(Xn+1 − Xn)2] = E[Xn(1 − Xn)]/4. Then determine E[X∞(1 − X∞)] and
deduce that law of X∞.

Exercise 1.5. Let (Xn, n ≥ 0) be a martingale in L2. Show that its increments (Xn+1−Xn :
n ≥ 0) are pairwise orthogonal, i.e. for all n 6= m the increments satisfy

E[(Xn+1 −Xn)(Xm+1 −Xm)] = 0.

Conclude that X is bounded in L2 if and only if∑
n≥0

E[(Xn+1 −Xn)2] <∞.

Exercise 1.6 (Wald’s identity). Let (Xn, n ≥ 0) be a sequence of independent and identi-
cally distributed real integrable random variables. We let Sn = X1 + . . .+Xn (with S0 = 0)
be the associated random walk and T an (Fn)-stopping time, where Fn = σ(Xk, k ≤ n).

1. Show that if the variables Xi are non-negative, then

E[ST ] = E[T ]E[X1].

2. Show that if E[T ] <∞, then

E[ST ] = E[T ]E[X1].

3. Suppose that E[X1] = 0 and set Ta = inf{n ≥ 0 : Sn ≥ a}, for some a > 0. Show that
E[Ta] =∞.

4. Suppose that P(X1 = +1) = 2/3 = 1 − P(X1 = −1) and set Ta = inf{n ≥ 0 : Sn ≥ a},
for some a > 0. Find E[Ta]. (You cannot assume that E[Ta] <∞.)

2



Exercise 1.7 (Gambler’s ruin). Suppose that X1, X2, . . . are independent random vari-
ables with

P(X = +1) = p, P(X = −1) = q,

where p ∈ (0, 1), q = 1 − p and p 6= q. Suppose that a and b are integers with 0 < a < b.
Define

Sn := a+X1 + · · ·+Xn, T := inf{n : Sn = 0 or Sn = b}.
Let Fn = σ(X1, . . . , Xn). Prove that

Mn :=

(
q

p

)Sn

and Nn = Sn − n(p− q)

define martingales M and N . Deduce the values of P(ST = 0) and E[T ].

Exercise 1.8 (Azuma–Hoeffding Inequality). (a) Show that if Y is a random variable
with values in [−c, c] and with E[Y ] = 0, then, for θ ∈ R,

E[eθY ] ≤ cosh θc ≤ exp

(
1

2
θ2c2

)
.

(b) Prove that if M is a martingale, withM0 = 0 and such that for some sequence (cn : n ∈ N)
of positive constants, |Mn −Mn−1| ≤ cn for all n, then, for x > 0,

P
(

sup
k≤n

Mk ≥ x
)
≤ exp

(
−1

2
x2
/ n∑

k=1

c2k

)
.

Hint for (a). Let f(z) := exp(θz), z ∈ [−c, c]. Then, since f is convex,

f(y) ≤ c− y
2c

f(−c) +
c+ y

2c
f(c).

Hint for (b). Optimize over θ.

Exercise 1.9. Let f : [0, 1] → R be Lipschitz, that is, suppose that, for some K < ∞ and
all x, y ∈ [0, 1]

|f(x)− f(y)| ≤ K|x− y|.
Denote by fn the simplest piecewise linear function agreeing with f on {k2−n : k =
0, 1, . . . , 2n}. Set Mn = f ′n. Show that Mn converges a.e. and in L1 and deduce that f
is the indefinite integral of a bounded function.

Exercise 1.10 (Doob’s decomposition of submartingales). Let (Xn, n ≥ 0) be a sub-
martingale.
1. Show that there exists a unique martingale Mn and a unique previsible process (An, n ≥ 0)
(i.e. An is Fn−1 measurable) such that A0 = 0, A is increasing and X = M + A.
2. Show that M,A are bounded in L1 if and only if X is, and that A∞ <∞ a.s. in this case
(and even that E[A∞] <∞), where A∞ is the increasing limit of An as n→∞.

Exercise 1.11. Let (Xn, n ≥ 0) be a UI submartingale.
1. Show that if X = M + A is the Doob decomposition of X, then M is UI.
2. Show that for every pair of stopping times S, T with S ≤ T ,

E[XT |FS] ≥ XS.
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2 Weak convergence

Exercise 2.1. Let (Xn, n ≥ 1) be a sequence of independent random variables with uniform
distribution on [0, 1]. Let Mn = max(X1, . . . , Xn). Show that n(1 − Mn) converges in
distribution as n→∞ and determine the limit law.

Exercise 2.2. Let (Xn, n ≥ 0) be a sequence of random variables defined on some probability
space (Ω,F ,P) with values in a metric space (M,d).

1. Suppose that Xn → X∞ a.s. as n→∞. Show that Xn converges to X∞ in distribution.

2. Suppose that Xn converges in probability to X∞. Show that Xn converges in distribution
to X∞.
Hint: use the fact that (Xn, n ≥ 0) converges in probability to X∞ if and only if for every
subsequence extracted from (Xn, n ≥ 0), there exists a further subsequence converging a.s.
to X∞.

3. If Xn converges in distribution to a constant X∞ = c, then Xn converges in probability
to c.

Exercise 2.3. Suppose given sequences (Xn, n ≥ 0) and (Yn, n ≥ 0) of real valued random
variables, and two extra random variables X, Y , such that Xn, Yn respectively converge in
distribution to X, Y . Is it true that (Xn, Yn) converges in distribution to (X, Y )? Show that
this is true in the following cases:
1. For every n, the random variables Xn and Yn are independent, as well as X and Y .

2. Y is a.s. constant (Hint: use 3 of the previous question).

Exercise 2.4. Let d ≥ 1.

1. Show that a finite family of probability measures on Rd is tight.

2. Assuming Prohorov’s theorem for probability measures on Rd, show that if (µn, n ≥ 0) is
a sequence of non-negative measures on Rd which is tight and such that

sup
n≥0

µn(Rd) <∞,

then there exists a subsequence nk along which µn converges weakly to a limit µ.
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