

Example sheet 1

1 Conditional expectation

Exercise 1.1. Let X and Y be integrable random variables and suppose that

$$\mathbb{E}[X|Y] = Y \text{ and } \mathbb{E}[Y|X] = X \text{ a.s.}$$

Show that $X = Y$ a.s.

Hint: Consider quantities like $\mathbb{E}[(X - Y)\mathbf{1}(X > c, Y \leq c)] + \mathbb{E}[(X - Y)\mathbf{1}(X \leq c, Y \leq c)]$.

Exercise 1.2. Let X, Y be two independent Bernoulli random variables with parameter $p \in (0, 1)$. Let $Z = \mathbf{1}(X + Y = 0)$. Compute $\mathbb{E}[X|Z]$ and $\mathbb{E}[Y|Z]$.

Exercise 1.3. Let X, Y be two independent exponential random variables of parameter θ . Let $Z = X + Y$, then check that the distribution of Z is gamma with parameter $(2, \theta)$, whose density with respect to the Lebesgue measure is $\theta^2 x e^{-\theta x} \mathbf{1}(x \geq 0)$. Show that for any non-negative measurable h ,

$$\mathbb{E}[h(X)|Z] = \frac{1}{Z} \int_0^Z h(u) du.$$

Conversely, let Z be a random variable with a $\Gamma(2, \theta)$ distribution, and suppose that X is a random variable whose conditional distribution given Z is uniform on $[0, Z]$. Namely, for every Borel non-negative function h

$$\mathbb{E}[h(X)|Z] = \frac{1}{Z} \int_0^Z h(u) du \text{ a.s.}$$

Show that X and $Z - X$ are independent, with exponential law.

Exercise 1.4. Let $X \geq 0$ be a random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\mathcal{G} \subseteq \mathcal{F}$ be a sub- σ -algebra.

1. Show that $X > 0$ implies that $\mathbb{E}[X|\mathcal{G}] > 0$ up to an event of zero probability.
2. Show that $\{\mathbb{E}[X|\mathcal{G}] > 0\}$ is the smallest \mathcal{G} -measurable event that contains the event $\{X > 0\}$ up to zero probability events.

Exercise 1.5. Suppose given $a, b > 0$, and let X, Y be two random variables with values in \mathbb{Z}_+ and \mathbb{R}_+ respectively, whose distribution is given by the formula

$$\mathbb{P}(X = n, Y \leq t) = b \int_0^t \frac{(ay)^n}{n!} \exp(-(a+b)y) dy.$$

Let $n \in \mathbb{Z}_+$ and $h : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ be a measurable function, compute $\mathbb{E}[h(Y)|X = n]$. Then compute $\mathbb{E}[Y/(X+1)]$, $\mathbb{E}[\mathbf{1}(X = n)|Y]$ and $\mathbb{E}[X|Y]$.

Exercise 1.6 (Conditional independence). Let $\mathcal{G} \subseteq \mathcal{F}$ be a sub- σ -algebra. Two random variables X, Y are said to be independent conditionally on \mathcal{G} if for every non-negative measurable f, g ,

$$\mathbb{E}[f(X)g(Y)|\mathcal{G}] = \mathbb{E}[f(X)|\mathcal{G}]\mathbb{E}[g(Y)|\mathcal{G}] \text{ a.s.}$$

What are two random variables independent conditionally on $\{\emptyset, \Omega\}$? On \mathcal{F} ?

Show that X, Y are independent conditionally on \mathcal{G} if and only if for every non-negative \mathcal{G} -measurable random variable Z , and every f, g non-negative measurable functions,

$$\mathbb{E}[f(X)g(Y)Z] = \mathbb{E}[f(X)Z\mathbb{E}[g(Y)|\mathcal{G}]],$$

and this if and only for every measurable non-negative g ,

$$\mathbb{E}[g(Y)|\mathcal{G} \vee \sigma(X)] = \mathbb{E}[g(Y)|\mathcal{G}].$$

Exercise 1.7. Give an example of a random variable X and two σ -algebras \mathcal{H} and \mathcal{G} such that X is independent of \mathcal{H} and \mathcal{G} is independent of \mathcal{H} , nevertheless

$$\mathbb{E}[X|\sigma(\mathcal{G}, \mathcal{H})] \neq \mathbb{E}[X|\mathcal{G}].$$

Hint: Consider coin tosses.

2 Discrete-time martingales

Exercise 2.1. Let $(X_n, n \geq 0)$ be an integrable process with values in a countable subset $E \subset \mathbb{R}$. Show that X is a martingale with respect to its natural filtration if and only if for every n and every $i_0, \dots, i_n \in E$, we have

$$\mathbb{E}[X_{n+1}|X_0 = i_0, \dots, X_n = i_n] = i_n.$$

Exercise 2.2. A process $C = (C_n, n \geq 0)$ is called previsible, if C_n is \mathcal{F}_{n-1} -measurable, for all $n \geq 1$. Let C be a previsible process and X a martingale (resp. supermartingale). We set

$$Y_n = \sum_{k \leq n} C_k (X_k - X_{k-1}), \text{ for all } n \geq 0.$$

Show that if C is bounded then $(Y_n, n \geq 0)$ is a martingale (if $C_n \geq 0$ for all n and bounded then it is a supermartingale).

We write $Y_n = (C \bullet X)_n$ and call it the martingale transform of X by C . It is the discrete analogue of the stochastic integral $\int C dX$. More on that in the “Stochastic calculus” course next term.

Exercise 2.3. Let $(X_n, n \geq 1)$ be a sequence of independent random variables with respective laws given by

$$\mathbb{P}(X_n = -n^2) = \frac{1}{n^2} \quad \text{and} \quad \mathbb{P}\left(X_n = \frac{n^2}{n^2 - 1}\right) = 1 - \frac{1}{n^2}.$$

Let $S_n = X_1 + \dots + X_n$. Show that $S_n/n \rightarrow 1$ a.s. as $n \rightarrow \infty$ and deduce that $(S_n, n \geq 0)$ is a martingale which converges to $+\infty$.

Exercise 2.4. Let $(\Omega, \mathcal{F}, (\mathcal{F}_n), \mathbb{P})$ be a filtered probability space. Let $A \in \mathcal{F}_n$ for some n and let $m, m' \geq n$. Show that $m\mathbf{1}(A) + m'\mathbf{1}(A^c)$ is a stopping time.

Show that an adapted process $(X_n, n \geq 0)$ with respect to some filtered probability space is a martingale if and only if it is integrable, and for every bounded stopping time T , $\mathbb{E}[X_T] = \mathbb{E}[X_0]$.

Exercise 2.5. Let X be a martingale (resp. supermartingale) on some filtered probability space, and let T be an a.s. finite stopping time. Prove that $\mathbb{E}[X_T] = \mathbb{E}[X_0]$ (resp. $\mathbb{E}[X_T] \leq \mathbb{E}[X_0]$) if either one of the following conditions holds:

1. X is bounded ($\exists M > 0 : \forall n \geq 0, |X_n| \leq M$ a.s.)
2. X has bounded increments ($\exists M > 0 : \forall n \geq 0, |X_{n+1} - X_n| \leq M$ a.s.) and $\mathbb{E}[T] < \infty$.

Exercise 2.6. Let T be an $(\mathcal{F}_n, n \geq 0)$ -stopping time such that for some integer $N > 0$ and $\varepsilon > 0$,

$$\mathbb{P}(T \leq N + n | \mathcal{F}_n) \geq \varepsilon, \quad \text{for every } n \geq 0.$$

Show that $\mathbb{E}[T] < \infty$.

Hint: Find bounds for $\mathbb{P}(T > kN)$.

Exercise 2.7. Your winnings per unit stake on game n are ε_n , where the ε_n are independent random variables with

$$\mathbb{P}(\varepsilon_n = 1) = p \quad \text{and} \quad \mathbb{P}(\varepsilon_n = -1) = q,$$

where $p \in (1/2, 1)$ and $q = 1 - p$. Your stake C_n on game n must lie between 0 and Z_{n-1} , where Z_{n-1} is your fortune at time $n - 1$. Your object is to maximize the expected ‘interest rate’ $\mathbb{E}[\log(Z_N/Z_0)]$, where N is a given integer representing the length of the game, and Z_0 , your fortune at time 0, is a given constant. Let $\mathcal{F}_n = \sigma(\varepsilon_1, \dots, \varepsilon_n)$. Show that if C is any *previsible* strategy, that is C_n is \mathcal{F}_{n-1} -measurable for all n , then $\log Z_n - n\alpha$ is a supermartingale, where α denotes the *entropy*

$$\alpha = p \log p + q \log q + \log 2,$$

so that $\mathbb{E}[\log(Z_n/Z_0)] \leq N\alpha$, but that, for a certain strategy, $\log Z_n - n\alpha$ is a *martingale*. What is the best strategy?