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Abstract

Let X be a fractional Brownian motion in Rd. For any Borel function f : [0, 1] → Rd, we
express the Hausdorff dimension of the image and the graph of X+f in terms of f . This is new
even for the case of Brownian motion and continuous f , where it was known that this dimension
is almost surely constant. The expression involves an adaptation of the parabolic dimension
previously used by Taylor and Watson to characterize polarity for the heat equation. In the
case when the graph of f is a self-affine McMullen-Bedford carpet, we obtain an explicit formula
for the dimension of the graph of X + f in terms of the generating pattern. In particular, we
show that it can be strictly bigger than the maximum of the Hausdorff dimension of the graph
of f and that of X. Despite the random perturbation, the Minkowski and Hausdorff dimension
of the graph of X + f can disagree.
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1 Introduction

Let B denote standard d-dimensional Brownian motion and suppose that f : [0, 1]→ Rd is contin-
uous. Our main goal in this paper is to answer the following three questions.

1. In [13] the authors showed that the Hausdorff dimension dim Gr(B+f) of the Graph of B+f
is almost surely constant. How can this constant be determined explicitly from f ?

2. Let d = 1. Is there a continuous function f such that the inequality established in [13],
dim(Gr(B + f)) ≥ max{dim(Gr(B)),dim(Gr(f))} a.s., is strict?
For Minkowski (= Box) dimension dimM in place of Hausdorff dimension, the corresponding
inequality is an equality for all continuous f , see [6].

3. Falconer [7] and Solomyak [14] showed that for almost all parameters in the construction of
a self-affine set K, the Hausdorff dimension dimK and the Minkowski dimension dimM K
coincide. Earlier, McMullen [11] and Bedford [2] exhibited a special class of self-affine sets K
with dim(K) < dimM (K). Is this strict inequality robust under some class of perturbations,
at least when K is the graph of a function?
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We will study fractal properties of graphs and images in a more general setting. LetX be a fractional
Brownian motion in Rd and f a Borel measurable function. We will express the dimension of both
the image and the graph of X + f in terms of the so-called parabolic Hausdorff dimension of the
graph of f , which was first introduced by Taylor and Watson in [15] in order to determine polar
sets for the heat equation. We start by introducing some notation and then give the definition of
the parabolic Hausdorff dimension.

For a function h : [0, 1]→ Rd we denote by GrA(h) = {(t, h(t) : t ∈ A}) the graph of h over the set A
and by RA(h) = {h(t) : t ∈ [0, 1]} the image of A under h. We write simply Gr(h) = Gr[0,1](h).

Definition 1.1. Let A ⊆ R+ × Rd and H ∈ [0, 1]. For all β > 0 the H-parabolic β-dimensional
Hausdorff content is defined by

Ψβ
H(A) = inf

∑
j

δβj : A ⊆ ∪j [aj , aj + δj ]× [bj,1, bj,1 + δHj ]× . . .× [bj,d, bj,d + δHj ]

 ,

where the infimum is taken over all covers of A by rectangles of the form given above. The H-
parabolic Hausdorff dimension is then defined to be

dimΨ,H(A) = inf{β : Ψβ
H(A) = 0}.

This was introduced for H = 1/2 by Taylor and Watson [15] in their study of polar sets for the
heat equation.

We are now ready to state our main result which gives the dimension of the graph and the image
of X + f in terms of dimΨ,H(Gr(f)). We write dim(A) for the Hausdorff dimension of the set A.

Theorem 1.2. Let X be a fractional Brownian motion in Rd of Hurst index H, let f : [0, 1]→ Rd
be a Borel measurable function and A a Borel subset of [0, 1]. If α = dimΨ,H(GrA(f)), then almost
surely

dim(GrA(X + f)) = min{α/H,α+ d(1−H)} and dim(RA(X + f)) = min{α/H, d}.

Remark 1.3. Note that when d = 1 and A = [0, 1], then the minimum in the expressions above is
always the second term.

We prove Therem 1.2 in Section 2. We now define a class of self-affine sets analysed by Bedford [2]
and McMullen [11].

Definition 1.4. Let n > m be two positive integers and D ⊆ {0, . . . , n− 1} × {0, . . . ,m− 1}. We
call D a pattern. The self-affine set corresponding to the pattern D is defined to be

K(D) =

{ ∞∑
k=1

(akn
−k, bkm

−k) : (ak, bk) ∈ D for all k

}
.

We set r(j) =
∑m−1

`=0 1((j, `) ∈ D) for the number of rectangles or row j.

Corollary 1.5. Let X be a fractional Brownian motion in R of Hurst index H. Let D ⊆ {0, . . . , n−
1} × {0, . . . ,m − 1} be a pattern such that there exists f : [0, 1] → [0, 1] with Gr(f) = K(D) and
logn(m) < H. Then almost surely

dim(Gr(X + f)) = 1−H +H logm

m−1∑
j=0

r(j)logn(m)/H

 .
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Figure 1: The patterns A and B used in each iteration

In [13, Theorems 1.8 and 1.9] it was shown that if B is a standard Brownian motion and f : [0, 1]→
Rd for d ≥ 1 is a continuous function, then almost surely

dim(Gr(B+f)) ≥ max{dim(Gr(f)),dim(Gr(B))} and dim(R(B+f)) ≥ max{dim(R(f)),dim(R(B))}.

In the same paper it was shown that in dimensions 3 and above there exist continuous functions f
such that the Hausdorff dimension of the image and the graph are strictly larger than the max-
ima given above. In dimension 1 though, the question of finding a continuous function f with
dim(Gr(B + f)) > dim(Gr(f)) remained open.

As an application of Theorem 1.2 for the case of the graph we give an example of a function f
which is Hölder continuous with parameter log 2/ log 6 < 1/2 and for which we can calculate exactly
the parabolic Hausdorff dimension. The patterns used in each iteration of the construction of the
graph of f are depicted in Figure 1 and the first few approximations to the graph of f are shown
in Figure 2. We defer the formal definition to Section 3 where we also calculate the parabolic
dimension of the graph of f .

Figure 2: Finite approximations of Gr(f)

Corollary 1.6. Let B be a standard Brownian motion in one dimension. Then there exists a
function f : [0, 1] → [0, 1] (the first approximations to its graph are depicted in Figure 2) which is
Hölder continuous of parameter θ = log 2/ log 6, its graph is a self-affine set with dimM(Gr(f)) =
1 + log 3/ log 6 and it satisfies almost surely

dim(Gr(B + f)) =
1 + log2(52θ + 1)

2
> max

{
dim(Gr(f)),

3

2

}
= log2(5θ + 1).

We prove Corollaries 1.5 and 1.6 in Section 3.

Remark 1.7. If K(D) is a self-affine set corresponding to the pattern D and r(j) ≥ 1 for all j,
then McMullen [11] showed

dimM (K(D)) = 1 + logn
|D|
m

and dim(K(D)) = logm

 m∑
j=1

r(j)lognm

 . (1.1)
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Figure 3: The graph of B + f in green and the graph of B in blue with f of Corollary 1.6

From [6, Theorem 1.8] we have that if h : [0, 1]→ R is a continuous function, then almost surely

dimM (Gr(B + h)) = max{dimM (Gr(h)),dimM (Gr(B))}. (1.2)

The proof of (1.1) applies to the graph of f , where f is the function of Corollary 1.6. In conjunction
with (1.2), this gives that almost surely

dimM (Gr(B + f)) = dimM (Gr(f)) = 1 + log6 3 = 1.6131... > dim(Gr(B + f)) = 1.5807...

This shows that despite the Brownian perturbations, the Hausdorff and Minkowski dimensions still
disagree (as is the case for the graph of f). Comparisons of Hausdorff and Minkowski dimensions
for other self-affine graphs perturbed by Brownian motion are in Section 4.

Related work Khoshnevisan and Xiao [10] also employ the parabolic dimension of Taylor and
Watson [15] to determine the Hausdorff dimension of the image of Brownian motion intersected
with a compact set. The problem of estimating the dimension of fractional Brownian motion with
drift was studied by Bayart and Heurteaux [1] (the case of Brownian motion was considered in [13]).
These papers obtain upper and lower bounds for the dimension which differ in general. The lower
bounds are proved by the energy method. The novel aspect of Theorem 1.2 is that it gives an exact
expression for the dimension of the graph of X + f valid for all Borel functions f .

2 Dimension of Gr(X + f) and R(X + f)

In this section we prove Theorem 1.2. We start with an easy preliminary lemma that relates the
parabolic Hausdorff dimension to Hausdorff dimension.

Note that for functions f, g we write f(n) . g(n) if there exists a constant c > 0 such that
f(n) ≤ cg(n) for all n. We write f(n) & g(n) if g(n) . f(n).

Lemma 2.1. For all A ⊆ R+ × Rd we have

dim(A) ≤ (dimΨ,H(A) + d(1−H)) ∧
dimΨ,H(A)

H
.
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Proof. For β > 0 we let Hβ(A) be the β-Hausdorff content of A, i.e.

Hβ(A) = inf

∑
j

|Ej |β : A ⊆ ∪jEj

 .

Let ε > 0 and η < 1. We set β =
dimΨ,H(A)

H + ε
H and γ − d(1 − H) = dimΨ,H(A) + ε. Then

ΨβH(A) = 0, and hence there exists a cover ([aj , aj + δj ]× [bj,1, bj,1 + δHj ]× . . .× [bj,d, bj,d + δHj ])j
of the set A, such that ∑

j

δβHj < η. (2.1)

From (2.1) it follows that δj < 1 for all j, and hence the diameter of every set in the above cover
of A is at most

√
dδHj . Therefore we obtain

Hβ(A) ≤
∑
j

dβ/2(δj
H)β = dβ/2

∑
j

δβHj < dβ/2η, (2.2)

where in the last step we used (2.1). Each interval [bj,i, bj,i+ δHj ] can be divided into δH−1
j intervals

of length δj each. (We omit integer parts to lighten the notation.) In this way we obtain a new
cover of the set A which satisfies

Hγ(A) ≤
∑
j

δ
(H−1)d
j δγj =

∑
j

δβHj < η. (2.3)

From (2.2) and (2.3) we deduce that

dim(A) ≤ β ∧ γ =

(
dimΨ,H(A)

H
+

ε

H

)
∧ (dimΨ,H(A) + d(1−H) + ε).

Therefore letting ε go to 0 we conclude

dim(A) ≤ (dimΨ,H(A) + d(1−H)) ∧
dimΨ,H(A)

H

and this finishes the proof.

Lemma 2.2. Let f : [0, 1]→ Rd be a Borel measurable function. Then for all Borel sets A ⊆ [0, 1]
almost surely

dimΨ,H(GrA(X + f)) = dimΨ,H(GrA(f)).

Proof. Since X is a fractional Brownian motion of Hurst index H, it follows that it is almost surely
Hölder continuous of parameter H − ε for all ε > 0 (see for instance [8, Section 18]). Therefore,
for ζ > 0 there exists a constant C such that almost surely for all s, t ∈ [0, 1] we have

‖Xs −Xt‖ ≤ C|t− s|H−ζ . (2.4)

Let 0 < η < h0. We set α = dimΨ,H(GrA(f)). Then Ψα+ε(GrA(f)) = 0, and hence there exists a
cover ([aj , aj + δj ]× [b1j , bj,1 + δHj ]× . . .× [bj,d, bj,d + δHj ])j of GrA(f) such that∑

j

δα+ε
j < η. (2.5)
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Using this cover we will derive a cover of GrA(X + f). By (2.4) if t ∈ [aj , aj + δj ], then

‖Xt −Xaj‖ ≤ Cδ
H−ζ
j .

Therefore the collection of sets([
aj , aj + 9C2δ

1−ζ/H
j

]
×
[
rj,1, rj,1 + 3CδH−ζj

]
× . . .×

[
rj,d, rj,d + 3CδH−ζj

])
j
,

where rj,i = bj,i +Xi
aj −Cδ

H−ζ
j is a cover of GrA(X + f). From (2.5) we obtain that for a positive

constant c we have

Ψα+2ε(GrA(X + f)) ≤ (9C2)α+2ε
∑
j

(
δ

1−ζ/H
j

)α+2ε
≤ c

∑
j

δα+ε
j < cη,

where the penultimate inequality follows by choosing ζ > 0 sufficiently small and c is a positive
constant. We thus showed that almost surely Ψα+2ε(GrA(X + f)) = 0 for all ε > 0, which implies
that almost surely

dimΨ,H(GrA(X + f)) ≤ α.

The other inequality follows in the same way and this concludes the proof.

Lemmas 2.1 and 2.2 give the following:

Corollary 2.3. Let f : [0, 1]→ Rd be a function. Then almost surely we have

dim(GrA(X + f)) ≤
dimΨ,H(GrA(f))

H
∧ (dimΨ,H(GrA(f)) + d(1−H)) .

We now recall the definition of the capacity of a set.

Definition 2.4. Let K : Rd → [0,∞] and A a Borel set in Rd. (Sometimes K is called a difference
kernel.) The K-energy of a measure µ is defined to be

EK(µ) =

∫ ∫
K(x− y) dµ(x)dµ(y)

and the K-capacity of A is defined as

CapK(A) = [inf{EK(µ) : µ a probability measure on A}]−1.

When the kernel has the form K(x) = |x|−α, then we write Eα(µ) for EK(µ) and Capα(A) for
CapK(A) and we refer to them as the α-energy of µ and the Riesz α-capacity of A respectively.

We recall the following theorem which gives the connection between the Hausdorff dimension of a
set and its Riesz α-capacity. For the proof see [5].

Theorem 2.5 (Frostman). For any Souslin set A ⊂ Rd,

dim(A) = sup{α : Capα(A) > 0}.

Let X be a fractional Brownian motion in Rd of Hurst index H. For (s, x) ∈ R+ × Rd we define
the difference kernel

Iγ,H(s, x) = E
[

1

(‖Xs + x‖2 + s2)γ/2

]
. (2.6)
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Lemma 2.6. Let X be a fractional Brownian motion in Rd of Hurst index H and let f : [0, 1]→ Rd
be a Borel measurable function. Let A be a closed subset of [0, 1]. If CapIγ,H (GrA(f)) > 0, then
almost surely

Capγ(GrA(X + f)) > 0.

Proof. Since by assumption CapIγ,H (GrA(f)) > 0, there exists a probability measure νf on GrA(f)
with finite energy, i.e.∫

GrA(f)

∫
GrA(f)

Iγ,H(s− t, f(s)− f(t)) dνf (s, f(s)) dνf (t, f(t))

=

∫
A

∫
A
Iγ,H(s− t, f(s)− f(t)) dν(s) dν(t) <∞,

where ν is the measure on A satisfying ν = νf ◦ H−1, where H((s, f(s))) = s is the projection
mapping. We now define a measure ν̃ on GrA(X + f) via

ν̃(A) = ν({t : (t, (X + f)(t)) ∈ A}).

We will show that this measure has finite γ energy. Indeed,

E
[∫ ∫

1

‖x− y‖γ
dν̃(x) dν̃(y)

]
= E

∫ ∫ dν(s)dν(t)(
‖(X + f)(t)− (X + f)(s)‖2 + |t− s|2

)γ/2


=

∫ ∫
Iγ,H(s− t, f(s)− f(t)) dν(s) dν(t) <∞,

and hence it follows that Capγ(GrA(X + f)) > 0 almost surely.

Lemma 2.7. Let f : [0, 1] → Rd be a bounded Borel measurable function and A a closed subset
of [0, 1]. If α = dimΨ,H(GrA(f)), then

min
{ α
H
,α+ d(1−H)

}
≤ inf{γ : CapIγ,H (GrA(f)) = 0}.

Before proving Lemma 2.7 we show how we can bound from above the kernel Iγ,H in three different
regimes.

Lemma 2.8. Fix M > 0. There exists a positive constant C such that for all t ∈ (0, 1/e] and all u
satisfying ‖u‖ ≤M , the kernel Iγ,H defined in (2.6) satisfies

Iγ,H(t, u) .


‖u‖−γ if ‖u‖ > CtH

√
| log t|,

td(1−H)−γ if ‖u‖ ≤ CtH
√
| log t| and d < γ,

t−γH if ‖u‖ ≤ CtH
√
| log t| and d > γ.

Proof. By scaling invariance of fractional Brownian motion we have

Iγ,H(t, u) = E

 1(
‖tHX1 + u‖2 + t2

)γ/2
 .
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Let C be a constant to be determined and let ‖u‖ > CtH
√
| log t|. By the Gaussian tail estimate

we have

P
(
tH ‖X1‖ >

‖u‖
2

)
≤ 2e

− ‖u‖
2

8t2H ≤ 2e−
C2 log(1/t)

8 ≤ 2tC
2/8.

On the event {tH ‖X1‖ < ‖u‖ /2} we have

∥∥tHX1 + u
∥∥ ≥ ‖u‖ − tH ‖X1‖ ≥

‖u‖
2
.

Therefore, taking C sufficiently large we get

E

 1(
‖tHX1 + u‖2 + t2

)γ/2
 . P

(
tH ‖X1‖ >

‖u‖
2

)
1

tγ
+ P

(
tH ‖X1‖ ≤

‖u‖
2

)
1

‖u‖γ

. tC
2/8−γ + ‖u‖−γ . ‖u‖C

2/8−γ + ‖u‖−γ . ‖u‖−γ ,

since ‖u‖ ≤M and this finishes the proof of the first part. Next, let ‖u‖ ≤ CtH
√
| log t|. Then

E

 1(
‖tHX1 + u‖2 + t2

)γ/2
 =

∫
1(

‖x+ u‖2 + t2
)γ/2 e− ‖x‖22t2H dx =

∫
f(x+ u)g(x) dx,

where f(x) =
(
‖x‖2 + t2

)−γ/2
and g(x) = e−‖x‖

2/(2t2H). Since they are both decreasing as functions

of ‖x‖, it follows that ∫
(f(x+ u)− f(x))(g(x+ u)− g(x)) dx ≥ 0, (2.7)

and hence this gives

E

 1(
‖tHX1 + u‖2 + t2

)γ/2
 ≤ E

 1(
‖tHX1‖2 + t2

)γ/2
 ≤ 1

tγ
P
(∥∥tHX1

∥∥ ≤ t)+
1

tγH
E

[
1(
∥∥tHX1

∥∥ > t)

‖X1‖γ

]

=
1

tγ

∫
B(0,t1−H)

1

(2π)d/2
e−‖x‖

2/2 dx+
1

tγH

∫
B(0,t1−H)c

1

(2π)d/2 ‖x‖γ
e−‖x‖

2/2 dx

. t(1−H)d−γ + t−γH
∫ ∞
t1−H

rd−1−γe−r
2/2 dr

. t(1−H)d−γ + t−γH
∫ 1

t1−H
rd−1−γ dr + c1,

where c1 is a positive constant. If d > γ, then from the above we deduce that

Iγ,H(t, u) . t−γH ,

while when d < γ, then
Iγ,H(t, u) . td(1−H)−γ

and this concludes the proof of the lemma.
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The next theorem is the analogue of Frostman’s theorem for parabolic Hausdorff dimension.The
statement can be found in Taylor and Watson [15, Lemma 4] and the proof follows along the same
lines as the proof of Frostman’s theorem for Hausdorff dimension. We include the statement here
for the reader’s convenience.

Theorem 2.9 (Frostman’s theorem). Let A be a Borel set. If dimΨ,H(A) > β, then there exists a
Borel probability measure µ supported on A such that

µ([a, a+ δ]× ∪j [bj,1, bj,1 + δH ]× . . . [bj,d, bj,d + δH ]) ≤ Cδβ,

where C is a positive constant.

We now give the proof of Lemma 2.7.

Proof of Lemma 2.7. Let β = α − ε/2. Since the graph of a Borel function is always a Borel
set, it follows by Theorem 2.9 that there exists a probability measure µ supported on GrA(f) such
that

µ([a, a+ δ]× ∪dj=1[bj , bj + δH ]) ≤ c2δ
β. (2.8)

From this it follows that the measure µ is non-atomic. Suppose first that min{α/H,α+d(1−H)} =
α/H. Let γ = β/H − ε < d. We show that CapIγ,H (GrA(f)) > 0. It suffices to prove that

EIγ,H (µ) <∞. (2.9)

Since γ < d and f is bounded on [0, 1], if we define

I1 =
x

|s−t|<1/e

1(‖f(t)− f(s)‖ ≤ C|t− s|H
√
| log |t− s||)|t− s|−γH dµ((s, f(s)))dµ((t, f(t))),

I2 =
x

|s−t|<1/e

1(‖f(t)− f(s)‖ > C|t− s|H
√
| log |t− s||) ‖f(t)− f(s)‖−γ dµ((s, f(s)))dµ((t, f(t))),

then from Lemma 2.8 we get that

EIγ,H (µ) =
x

E
[

1

(‖Xs −Xt + f(s)− f(t)‖2 + |t− s|2)γ/2

]
dµ((s, f(s)))dµ((t, f(t))) . eγ + I1 + I2.

We first show that I1 <∞. Since µ is non-atomic, we have

I1 ≤
∞∑
k=0

2kγHµ⊗ µ{2−k ≤ |t− s| < 2−k+1, ‖f(t)− f(s)‖ ≤ C2−kH
√
k}. (2.10)

Let M = maxt∈[0,1] ‖f(t)‖ <∞. Then the measure µ is supported on [0, 1]× [−M,M ]d. For k > 0,

we partition the space [0, 1]× [−M,M ]d into rectangles of of dimensions 2−k × 2−kH × . . .× 2−kH .
We let Dk be the collection of rectangles of generation k. For two rectangles Q,Q′ of the same
generation we write Q ∼ Q′ if there exist (s, x) ∈ Q, (t, y) ∈ Q′ such that 2−k ≤ |s − t| < 2−k+1

and ‖x− y‖ ≤ C2−kH
√
k. Then from (2.10) we obtain

I1 ≤
∞∑
k=0

2kγH
∑

Q,Q′∈Dk
Q∼Q′

µ⊗ µ(Q×Q′) =
∞∑
k=0

2kγH
∑

Q,Q′∈Dk
Q∼Q′

µ(Q)µ(Q′).
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We now notice that if we fix Q ∈ Dk, then the number of Q′ such that Q ∼ Q′ is up to constants kd/2.
Using the obvious inequality

µ(Q)µ(Q′) ≤ 1

2
(µ(Q)2 + µ(Q′)2) (2.11)

and (2.8) to get µ(Q) ≤ c22−kβ we deduce

I1 .
∞∑
k=0

2kγHkd/2
∑
Q∈Dk

µ(Q)2 .
∞∑
k=0

2kγHkd/22−kβ
∑
Q∈Dk

µ(Q) =
∞∑
k=0

kd/2

2kεH
<∞,

since
∑

Q∈Dk µ(Q) = 1 as µ is a probability measure. It remains to show that I2 <∞. By defining
a new equivalence relation on rectangles in Dk, i.e. that Q ∼ Q′ if there exist (s, x) ∈ Q, (t, y) ∈ Q′
such that |t− s| ≤ 2−k and 2−kH ≤ ‖f(t)− f(s)‖ < 2−kH+H we get

I2 .
∞∑
k=0

2kγHµ⊗ µ{2−kH ≤ ‖f(t)− f(s)‖ . 2−kH+H , |t− s| ≤ 2−k} .
∞∑
k=0

2kγH2−kβ <∞,

where we used (2.11) again and the fact that the number of Q′ ∈ Dk such that Q ∼ Q′ is of order 1.
This completes the proof in the case when α/H < d. Suppose now that α/H > d. Take ε > 0
small enough such that α− 2ε > dH and set β = α− ε. Let γ = β + d(1−H)− ε. Then using the
measure µ from (2.8) and following the same steps as above we can write the same expression for
the energy. Then, since γ > d, the quantity I1 in view of Lemma 2.8 is bounded by

I1 .
∫ ∫

1(‖f(t)− f(s)‖ ≤ C|t− s|H
√
| log |t− s||)|t− s|d(1−H)−γ dµ((s, f(s)))dµ((t, f(t))).

Following the same steps as earlier we deduce

I1 .
∞∑
k=0

2−k(d(1−H)−γ)kd/22−kβ =

∞∑
k=0

2−kεkd/2 <∞.

For the quantity I2 in the same was as above we have

I2 .
∞∑
k=0

2kγH2−kβ =

∞∑
k=0

2−k((1−H)(α−dH)+2εH−ε) <∞,

since α− 2ε > dH and this completes the proof of the lemma.

Claim 2.10. Let A ⊆ R× Rd. Then

inf{γ : CapIγ,H (A) = 0} = sup{γ : CapIγ,H (A) > 0}.

Proof of Theorem 1.2. (dimension of the graph)

We first assume that f is bounded. We set α = dimΨ,H(GrA(f)). In view of Corollary 2.3 we only
need to show that almost surely

dim(GrA(X + f)) ≥ α/H ∧ (α+ d(1−H)) . (2.12)

Claim 2.10 gives that

inf{γ : CapIγ,H (GrA(f)) = 0} = sup{γ : CapIγ,H (GrA(f)) > 0} = γ∗.
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Let γn be such that CapIγn,H (GrA(f)) > 0 and γn → γ∗ as n → ∞. Then by Lemma 2.6 we get
that for all n a.s. Capγn(GrA(X + f)) > 0, and hence a.s.

dim(GrA(X + f)) ≥ γn for all n,

which gives that almost surely dim(GrA(X + f)) ≥ γ∗. This combined with Lemma 2.7 implies
that almost surely

dim(GrA(X + f)) ≥ min
{ α
H
, (α+ d(1−H))

}
and this concludes the proof in the case when f is bounded. For the general case, we define the
increasing sequence of sets An = {s ∈ A : |f(s)| ≤ n}. Then by the countable stability property of
Hausdorff and parabolic dimension we have

dim(GrA(X + f)) = sup
n

dim(GrAn(X + f)) and dimΨ,H(GrAn(f)) ↑ dimΨ,H(GrA(f)). (2.13)

From above we have

dim(GrAn(X + f)) = min

{
dimΨ,H(GrAn(f))

H
,dimΨ,H(GrAn(f)) + d(1−H)

}
.

Using this and (2.13) proves the theorem in the general case.

Proof of Theorem 1.2. (dimension of the image)

As in the proof of Theorem 1.2 in the case of the graph, we can assume that f is bounded. The
general case follows exactly in the same way as for the graph.

The dimension of the image satisfies

dim(RA(X + f)) ≤ dim(GrA(X + f)) ≤
dimΨ,H(GrA(X + f))

H
=

dimΨ,H(GrA(f))

H
=
α

H
,

where the second inequality follows from Lemma 2.1 and the first equality follows from Lemma 2.2.
Hence the upper bound on the dimension of RA(X + f) is immediate. It only remains to show the
lower bound. Let β = α∧ dH − εH and γ = β/H − ε. Then since the image of a Borel set under a
Borel measurable function is a Souslin set (see for instance [9]), it follows from Theorem 2.5 that
it suffices to show that Capγ(RA(X + f)) > 0, i.e. it is enough to find a measure of finite γ-energy.
By Theorem 2.9 there exists a probability measure µ on GrA(f) such that

µ([a, a+ δ]× ∪dj=1[bj , bj + δH) ≤ δβ.

Let H be the projection mapping from GrA(f) to A, i.e. H((s, f(s))) = s for all s. Let ν be the
measure on A such that

ν = µ ◦H−1.

Let µ̃ be a measure on GrA(X + f) given by

µ̃(R) = ν((X + f)−1(R))

where R ⊆ RA(X + f). We will show that almost surely

Eγ(µ̃) =

∫ ∫
dµ̃(x)dµ̃(y)

‖x− y‖γ
<∞.
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Taking expectations we get

E[Eγ(µ̃)] =

∫ ∫
E
[

1

‖Xs −Xt + f(s)− f(t)‖γ
]
dµ((s, f(s)))dµ((t, f(t))).

We now show that

E
[

1

‖Xs −Xt + f(s)− f(t)‖γ
]
. min{‖f(t)− f(s)‖−γ , |t− s|−γH}. (2.14)

The calculations that lead to (2.14) can be found in the proof of [13, Theorem 1.8], but we include
the details here for the convenience of the reader. Using (2.7) we have

E
[

1

‖Xs −Xt + f(s)− f(t)‖γ
]
≤ E

[
1

‖Xs −Xt‖γ
]
. |t− s|−γH .

We set u = (f(s)− f(t))/|s− t|H and we get

E
[

1

‖Xs −Xt + f(s)− f(t)‖γ
]

=
1

|t− s|γH

∫
Rd

1

(2π)d/2 ‖x+ u‖γ
e−‖x‖

2/2 dx.

We now upper bound the last integral appearing above∫
Rd

1

‖x+ u‖γ
e−‖x‖

2/2 dx =

∫
‖x+u‖≥‖u‖/2

1

‖x+ u‖γ
e−‖x‖

2/2 dx+

∫
‖x+u‖<‖u‖/2

1

‖x+ u‖γ
e−‖x‖

2/2 dx

.
1

‖u‖γ
+ e−‖u‖

2/4

∫
‖x‖<‖u‖

1

‖x‖γ
dx . ‖u‖−γ ,

where the last step follows from passing to polar coordinates and using the fact that d > γ.
Therefore multiplying the last upper bound by |t−s|−γH proves (2.14). We now need to decompose
the energy in these two regimes, i.e. for ‖f(t)− f(s)‖ ≤ |t− s|H and ‖f(t)− f(s)‖ > |t− s|H . This
now follows in the same way as the proof that I1, I2 <∞ in the proof of Lemma 2.7.

3 Self-affine sets

In this section we give the proofs of Corollaries 1.5 and 1.6. We start by calculating the parabolic
Hausdorff dimension of any self-affine set as defined in the Introduction. Then we use Theorem 1.2
to prove Corollary 1.5.

Lemma 3.1. Let n > m and let D ⊆ {0, . . . , n−1}×{0, . . . ,m−1} be a pattern. If logn(m) < H,
then

dimΨ,H(K(D)) = H logm

m−1∑
j=0

r(j)logn(m)/H

 ,

where r(j) =
∑m−1

`=0 1((j, `) ∈ D).

Before proving this lemma, we state the analogue of Billingsley’s lemma for the parabolic Hausdorff
dimension. See Billingsley [3] and Cajar [4] for the proof. We first introduce some notation. Let b
be an integer. We define the b-adic rectangles contained in [0, 1]2 of generation k to be

Rk =

[
(j − 1)

[bk/H ]
,

j

[bk/H ]

)
×
[

(i− 1)

bk
,
i

bk

)
,

where j ranges from 1 to [bk/H ] and i ranges from 1 to bk, and we write Rk(x) for the unique dyadic
rectangle containing x.
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Lemma 3.2 (Billingsley’s lemma). Let A be a Borel subset of [0, 1]2 and let µ be a measure on [0, 1]2

with µ(A) > 0. If for all x ∈ A we have

α ≤ lim inf
n→∞

log(µ(Rn(x)))

log(b−n/H)
≤ β,

then α ≤ dimΨ,H(A) ≤ β.

We are now ready to give the proof of Lemma 3.1. The proof follows the steps for the calculation
of the Hausdorff dimension of a self-affine set as given in [11] and [12].

Proof of Lemma 3.1. For (x, y) ∈ [0, 1]2 we define Qk(x, y) to be the closure of the set of
points x′, y′ such that the first bθk/Hc digits of x′ and x agree in the n-ary expansion and the
first k digits of y′ and y agree in the m-ary expansion. Let π = (p(d), d ∈ D) be a probability
measure on D.

Let µ be the image of the product measure π⊗N under the map

R : {(ak, bk)}k≥1 7→
∞∑
k=0

(
akn

−k, bkm
−k
)
,

where (ak, bk) ∈ D for all k. We now consider the rectangle n−k ×m−k defined by specifying the
first k digits of the base n expansion of x and the first k digits of the base m expansion of y.
This has µ measure equal to

∏k
i=1 p(xi, yi). Since r(j) is the number of rectangles contained in

row j of the pattern, it follows that the rectangle Qk(x, y) contains
∏k
i=bθk/Hc+1 r(yi) rectangles of

size n−k ×m−k. We now assume that p(d) only depends on the second coordinate. Hence we get

µ(Qk(x, y)) =
k∏
`=1

p(x`, y`)
k∏

`=bθk/Hc+1

r(y`). (3.1)

Taking logarithms of (3.1) we obtain

log(µ(Qk(x, y))) =
k∑
`=1

log(p(x`, y`)) +
k∑

`=bθk/Hc+1

log(r(y`)). (3.2)

Since the digits (x`, y`)` are i.i.d. wrt to the product measure π⊗N, by the strong law of large
numbers we get

lim
k→∞

1

k
log(µ(Qk(x, y))) =

∑
d∈D

p(d) log(p(d)) + (1− θ/H)
∑
d∈D

p(d) log(r(d))

for µ-almost every x, y.

Let A be the set of (x, y) for which the convergence holds. Then µ(Ac) = 0. By the definition of
the measure µ it is clear that it is supported on the set K(D). Hence µ(K(D)c ∪ Ac) = 0 and for
all x ∈ K(D) ∩A we have

lim
k→∞

1

k
log(µ(Qk(x, y))) =

∑
d∈D

p(d) log(p(d)) + (1− θ/H)
∑
d∈D

p(d) log(r(d)).
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Therefore using Lemma 3.2 we deduce

dimΨ,H(K(D) ∩A) =
∑
d∈D

p(d) log(p(d)) + (1− θ/H)
∑
d∈D

p(d) log(r(d)),

and hence we obtain a lower bound for the parabolic dimension of K(D)

dimΨ,H(K(D)) ≥
∑
d∈D

p(d) log(p(d)) + (1− θ/H)
∑
d∈D

p(d) log(r(d)).

Maximizing the right hand side of the above inequality over all probability measures (p(d)) gives
that the maximizing measure is

p(d) =
1

Z
r(d)θ/H−1 and Z =

∑
d∈D

r(d)θ/H−1 =
m−1∑
j=0

r(j)θ/H . (3.3)

This choice of probability measure immediately gives

dimΨ,H(K(D)) ≥ H logm

m−1∑
j=0

r(j)θ/H ,

and hence it remains to prove the upper bound. From now we fix the choice of probability measure
as in (3.3). We define

Sk(x, y) =
k∑
`=1

r(y`).

Using (3.3) we can rewrite (3.2) as follows

log(µ(Qk(x, y))) =

k∑
`=1

log

(
1

Z
r(y`)

θ/H−1

)
+

k∑
`=1

log(r(y`))−
bθk/Hc∑
`=1

log(r(y`))

= −k log(Z) + (θ/H − 1)Sk(x, y) + Sk(x, y)− Sbθk/Hc(x, y).

Therefore

H

θk
log(µ(Qk(x, y))) +

H

θ
log(Z) =

Sk(x, y)

k
−
Sbθk/Hc(x, y)

θk/H
. (3.4)

We can write the right hand side as follows

Sk(x, y)

k
−
Sbθk/Hc(x, y)

θk/H
=
Sbkc(x, y)

bkc
−
Sbθk/Hc(x, y)

bθk/Hc

(
1− {θk/H}

θk/H

)
,

where for all x we write {x} = x − bxc. Now we can sum the right hand side above over all
k = H/θ, (H/θ)2, . . . and hence we get a telescoping series and a convergent one, since (S`/`) is
bounded and θ/H < 1. In this way we get

lim sup
k→∞

(
Sk(x, y)

k
−
Sbθk/Hc(x, y)

θk/H

)
≥ 0,

since otherwise the sum of these differences would converge to −∞. Hence, from (3.4) we deduce

lim inf
k→∞

log(µ(Qk(x, y)))

log(m−k/H)
≤ H logm(Z)

and applying now Lemma 3.2 we immediately conclude

dimΨ,H(K(D)) ≤ H logm(Z)

and this finishes the proof of the theorem.
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Proof of Corollary 1.5. The statement of the corollary follows immediately from Remark 1.3
and Lemma 3.1.

We now proceed to prove Corollary 1.6. To this end we first define a self-affine set K and then show
that there exists a function f : [0, 1]→ [0, 1] which is Hölder continuous with parameter log 2/ log 6
and satisfies Gr(f) = K.

We start by defining the self-affine set that corresponds to the patterns A and B given by the
matrices

A =

(
0 0 0 0 0 1
1 1 1 1 1 0

)
and B =

(
1 0 0 0 0 0
0 1 1 1 1 1

)
.

Let Q0 = {[0, 1]2} be the set containing the rectangles of the 0-th generation. To each rectangle
in Q0 we assign label A. Suppose we have defined the collection Qj and assigned labels to the
rectangles in Qj . Then we subdivide each rectangle Rj in Qj into 12 equal closed rectangles of
width 6−(j+1) and height 2−(j+1). If the label assigned to Rj is A (resp. B), then in the subdivision
we keep only those rectangles that correspond to the pattern A (resp. B). If the label of Rj is A,
then to the rectangles that we kept we assign labels A,B,A,B,A,A going from left to right. If
the label of Rj is B, then to the rectangles that we kept we assign labels B,B,A,B,A,B again
going from left to right. The collection Qj+1 consists of those rectangles that we kept in the above
procedure. Continuing indefinitely gives a compact set which we will denote K. The patterns A
and B and the labels used in each iteration are depicted in Figure 1 and the first four approximations
to the set K are shown in Figure 2 in the Introduction.

Claim 3.3. There exists a function f : [0, 1]→ [0, 1] such that Gr(f) = K. Moreover, f is Hölder
continuous with parameter θ = log 2/ log 6 and is not Hölder continuous with parameter θ′ for
any θ′ > θ.

Proof. For every x ∈ [0, 1] let x =
∑∞

i=1 xi6
−i with xi ∈ {0, 1, 2, 3, 4, 5} be its expansion in base 6.

Note that if x = k6−i for some k ∈ {0, 1, . . . , 6i}, then x has two different expansions in base 6; one
with an infinite number of 0’s and one with an infinite number of 5’s. To define the function f we
consider the expansion with the infinite number of 0’s. We now define a sequence (yi) corresponding
to the sequence (xi), where yi ∈ {0, 1}. For each rectangle R ∈ Qj we consider the interval of the j-
th generation which is the projection of R on [0, 1]. This way we obtain a partition of [0, 1] into
disjoint subintervals of length 6−j in generation j.

To determine yj we find the interval of the j-th generation where x belongs to. If the pattern used
in the rectangle of the j-th generation that corresponds to this interval is A, then if xj 6= 5, we set
yj = 0, otherwise we set yj = 1. If the pattern used is B, then if xj 6= 1, we set yj = 0, otherwise
we set yj = 1. We finally define

f(x) =

∞∑
i=1

yi2
−i.

It is now clear that Gr(f) = K. It remains to show the Hölder property.

We first argue that the definition of f remains unchanged if we do not require for the representation
of x to have an infinite number of 0’s. Suppose that x lies on a dividing line of the i-th generation.
Then the first i digits of x are independent of the representation. Thus the first i digits of f(x)
are also independent. Then there are several cases. We illustrate four of them in Figure 3. In
Figure 4(a) the labels of the two rectangles above x from left to right are A,B. This means that
yi+1 = 1 and this is independent of the representation. In the case of Figure 4(b) the two rectangles
from left to right are assigned A,A. In the representation from the left yi+1 = 0 and from the right
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(a) Pattern A
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A

(b) Pattern A

x

B
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(c) Pattern B

x

B

B A B A B

(d) Pattern B

Figure 4: Patterns A,B and location of x on the dividing line

y′i+1 = 0. In the next generations yi+k = 1 and y′i+k = 0 for all k ≥ 2. This now implies that f(x)
is independent of the representation in this case. The other cases follow similarly.

It now remains to show that f is Hölder continuous. Let x and x′ satisfy

6−k < |x− x′| ≤ 6−k+1 and xi = x′i, ∀i ≤ k.

Then by the construction of f it follows that yi = y′i for all i ≤ k, and hence

|f(x)− f(x′)| =

∣∣∣∣∣
∞∑
i=1

(yi − y′i)2−i
∣∣∣∣∣ ≤

∞∑
i=k+1

2−i = 2−k = 6−θk ≤ |x− x′|θ.

If x, x′ satisfy 6−k < |x − x′| ≤ 6−k+1 but disagree in the first k digits, then let x0 = `6−k be the
unique point of the k-th subdivision that agrees with x and x′ in the first k digits if we consider its
two representations in base 6. Then by the above argument it follows that

|f(x)− f(x0)| ≤ |x− x0|θ and |f(x′)− f(x0)| ≤ |x′ − x0|θ.

Therefore by the triangle inequality we immediately get that

|f(x)− f(x′)| ≤ 2|x− x′|θ

and this proves that f is Hölder continuous with parameter θ.

We note that f is not Hölder continuous for any θ′ > θ. Indeed, let (x
(k)
n )k, (u

(k)
n )k be two sequences

indexed by k such that x
(k)
n = u

(k)
n for all n 6= k and x

(k)
k = 0 and u

(k)
k = 5 and let the rectangle of

generation k − 1 where x = x(k) and u = u(k) belong to have label A. Then it is easy to see that
yk = 0 and vk = 1, where f(x) =

∑
i yi2

−i and f(u) =
∑

i vi2
−i. Therefore

|f(x)− f(u)| = |yk − vk|2−k = 6−θk,

and hence f cannot be Hölder continuous for any θ′ > θ.

Proof of Corollary 1.6. We first explain how we can adapt the proof of Lemma 3.1 in order to
get the parabolic dimension of K, since the patterns used are not the same in each iteration as was
the case there. We only outline where the two proofs differ.

Let D1 = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 5)} and D2 = {(1, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5)}
correspond to patterns A and B respectively. We define two probability distributions on D1 and
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on D2. Let p > 0 and q > 0 satisfy 5p + q = 1. Then we let p1(x, 0) = p for all x 6= 5 and
p1(5, 1) = q. This is a distribution on D1. We also let p2(0, 1) = q and p2(x, 0) = p for x 6= 0. This
is a distribution on D2. We notice that both distributions only depend on the second coordinate
and give the same values to this coordinate. We now generate (ξ1

i , ξ
2
i )i≥1 an i.i.d. sequence from

p1 and independently (ζ1
i , ζ

2
i )i≥1 an i.i.d. sequence from p2. We sample (x, y) ∈ K by sampling the

digits. Namely, (x1, y1) = (ξ1
1 , ξ

2
1) and then iteratively depending on the history of the process we

set either (xi, yi) = (ξ1
r(i), ξ

2
r(i)) or (xi, yi) = (ζ1

i−r(i), ζ
2
i−r(i)), where r(i) is the number of times that

we have used the distribution p1. Then if µ is the measure induced by these distributions we get
for (x, y) ∈ K and Qk(x, y) as defined in Lemma 3.1

µ(Qk(x, y)) =
k∏
i=1

w(xi, yi)
k∏

j=b2θkc+1

r(yj),

where w(xi, yi) is either equal to p1(xi, yi) or to p2(xi, yi) and θ = log 2/ log 6. By the construction
above it easily follows that w(xi, yi) is an i.i.d. sequence that takes the value p with probability 5p
and the value q with probability q. By the strong law of large numbers we then deduce that for
µ-almost every (x, y)

lim
k→∞

1

k
log (µ(Qk(x, y))) = 5p log p+ q log q + (1− 2θ)5p log 5.

Now the rest of the proof follows in exactly the same way as the proof of Lemma 3.1 to finally give

dimΨ,H(Gr(f)) =
1

2
log2(52θ + 1), (3.5)

where we used H = 1/2 for the Brownian motion. Let f : [0, 1] → [0, 1] be the function of
Claim 3.3 which is Hölder continuous with exponent θ and satisfies Gr(f) = K. Then from (3.5)
and Corollary 1.5 we immediately get

dim(Gr(B + f)) =
log2

(
52θ + 1

)
+ 1

2
.

Since we have
dim(Gr(f)) = log2

(
5θ + 1

)
,

it follows that
dim(Gr(B + f)) > max{dim(Gr(f)), 3/2}

and this concludes the proof.

4 Comparing dimensions of Gr(B + f) when Gr(f) is a self affine
set

Theorem 4.1. Let B be a standard Brownian motion in R and n > m2. Let D ⊆ {0, . . . , n− 1}×
{0, . . . ,m − 1} be a pattern such that every row always contains a chosen rectangle (i.e. rj ≥ 1
for all j ≤ m − 1) and every column contains exactly one chosen rectangle. Then there exists a
function f with Gr(f) = K(D) and we have almost surely

dimM (Gr(B + f)) = dimM (Gr(f)) = 1 + logn
n

m
. (4.1)

Moreover, if the rj are not all equal, then almost surely

max{dim(Gr(B)), dim(Gr(f))} < dim(Gr(B + f)) < dimM (Gr(B + f)). (4.2)

17



Proof. Note that the function f can be made càdlàg without affecting dimM Gr(B + f) and
dimM Gr(f). Then we can apply [6, Theorem 1.7] to get that almost surely

dimM (Gr(B + f)) ≥ dimM (Gr(f)). (4.3)

It only remains to prove the upper bound. We follow McMullen’s proof [11] for the calculation of
the Minkowski dimension of Gr(f). First notice that θ = lognm < 1/2.

Consider a rectangle of the j-th generation of the construction of Gr(f) with size n−j×m−j . Then
it is of the form R = [pn−j , (p+ 1)n−j ]× [qm−j , (q + 1)m−j ]. By the Hölder property of Brownian
motion it follows that for ζ > 0 there exists a constant C such that almost surely for all s, t ∈ [0, 1]
we have

|Bt −Bs| ≤ C|t− s|1/2−ζ . (4.4)

When Gr(f) is perturbed by Brownian motion, then the above rectangle becomes

R′ = [pn−j , (p+ 1)n−j ]× [qm−j +Bpn−j − Cn−j(1/2−ζ), (q + 1)m−j +Bpn−j + Cn−j(1/2−ζ)].

This means that if (t, f(t)) ∈ R, then by (4.4) we have (t, Bt + f(t)) ∈ R′. If θ = lognm, then the
rectangle R′ requires mj−[θj] squares of side n−j to cover it, since θ < 1/2. Therefore the number
of squares of side n−j needed to cover Gr(B + f) is at most |D|jmj−[θj]. Taking logarithms and
then the limit as j →∞ we obtain that almost surely

dimM (Gr(B + f)) ≤ lim
j→∞

log |D|jmj−[θj]

log nj
= 1 + logn

|D|
m

= dimM (Gr(f))

and this together with (4.3) concludes the proof of (4.1).

It remains to prove (4.2). By Cauchy-Schwartz we have

m−1∑
j=0

rθj ≤
(
m

m−1∑
j=0

r2θ
j

)1/2
.

Therefore almost surely we get

dim(Gr(f)) = logm(

m−1∑
j=0

rθj ) ≤
1

2

(
1 + logm(

m−1∑
j=0

r2θ
j )
)

= dim(Gr(B + f)). (4.5)

Since 2θ < 1, we have
∑m−1

j=0 r2θ
j >

∑m−1
j=0 rjn

2θ−1 = n2θ. Thus

dim(Gr(B + f)) >
1 + logm(n2θ)

2
=

3

2
= dim(Gr(B)) a.s.

and together with (4.5), this proves the first inequality in (4.2).

If the rj are not all equal, then by Jensen’s inequality we get

1

m

m−1∑
j=0

r2θ
j <

( 1

m

m−1∑
j=0

rj

)2θ
= (n/m)2θ ,

whence

dim(Gr(B + f)) <
1 + logm

(
m(n/m)2θ

)
2

= 2− θ ,

establishing the second inequality in (4.2).
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96:1–9, 1984.

[12] Yuval Peres. The self-affine carpets of McMullen and Bedford have infinite Hausdorff measure.
Math. Proc. Cambridge Philos. Soc., 116(3):513–526, 1994.

[13] Yuval Peres and Perla Sousi. Brownian motion with variable drift: 0-1 laws, hitting probabil-
ities and Hausdorff dimension. Math. Proc. Cambridge Philos. Soc., 153(2):215–234, 2012.

[14] Boris Solomyak. Measure and dimension for some fractal families. Math. Proc. Cambridge
Philos. Soc., 124(3):531–546, 1998.

[15] S. J. Taylor and N. A. Watson. A Hausdorff measure classification of polar sets for the heat
equation. Math. Proc. Cambridge Philos. Soc., 97(2):325–344, 1985.

19


