Brownian motion with variable drift

Perla Sousi

joint work with Yuval Peres

2Microsoft Research, Redmond
1University of Cambridge
Theorem (Lévy 1940)

Let B be a planar Brownian motion. Then $L(B_{[0,1]}) = 0$ a.s.
Theorem (Lévy 1940)

Let B be a planar Brownian motion. Then

$$\mathcal{L}(B[0,1]) = 0 \text{ a.s.}$$
Question

Let f be a continuous function. Does $(B + f)[0, 1]$ still have 0 area?
Question

Let f be a continuous function. Does \((B + f)[0, 1]\) still have 0 area?

An a.s. property insensitive to the drift:
For any \(f\) continuous, \(B + f\) is nowhere differentiable a.s.
Denote by $D[0, 1]$ the **Dirichlet space**

$$D[0, 1] = \left\{ f \in C[0, 1] : \exists g \in L^2[0, 1] \text{ s.t. } f(t) = \int_0^t g(s)ds, \forall t \in [0, 1] \right\}.$$
Cameron–Martin Theorem

Denote by $D[0, 1]$ the **Dirichlet space**

$$D[0, 1] = \left\{ f \in C[0, 1] : \exists g \in L^2[0, 1] \text{ s.t. } f(t) = \int_0^t g(s)ds, \forall t \in [0, 1] \right\}.$$

Theorem (Cameron–Martin 1944)

If $f \in D[0, 1]$, *then the law of* B *is mutually absolutely continuous w.r.t. the law of* $B + f$.
Cameron–Martin Theorem

Denote by $D[0, 1]$ the Dirichlet space

$$D[0, 1] = \left\{ f \in C[0, 1] : \exists g \in L^2[0, 1] \text{ s.t. } f(t) = \int_0^t g(s)ds, \forall t \in [0, 1] \right\}.$$

Theorem (Cameron–Martin 1944)

*If $f \in D[0, 1]$, then the law of B is mutually absolutely continuous w.r.t. the law of $B + f$.***

Hence, if $f \in D[0, 1]$, then $\mathcal{L}(B + f)[0, 1] = 0$ a.s.
Graversen’s result

Theorem (Graversen 1982)

For all $0 < \alpha < 1/2$, there exists a Hölder(α) continuous function $f : \mathbb{R}_+ \to \mathbb{R}^2$ s.t. $\mathbb{E}[\mathcal{L}(B + f)[0, 1]] > 0$.

Perla Sousi
Brownian motion with variable drift
Le-Gall’s result

The condition $\alpha < 1/2$ in Graversen’s theorem was not an accident, because
The condition $\alpha < 1/2$ in Graversen’s theorem was not an accident, because

Theorem (Le-Gall 1988)

If f is Hölder(1/2), then

$$\mathcal{L}(B + f)[0, 1] = 0 \text{ a.s.}$$
Le-Gall’s result

The condition $\alpha < 1/2$ in Graversen’s theorem was not an accident, because

Theorem (Le-Gall 1988)

If f is Hölder(1/2), then

$$\mathcal{L}(B + f)[0, 1] = 0 \text{ a.s.}$$

We will see: same transition from Hölder(α) for $\alpha < 1/2$ to $\alpha = 1/2$ applies to a large variety of properties of Brownian motion.
Very recently, Antunović, Peres and Vermesi strengthened Graversen’s result and they proved

\[
\text{Theorem (Antunović et al. 2010)} \quad \text{For any } \alpha < \frac{1}{2}, \text{ there exists a } \text{Hölder}(\alpha) \text{ function } f : \mathbb{R}^+ \to \mathbb{R}^2 \text{ for which } (B + f)[0,1] \text{ completely covers an open set a.s.}
\]
Very recently, Antunović, Peres and Vermesi strengthened Graversen’s result and they proved

Theorem (Antunović et al 2010)

For any $\alpha < 1/2$, there exists a Hölder(α) function $f : \mathbb{R}_+ \rightarrow \mathbb{R}^2$ for which $(B + f)[0, 1]$ completely covers an open set a.s.
In all these works it was not clear whether for any continuous f

$$\mathbb{P}(\mathcal{L}(B + f)[0, 1] > 0) \in \{0, 1\}.$$
A remaining question

In all these works it was not clear whether for any continuous f

$$\mathbb{P}(\mathcal{L}(B + f)[0, 1] > 0) \in \{0, 1\}.$$

This was the impetus for our work.
Let \((B_t, 0 \leq t \leq 1)\) be a standard Brownian motion in \(\mathbb{R}^d\) and let \(f : [0, 1] \rightarrow \mathbb{R}^d\) be a continuous function.
Let \((B_t, 0 \leq t \leq 1)\) be a standard Brownian motion in \(\mathbb{R}^d\) and let \(f : [0, 1] \to \mathbb{R}^d\) be a continuous function.

Theorem (Peres and S.)

Let \(\mathbb{P}(L(B_t + f)[0, 1] > 0)\) be a standard Brownian motion in \(\mathbb{R}^d\) and let \(f : [0, 1] \to \mathbb{R}^d\) be a continuous function.
Let \((B_t, 0 \leq t \leq 1)\) be a standard Brownian motion in \(\mathbb{R}^d\) and let \(f : [0, 1] \to \mathbb{R}^d\) be a continuous function.

Theorem (Peres and S.)

\[\mathbb{P}(\mathcal{L}(B + f)[0, 1] > 0) \in \{0, 1\}. \]
Let \((B_t, 0 \leq t \leq 1)\) be a standard Brownian motion in \(\mathbb{R}^d\) and let
\(f : [0, 1] \to \mathbb{R}^d\) be a continuous function.

Theorem (Peres and S.)

- \(\mathbb{P}(\mathcal{L}(B + f)[0, 1] > 0) \in \{0, 1\}\).
- \(\mathbb{P}(\text{interior of } (B + f)[0, 1] \neq \emptyset) \in \{0, 1\}\).
Let \((B_t, 0 \leq t \leq 1)\) be a standard Brownian motion in \(\mathbb{R}^d\) and let \(f : [0, 1] \to \mathbb{R}^d\) be a continuous function.

Theorem (Peres and S.)

\[
\mathbb{P}(\mathcal{L}(B + f)[0, 1] > 0) \in \{0, 1\}.
\]

\[
\mathbb{P}(\text{interior of } (B + f)[0, 1] \neq \emptyset) \in \{0, 1\}.
\]

\[
\dim(B + f)[0, 1] = c \text{ a.s., where } c \text{ is a positive constant and } \dim \text{ is the Hausdorff dimension}.
\]
Beyond the Cameron–Martin theorem

Again the same setting, B is a standard Brownian motion and $D[0, 1]$ is the Dirichlet space

$$D[0, 1] = \left\{ f \in C[0, 1] : \exists g \in L^2[0, 1] \text{ s.t. } f(t) = \int_0^t g(s)ds, \forall t \in [0, 1] \right\}.$$
Again the same setting, B is a standard Brownian motion and $D[0,1]$ is the Dirichlet space

$$D[0,1] = \left\{ f \in C[0,1] : \exists g \in L^2[0,1] \text{ s.t. } f(t) = \int_0^t g(s)ds, \forall t \in [0,1] \right\}.$$

Theorem (Cameron–Martin 1944)

If $f \notin D[0,1]$, then the law of B and the law of $B + f$ are singular.
Again the same setting, B is a standard Brownian motion and $D[0, 1]$ is the Dirichlet space

$$D[0, 1] = \left\{ f \in C[0, 1] : \exists g \in L^2[0, 1] \text{ s.t. } f(t) = \int_0^t g(s)ds, \forall t \in [0, 1] \right\}.$$

Theorem (Cameron–Martin 1944)

If $f \notin D[0, 1]$, then the law of B and the law of $B + f$ are singular.

As a consequence, when $f \notin D[0, 1]$, there is some a.s. property of Brownian motion that fails for $B + f$.

Perla Sousi

Brownian motion with variable drift
Cauchy–Schwartz inequality gives that if $f \in D[0, 1]$, then f is Hölder($1/2$).
Cauchy–Schwartz inequality gives that if $f \in D[0,1]$, then f is Hölder(1/2).

The space of Hölder(α) continuous functions is much larger than $D[0,1]$. Indeed, for any $\alpha \in (0,1/2]$, most Hölder(α) continuous functions are nowhere differentiable.
Cauchy–Scwartz inequality gives that if \(f \in D[0, 1] \), then \(f \) is Hölder\((1/2)\).

The space of Hölder\((\alpha)\) continuous functions is much larger than \(D[0, 1] \). Indeed, for any \(\alpha \in (0, 1/2] \), most Hölder\((\alpha)\) continuous functions are nowhere differentiable.

Question

Does \(B + f \) hit the same sets as \(B \), if \(f \) is Hölder\((1/2)\)?
Theorem (Peres and S.)

Let A be a closed set of \mathbb{R}^d, for $d \geq 2$, and f a Hölder(1/2) continuous function. If $\mathbb{P}_x(B \text{ hits } A) > 0$, for all $x \in \mathbb{R}^d$, then $\mathbb{P}_x(B + f \text{ hits } A) > 0$, for all $x \in \mathbb{R}^d$.

In 2 dimensions, if $\mathbb{P}_x(B \text{ hits } A) > 0$, then by neighborhood recurrence, $\mathbb{P}_x(B \text{ hits } A) = 1$. The same is true for $B + f$, if f is Hölder(1/2).

Concerning the existence of multiple points, $B + f$ behaves in the same way as B, if f is Hölder(1/2). (This can fail if f is not Hölder(1/2), e.g. for f fractional Brownian motion.)
Theorem (Peres and S.)

Let A be a closed set of \mathbb{R}^d, for $d \geq 2$, and f a Hölder(1/2) continuous function. If $\mathbb{P}_x(B \text{ hits } A) > 0$, for all $x \in \mathbb{R}^d$, then $\mathbb{P}_x(B + f \text{ hits } A) > 0$, for all $x \in \mathbb{R}^d$.

In 2 dimensions, if $\mathbb{P}_x(B \text{ hits } A) > 0$, then by neighborhood recurrence, $\mathbb{P}_x(B \text{ hits } A) = 1$. The same is true for $B + f$, if f is Hölder(1/2).
Theorem (Peres and S.)

Let A be a closed set of \mathbb{R}^d, for $d \geq 2$, and f a Hölder(1/2) continuous function. If $\mathbb{P}_x(B \text{ hits } A) > 0$, for all $x \in \mathbb{R}^d$, then $\mathbb{P}_x(B + f \text{ hits } A) > 0$, for all $x \in \mathbb{R}^d$.

In 2 dimensions, if $\mathbb{P}_x(B \text{ hits } A) > 0$, then by neighborhood recurrence, $\mathbb{P}_x(B \text{ hits } A) = 1$. The same is true for $B + f$, if f is Hölder(1/2).

Concerning the existence of multiple points, $B + f$ behaves in the same way as B, if f is Hölder(1/2).
Theorem (Peres and S.)

Let A be a closed set of \mathbb{R}^d, for $d \geq 2$, and f a Hölder(1/2) continuous function. If $\mathbb{P}_x(B \text{ hits } A) > 0$, for all $x \in \mathbb{R}^d$, then $\mathbb{P}_x(B + f \text{ hits } A) > 0$, for all $x \in \mathbb{R}^d$.

In 2 dimensions, if $\mathbb{P}_x(B \text{ hits } A) > 0$, then by neighborhood recurrence, $\mathbb{P}_x(B \text{ hits } A) = 1$. The same is true for $B + f$, if f is Hölder(1/2).

Concerning the existence of multiple points, $B + f$ behaves in the same way as B, if f is Hölder(1/2).

(This can fail if f is not Hölder(1/2), e.g. for f fractional Brownian motion.)
Hausdorff dimension

Definition (Hausdorff dimension)

For every $\alpha \geq 0$, the α-Hausdorff content of a metric space E is defined as:

$$H^\alpha_\infty(E) = \inf \left\{ \sum_{i=1}^\infty \left(\text{diam}(E_i) \right)^\alpha : E_1, E_2, \ldots \text{is a covering of } E \right\}.$$

The Hausdorff dimension of E is defined to be:

$$\dim E = \inf \{ \alpha \geq 0 : H^\alpha_\infty(E) = 0 \}.$$
Definition (Hausdorff dimension)

For every $\alpha \geq 0$, the α-Hausdorff content of a metric space E is defined as

$$\mathcal{H}^\alpha_\infty(E) = \inf \left\{ \sum_{i=1}^{\infty} (\text{diam}(E_i))^\alpha : E_1, E_2, \ldots \text{ is a covering of } E \right\}.$$

The Hausdorff dimension of E is defined to be

$$\dim E = \inf \{ \alpha \geq 0 : \mathcal{H}^\alpha_\infty(E) = 0 \}.$$
Hausdorff dimension

Definition (Hausdorff dimension)

For every \(\alpha \geq 0 \), the \(\alpha \)-Hausdorff content of a metric space \(E \) is defined

\[
\mathcal{H}_\infty^\alpha (E) = \inf \left\{ \sum_{i=1}^{\infty} (\text{diam}(E_i))^\alpha : E_1, E_2, \ldots \text{ is a covering of } E \right\}.
\]

The **Hausdorff dimension** of \(E \) is defined to be

\[
\dim E = \inf \{ \alpha \geq 0 : \mathcal{H}_\infty^\alpha (E) = 0 \}.
\]
Let B be a standard Brownian motion in $d \geq 1$ dimensions and let f be a continuous function, $f : [0, 1] \rightarrow \mathbb{R}^d$. From our 0-1 law, we know that $\dim(B + f)[0, 1]$ is a constant a.s. Can we provide bounds for $\dim(B + f)[0, 1]$?
Let B be a standard Brownian motion in $d \geq 1$ dimensions and let f be a continuous function, $f : [0, 1] \rightarrow \mathbb{R}^d$.

From our 0-1 law, we know that $\dim (B + f)[0, 1]$ is a constant a.s.
Let B be a standard Brownian motion in $d \geq 1$ dimensions and let f be a continuous function, $f : [0, 1] \rightarrow \mathbb{R}^d$.

From our 0-1 law, we know that $\dim(B + f)[0, 1]$ is a constant a.s.

Question

Can we provide bounds for $\dim(B + f)[0, 1]$?
Let B be a standard Brownian motion in $d \geq 1$ dimensions and let f be a continuous function, $f : [0, 1] \to \mathbb{R}^d$.

Theorem (Peres and S.)

$\dim(B_{[0,1]}) = 2^\wedge d$ a.s.

$\dim(B+f)_{[0,1]} \geq \max\{2^\wedge d, \dim(f_{[0,1]})\}$ a.s.
Let B be a standard Brownian motion in $d \geq 1$ dimensions and let f be a continuous function, $f : [0, 1] \to \mathbb{R}^d$.

Recall that $\dim B[0, 1] = 2 \wedge d$ a.s.
Let B be a standard Brownian motion in $d \geq 1$ dimensions and let f be a continuous function, $f : [0, 1] \rightarrow \mathbb{R}^d$.

Recall that $\dim B[0, 1] = 2 \wedge d$ a.s.

Theorem (Peres and S.)

$$\dim(B + f)[0, 1] \geq \max\{2 \wedge d, \dim f[0, 1]\} \quad a.s.$$
Let B be a d dimensional standard Brownian motion and let f be a continuous function, $f : [0, 1] \rightarrow \mathbb{R}^d$.

Theorem (0-1 law for L)

$\mathbb{P}(L(B+f)[0,1]) \in \{0, 1\}$.

Perla Sousi

Brownian motion with variable drift
Let B be a d dimensional standard Brownian motion and let f be a continuous function, $f : [0, 1] \rightarrow \mathbb{R}^d$.

Theorem (0-1 law for \mathcal{L})

$$\mathbb{P}(\mathcal{L}(B + f)[0, 1] > 0) \in \{0, 1\}.$$
Proof of the 0-1 law for \mathcal{L}

For an interval $I \subset [0, 1]$, define $\Psi(I) = \mathcal{L}(B + f)(I)$.

Declare $I \in D_n$ good if $\Psi(I) > 0$. Write $p_I = P(\Psi(I) > 0)$.

Let Z_n be the number of good intervals of D_n. Then Z_n is increasing in n.

Hence $E[Z_n] = \sum_{I \in D_n} p_I$ must be increasing.

The limit of $E[Z_n]$ exists and can be either infinite or finite.

Perla Sousi
Brownian motion with variable drift
For an interval $I \subset [0, 1]$, define $\Psi(I) = \mathcal{L}(B + f)(I)$.

Write $\mathcal{D}_n = \left\{ \left[\frac{k-1}{2^n}, \frac{k}{2^n} \right] : k = 1, \ldots, 2^n \right\}$.
Proof of the 0-1 law for \mathcal{L}

For an interval $I \subset [0,1]$, define $\Psi(I) = \mathcal{L}(B + f)(I)$.

Write $D_n = \left\{ \left[\frac{k-1}{2^n}, \frac{k}{2^n} \right] : k = 1, \ldots, 2^n \right\}$.

Declare $I \in D_n$ **good** if $\Psi(I) > 0$. Write $p_I = \mathbb{P}(\Psi(I) > 0)$.
Proof of the 0-1 law for \mathcal{L}

For an interval $I \subset [0, 1]$, define $\Psi(I) = \mathcal{L}(B + f)(I)$.

Write $D_n = \left\{ \left[\frac{k-1}{2^n}, \frac{k}{2^n} \right] : k = 1, \ldots, 2^n \right\}$.

Declare $I \in D_n$ good if $\Psi(I) > 0$. Write $p_I = \mathbb{P}(\Psi(I) > 0)$.

Let Z_n be the number of good intervals of D_n. Then Z_n is increasing in n.
For an interval \(I \subset [0, 1] \), define \(\Psi(I) = \mathcal{L}(B + f)(I) \).

Write \(\mathcal{D}_n = \left\{ \left[\frac{k-1}{2^n}, \frac{k}{2^n} \right] : k = 1, \ldots, 2^n \right\} \).

Declare \(I \in \mathcal{D}_n \) good if \(\Psi(I) > 0 \). Write \(p_I = \mathbb{P}(\Psi(I) > 0) \).

Let \(Z_n \) be the number of good intervals of \(\mathcal{D}_n \). Then \(Z_n \) is increasing in \(n \).

Hence \(\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \) must be increasing.
For an interval \(I \subset [0, 1] \), define \(\Psi(I) = \mathcal{L}(B + f)(I) \).

Write \(\mathcal{D}_n = \left\{ \left[\frac{k-1}{2^n}, \frac{k}{2^n} \right] : k = 1, \ldots, 2^n \right\} \).

Declare \(I \in \mathcal{D}_n \) good if \(\Psi(I) > 0 \). Write \(p_I = \mathbb{P}(\Psi(I) > 0) \).

Let \(Z_n \) be the number of good intervals of \(\mathcal{D}_n \). Then \(Z_n \) is increasing in \(n \).

Hence \(\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \) must be increasing.

The limit of \(\mathbb{E}[Z_n] \) exists and can be either infinite or finite.
Case 1: $\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \uparrow \infty$
Proof of the 0-1 law for \mathcal{L}

Case 1: $\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \uparrow \infty$

Recall $\Psi(I) = \mathcal{L}(B + f)(I)$

$Z_n = \sum_{I \in \mathcal{D}_n} 1(\Psi(I) > 0)$

$p_I = \mathbb{P}(\Psi(I) > 0)$
Case 1: $\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \uparrow \infty$

Recall $\Psi(I) = \mathcal{L}(B + f)(I)$

$Z_n = \sum_{I \in \mathcal{D}_n} \mathbf{1}(\Psi(I) > 0)$

$p_I = \mathbb{P}(\Psi(I) > 0)$

$\mathbb{P}(\psi([0, 1]) = 0)$
Case 1: $\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \uparrow \infty$

Recall $\Psi(I) = \mathcal{L}(B + f)(I)$

$Z_n = \sum_{I \in \mathcal{D}_n} \mathbf{1}(\Psi(I) > 0)$

$p_I = \mathbb{P}(\Psi(I) > 0)$

$\mathbb{P}(\Psi([0, 1]) = 0) = \mathbb{P}(\forall I \in \mathcal{D}_n : \Psi(I) = 0)$
Proof of the 0-1 law for \mathcal{L}

Case 1: $\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \uparrow \infty$

Recall $\Psi(I) = \mathcal{L}(B + f)(I)$

$Z_n = \sum_{I \in \mathcal{D}_n} 1(\Psi(I) > 0)$

$p_I = \mathbb{P}(\Psi(I) > 0)$

$\mathbb{P}(\Psi([0, 1]) = 0) = \mathbb{P}(\forall I \in \mathcal{D}_n : \Psi(I) = 0) = \prod_{I \in \mathcal{D}_n} (1 - p_I)$
Case 1: \(\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \uparrow \infty \)

Recall \(\Psi(I) = \mathcal{L}(B + f)(I) \)

\(Z_n = \sum_{I \in \mathcal{D}_n} \mathbf{1}(\Psi(I) > 0) \)

\(p_I = \mathbb{P}(\Psi(I) > 0) \)

\[\mathbb{P}(\Psi([0, 1]) = 0) = \mathbb{P}(\forall I \in \mathcal{D}_n : \Psi(I) = 0) = \prod_{I \in \mathcal{D}_n} (1 - p_I) \leq e^{-\sum_{I \in \mathcal{D}_n} p_I} \]
Proof of the 0-1 law for \mathcal{L}

Case 1: $\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \uparrow \infty$

Recall $\Psi(I) = \mathcal{L}(B + f)(I)$

$Z_n = \sum_{I \in \mathcal{D}_n} 1(\Psi(I) > 0)$

$p_I = \mathbb{P}(\Psi(I) > 0)$

\[
\mathbb{P}(\Psi([0, 1]) = 0) = \mathbb{P}(\forall I \in \mathcal{D}_n : \Psi(I) = 0) = \prod_{I \in \mathcal{D}_n} (1 - p_I) \leq e^{-\sum_{I \in \mathcal{D}_n} p_I}
\]

Letting $n \to \infty$ gives $\mathbb{P}(\Psi([0, 1]) = 0) = 0$.

Perla Sousi
Brownian motion with variable drift
Case 2: \(\mathbb{E}[Z_n] = \sum_{I \in D_n} p_I \uparrow C < \infty \)
Case 2: $\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \uparrow C < \infty$

Recall $\Psi(I) = \mathcal{L}(B + f)(I)$
Proof of the 0-1 law for \mathcal{L}

Case 2: $\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \uparrow C < \infty$

Recall $\Psi(I) = \mathcal{L}(B + f)(I)$

$Z_n = \sum_{I \in \mathcal{D}_n} 1(\Psi(I) > 0)$
Proof of the 0-1 law for \mathcal{L}

Case 2: $\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \uparrow C < \infty$

Recall $\Psi(I) = \mathcal{L}(B + f)(I)$

$Z_n = \sum_{I \in \mathcal{D}_n} 1(\Psi(I) > 0)$

[0, 1] is the union of the good points and the dyadic intervals that do not contain any good points.

Since $\Psi(\text{good points}) = 0 \Rightarrow \Psi([0, 1]) = 0$ a.s.
Proof of the 0-1 law for \mathcal{L}

Case 2: \[\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \uparrow C < \infty \]

Recall $\Psi(I) = \mathcal{L}(B + f)(I)$

\[
Z_n = \sum_{I \in \mathcal{D}_n} 1(\Psi(I) > 0)
\]

Declare $x \in [0, 1]$ good if all dyadic intervals that contain it are good.
Case 2: $E[Z_n] = \sum_{I \in D_n} p_I \uparrow C < \infty$

Recall $\Psi(I) = \mathcal{L}(B + f)(I)$

$$Z_n = \sum_{I \in D_n} 1(\Psi(I) > 0)$$

Declare $x \in [0, 1]$ good if all dyadic intervals that contain it are good.

I contains a good point $\iff \Psi(I) > 0$.
Case 2: $\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \uparrow C < \infty$

Recall $\Psi(I) = \mathcal{L}(B + f)(I)$

$$Z_n = \sum_{I \in \mathcal{D}_n} 1(\Psi(I) > 0)$$

Declare $x \in [0, 1]$ good if all dyadic intervals that contain it are good.

l contains a good point $\iff \Psi(l) > 0$.

If $|\{\text{good points } \in [0, 1]\}| = \infty \Rightarrow Z_n \to \infty$, contradiction.
Proof of the 0-1 law for \mathcal{L}

Case 2: $\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \uparrow C < \infty$

Recall $\Psi(I) = \mathcal{L}(B + f)(I)$

$Z_n = \sum_{I \in \mathcal{D}_n} 1(\Psi(I) > 0)$

Declare $x \in [0,1]$ **good** if all dyadic intervals that contain it are good.

I contains a good point $\iff \Psi(I) > 0$.

If $|\{\text{good points } \in [0,1]\}| = \infty \Rightarrow Z_n \rightarrow \infty$, contradiction.

Hence, $|\{\text{good points } \in [0,1]\}| < \infty$.

[0,1] is the union of the good points and the dyadic intervals that do not contain any good points. Since $\Psi(\text{good points}) = 0 \Rightarrow \Psi([0,1]) = 0$ a.s.
Proof of the 0-1 law for \mathcal{L}

Case 2: $\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \uparrow C < \infty$

Recall $\Psi(I) = \mathcal{L}(B + f)(I)$

$Z_n = \sum_{I \in \mathcal{D}_n} 1(\Psi(I) > 0)$

Declare $x \in [0, 1]$ **good** if all dyadic intervals that contain it are good.

I contains a good point $\iff \Psi(I) > 0$.

If $|\{\text{good points} \in [0, 1]\}| = \infty \Rightarrow Z_n \to \infty$, contradiction.

Hence, $|\{\text{good points} \in [0, 1]\}| < \infty$.

$[0, 1]$ is the union of the good points and the dyadic intervals that do not contain any good points.
Proof of the 0-1 law for \mathcal{L}

Case 2: $\mathbb{E}[Z_n] = \sum_{I \in \mathcal{D}_n} p_I \uparrow C < \infty$

Recall $\Psi(I) = \mathcal{L}(B + f)(I)$

$Z_n = \sum_{I \in \mathcal{D}_n} 1(\Psi(I) > 0)$

Declare $x \in [0, 1]$ **good** if all dyadic intervals that contain it are good.

I contains a good point $\iff \Psi(I) > 0$.

If $|\{\text{good points } \in [0, 1]\}| = \infty \Rightarrow Z_n \to \infty$, contradiction.

Hence, $|\{\text{good points } \in [0, 1]\}| < \infty$.

$[0, 1]$ is the union of the good points and the dyadic intervals that do not contain any good points.

Since $\Psi(\text{good points}) = 0 \Rightarrow \Psi([0, 1]) = 0$ a.s.
Let \((B_t, 0 \leq t \leq 1)\) be a standard Brownian motion in \(\mathbb{R}^d\), let \(f : [0, 1] \to \mathbb{R}^d\) be a continuous function and \(A\) a closed set in \([0, 1]\).
Let \((B_t, 0 \leq t \leq 1)\) be a standard Brownian motion in \(\mathbb{R}^d\), let \(f : [0, 1] \to \mathbb{R}^d\) be a continuous function and \(A\) a closed set in \([0, 1]\).

Which of the following events satisfy a 0-1 law?
Let \((B_t, 0 \leq t \leq 1)\) be a standard Brownian motion in \(\mathbb{R}^d\), let
f: [0, 1] \rightarrow \mathbb{R}^d \] be a continuous function and \(A\) a closed set in [0, 1].

Which of the following events satisfy a 0-1 law?

- \(\{\mathcal{L}(B + f)(A) > 0\}\)
Let $(B_t, 0 \leq t \leq 1)$ be a standard Brownian motion in \mathbb{R}^d, let $f : [0, 1] \rightarrow \mathbb{R}^d$ be a continuous function and A a closed set in $[0, 1]$. Which of the following events satisfy a 0-1 law?

- $\{ \mathcal{L}(B + f)(A) > 0 \}$
- $\{ \text{interior of } (B + f)(A) \neq \emptyset \}$
Let \((B_t, 0 \leq t \leq 1) \) be a standard Brownian motion in \(\mathbb{R}^d \), let \(f : [0, 1] \to \mathbb{R}^d \) be a continuous function and \(A \) a closed set in \([0, 1]\).

Which of the following events satisfy a 0-1 law?

- \(\{ \mathcal{L}(B + f)(A) > 0 \} \)
- \(\{ \text{interior of } (B + f)(A) \neq \emptyset \} \)
- \(\{ \text{dim}(B + f)(A) > c \} \)
Let \((B_t, 0 \leq t \leq 1)\) be a standard Brownian motion in \(\mathbb{R}^d\), let \(f : [0, 1] \rightarrow \mathbb{R}^d\) be a continuous function and \(A\) a closed set in \([0, 1]\).

Which of the following events satisfy a 0-1 law?

- \(\{\mathcal{L}(B + f)(A) > 0\}\)
- \(\{\text{interior of } (B + f)(A) \neq \emptyset\}\)
- \(\{\text{dim}(B + f)(A) > c\}\)
- \(\{B \text{ is 1-1 on } A\}\)
Let \((B_t, 0 \leq t \leq 1)\) be a standard Brownian motion in \(\mathbb{R}^d\), let
\(f : [0, 1] \to \mathbb{R}^d\) be a continuous function and \(A\) a closed set in [0, 1].

Which of the following events satisfy a 0-1 law?

- \(\{\mathcal{L}(B + f)(A) > 0\}\)
- \(\{\text{interior of } (B + f)(A) \neq \emptyset\}\)
- \(\{\dim(B + f)(A) > c\}\)
- \(\{B \text{ is 1-1 on } A\}\)
Let \((B_t, 0 \leq t \leq 1) \) be a standard Brownian motion in \(\mathbb{R}^d \), let \(f : [0, 1] \to \mathbb{R}^d \) be a continuous function and \(A \) a closed set in \([0, 1]\).

Which of the following events satisfy a 0-1 law?

- \(\{ \mathcal{L}(B + f)(A) > 0 \} \)
- \(\{ \text{interior of } (B + f)(A) \neq \emptyset \} \)
- \(\{ \dim(B + f)(A) > c \} \)
- \(\{ B \text{ is 1-1 on } A \} \)
Let \((B_t, 0 \leq t \leq 1)\) be a standard Brownian motion in \(\mathbb{R}^d\), let
f : [0, 1] \to \mathbb{R}^d\) be a continuous function and \(A\) a closed set in [0, 1].

Which of the following events satisfy a 0-1 law?

- \(\{\mathcal{L}(B + f)(A) > 0\}\) \(\checkmark\)
- \(\{\text{interior of } (B + f)(A) \neq \emptyset\}\) \(\checkmark\)
- \(\{\text{dim}(B + f)(A) > c\}\)
- \(\{B \text{ is 1-1 on } A\}\)
More on 0-1 laws

Let \((B_t, 0 \leq t \leq 1)\) be a standard Brownian motion in \(\mathbb{R}^d\), let \(f : [0, 1] \rightarrow \mathbb{R}^d\) be a continuous function and \(A\) a closed set in \([0, 1]\).

Which of the following events satisfy a 0-1 law?

- \(\{\mathcal{L}(B + f)(A) > 0\}\)
- \(\{\text{interior of } (B + f)(A) \neq \emptyset\}\)
- \(\{\dim(B + f)(A) > c\}\)
- \(\{B \text{ is 1-1 on } A\}\)
Let \((B_t, 0 \leq t \leq 1)\) be a standard Brownian motion in \(\mathbb{R}^d\), let \(f : [0, 1] \rightarrow \mathbb{R}^d\) be a continuous function and \(A\) a closed set in \([0, 1]\).

Which of the following events satisfy a 0-1 law?

- \(\{\mathcal{L}(B + f)(A) > 0\}\) ✓
- \(\{\text{interior of } (B + f)(A) \neq \emptyset\}\) ✓
- \(\{\text{dim}(B + f)(A) > c\}\) ✓
- \(\{B \text{ is 1-1 on } A\}\) ✗