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1. Conditional expectation

Exercise 1.1. To start with, note that

P(X 6= Y ) = P(∃c ∈ R : X > c, Y ≤ c or X ≤ c, Y > c)

= P(∃c ∈ Q : X > c, Y ≤ c or X ≤ c, Y > c)

≤
∑
c∈Q

[
P(X > c, Y ≤ c) + P(X ≤ c, Y > c)

]
where the second equality follows by the density of Q in R. So it is enough to

show that for all c ∈ Q it holds P(X > c, Y ≤ c) = P(X ≤ c, Y > c) = 0. To

this end, fix any c ∈ Q. Since {Y ≤ c} ∈ σ(Y ), by definition of conditional

expectation E[X1{Y≤c}] = E[Y 1{Y≤c}]. It follows that

0 = E[(X − Y )1{Y≤c}] = E[(X − Y )1{X>c,Y≤c}] + E[(X − Y )1{X≤c,Y≤c}].

and, by reversing the roles of X and Y , that

0 = E[(Y −X)1{X≤c}] = E[(Y −X)1{X≤c,Y >c}] + E[(Y −X)1{X≤c,Y≤c}].

By adding these equations we then see that

0 = E[(X − Y )1{X>c,Y≤c}] + E[(Y −X)1{X≤c,Y >c}].

Both of the above summands are nonnegative and so they must both equal

0. It follows that P(X > c, Y ≤ c) = 0 and P(X ≤ c, Y > c) = 0.

If we only know that E[X | Y ] = Y a.s. then we cannot conclude as we have

above. For example, suppose that Y = 0 and that X takes values in {−1, 1}
with equal probability. Then, trivially, X and Y are integrable. Moreover,

since σ(Y ) = {∅,Ω}, from

E(X1(Ω)) = E(X) = 0 = Y

E(X1(∅)) = 0 = Y

we conclude that E[X | Y ] = E[X] = 0 = Y a.s. So the assumptions hold,

but X 6= Y with probability 1.

Comments and corrections should be sent to Vittoria Silvestri, vs358@cam.ac.uk.

1

mailto:vs358@cam.ac.uk


2 ADVANCED PROBABILITY: SOLUTIONS TO SHEET 1

Exercise 1.2. Let X and Y be independent Bernoulli random variables of

parameter p ∈ (0, 1) and let us define Z := 1{X+Y=0}. Since Z ∈ {0, 1}
almost surely by definition, it follows that

E[X | Z] = E[X | Z = 0]1{Z=0} + E[X | Z = 1]1{Z=1}

=
E[X1{Z=0}]

P(Z = 0)
1{Z=0} +

E[X1{Z=1}]

P(Z = 1)
1{Z=1} a.s.

If Z = 1, then X = 0, and so the second summand equals 0. For the first

summand, observe that

P(Z = 0) = 1− P(Z = 1) = 1− P(X = 0, Y = 0) = 1− (1− p)2 = p(2− p)

and, additionally, that E[X1{Z=0}] = P(Z = 0, X = 1) = P(X = 1) = p.

It follows that E[X | Z] = 1{Z=0}/(2 − p) a.s. Finally, by symmetry,

E[Y | Z] = E[X | Z] a.s.

Exercise 1.3. Let X and Y be independent exponential random variables

of parameter θ and define Z := X + Y . In order to see that Z has a Γ(2, θ)

distribution, it will suffice for us to show that the density of Z, fZ , is such

that fZ(z) = θ2ze−θz1{z≥0}. If z ≤ 0 then P(Z ≤ z) = 0 as X and Y are

a.s. positive, so let us consider z > 0. As (X,Y ) has a density given by

fX,Y (x, y) = fX(x)fY (y) = θ2e−θ(x+y)1{x≥0,y≥0}, we have that

P(Z ≤ z) = P(X + Y ≤ z) =

∫
{x+y≤z}

θ2e−θ(x+y)1{x≥0,y≥0} dx dy

= θ2
∫ z

0

(
e−θy

∫ z−y

0
e−θxdx

)
dy

= θ

∫ z

0
(1− e−θ(z−y))e−θy dy

= 1− e−θz − θze−θz.

So the distribution function of Z is FZ(z) = (1 − e−θz − θze−θz)1{z≥0}.

Differentiating gives the p.d.f. of Z:

F ′Z(z) = fZ(z) = θ2ze−θz1{z≥0}

and hence Z ∼ Γ(2, θ).

Remark. Alternatively, we could use the general fact that, if (Xk : k =

1, . . . , n) is a sequence of independent random variables with respective

densities (fk : k = 1, . . . , n), then the sum X1 + · · ·+Xn has a density given

by the convolution f1 ? · · · ? fn.
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For the second part of the exercise, take h : R→ R to be a non-negative

Borel function. We aim to show that almost surely,

E[h(X) | Z] =
1

Z

∫ Z

0
h(x) dx.

Let us define Φ: R2 → R2 : (x, y) 7→ (x, x+ y). This is a C 1-diffeomorphism

and, further, Φ−1 : R2 → R2 : (x, z) 7→ (x, z−x) is such that |det(DΦ−1)| ≡ 1.

The change of variables formula with Φ applies and tells us that the density

of (X,Z) is given by

fX,X+Y (x, z) = fX,Y (x, z − x) = fX(x)fY (z − x) = θ2e−θz1{z≥x≥0}.

Therefore

fX|Z(x|z) =
fX,Z(x, z)

fZ(z)
1{z:fZ(z)>0}

and

E[h(X) | Z] =

(∫
R
h(x)

fX,Z(x, Z)

fZ(Z)
dx

)
1{fZ(Z)>0}

=

∫
R
h(x)

θ2e−θZ

θ2Ze−θZ
1{Z≥x>0} dx

=
1

Z

∫ Z

0
h(x) dx a.s.

To answer the third part of the question, suppose that Z ∼ Γ(2, θ) and

that, for every non-negative Borel function h : R→ R, it holds

E[h(X) | Z] =
1

Z

∫ Z

0
h(u) du a.s.

Then we aim to show that X and Z−X are independent exponential random

variables of parameter θ. To this end, it is enough to show that the joint

distribution of (X,Y ) with Y := Z−X factorizes, and the marginal densities

are Gamma densities with parameter θ. To this end we can apply the change

of variables formula with Φ−1, which yields

fX,Z−X(x, y) = fX,Z(x, x+ y) = θ2e−θ(x+y)1{x+y≥x≥0}

= θe−θx1{x≥0}θe
−θy1{y≥0} = fX(x)fY (y)

with fX , fY being p.d.f. of Gamma(θ).

Exercise 1.4. Let X be a non-negative random variable on the probability

space (Ω,F ,P) and G be a sub-σ-algebra of F . We first show that if

X > 0, then E[X | G ] > 0 a.s. As A := {E[X | G ] ≤ 0} ∈ G , we have that

0 ≤ E[X1A] = E[E[X | G ]1A] ≤ 0 and hence that E[X1A] = 0. Since X > 0

on A, we conclude that P(A) = 0.

To see that the event {E[X | G ] > 0} is the smallest element of G that

contains the event {X > 0} (up to null events), assume the contrary. Then
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there exists a G -measurable event B such that {X > 0} ⊆ B ⊆ {E[X | G ] >

0} and C := {E[X|G ] > 0} \B has positive measure. Then 0 ≥ E[X1C ] =

E[E[X | G ]1C ] ≥ 0 and so E[E[X | G ]1C ] = 0. As E[X | G ] > 0 on C, it must

be the case that P(C) = 0, which contradicts the assumptions. It follows

that {E[X | G ] > 0} ⊆ B up to a null event.

Exercise 1.5. Recall that

P(X = n, Y ≤ t) = b

∫ t

0

(ay)n

n!
e−(a+b)y dy

for n ≥ 0 integer, t ≥ 0 real. In order to compute E[h(Y )1{X=n}] we first

compute the p.d.f. of Y conditional on the event X = n.

fY |X=n(y|X = n) =
d

dt
P(Y ≤ t|X = n)

∣∣
t=y

=
d

dt

(
P(X = n, Y ≤ t)

P(X = n)

) ∣∣∣∣
t=y

=
b

P(X = n)

(ay)n

n!
e−(a+b)y .

Moreover

P(X = n) = P(X = n, Y <∞) = b

∫ ∞
0

(ay)n

n!
e−(a+b)y dy

=
ban

(a+ b)n+1

∫ ∞
0

(a+ b)n+1

n!
yne−(a+b)y dy︸ ︷︷ ︸

1

=
ban

(a+ b)n+1

where in the last equality we have used that the p.d.f. of a Gamma(n+1, a+b)

integrates to 1, recalling that Γ(n+ 1) = n! for n positive integer. Hence

fY |X=n(y|X = n) = b
(a+ b)n+1

ban
(ay)n

n!
e−(a+b)y =

(a+ b)n+1

Γ(n+ 1)
yne−(a+b)y1(0,+∞)(y) .

In other words, the law of Y conditioned to the event {X = n} is Γ(n+1, a+b).

Therefore if h : (0,∞)→ [0,∞) is a Borel function, then E[h(Y ) | X = n] =

E[h(G)] where G is another random variable, defined on the same probability

space, with law Gamma(n+ 1, a+ b). Hence

E[h(Y ) | X = n] =
(a+ b)n+1

n!

∫ ∞
0

h(y)yne−(a+b)y dy .

Next we compute E(Y/(X + 1)):

E
(

Y

X + 1

)
=
∞∑
n=0

E
(

Y

X + 1

∣∣∣∣X = n

)
P(X = n) =

∞∑
n=0

E
(

Y

n+ 1

)
P(X = n)

=
∞∑
n=0

(
n+ 1

a+ b

)
1

n+ 1
P(X = n) =

1

a+ b

∞∑
n=0

P(X = n)︸ ︷︷ ︸
1

=
1

a+ b
.
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For E(1{X=n}|Y ) we have:

E(1{X=n}|Y ) = P(X = n|Y ) =
fX,Y (n, Y )

fY (Y )
.

Since

fX,Y (n, y) =
d

dt
P(X = n, Y ≤ t)

∣∣
t=y

= b
(ay)n

n!
e−(a+b)y1(0,∞)(y)

and

fY (y) =
∞∑
n=0

fX,Y (n, y) = b
∞∑
n=0

(ay)n

n!
e−(a+b)y1(0,∞)(y) = be−by1(0,∞)(y) ,

from which Y ∼ exponential(b), we conclude

P(X = n|Y ) = b
(aY )n

n!
e−(a+b)Y · 1

be−by
=

(aY )ne−aY

n!
.

That is, the law of X conditional on Y is Poisson(aY ). This also implies that

E(X|Y ) = aY (recall that the expected value of a Poisson random variable

of parameter λ is λ).

Exercise 1.6. Let us suppose that X and Y are random variables defined

on the probability space (Ω,F ,P) and that G is a sub-σ-algebra of F . We

say that X and Y are conditionally independent given G if, for all Borel

functions f, g : R→ [0,∞),

E[f(X)g(Y ) | G ] = E[f(X) | G ]E[g(Y ) | G ] (1)

almost surely. If G = {∅,Ω} in the above then this implies that

E[f(X)g(Y )] = E[f(X)]E[g(Y )]

for all non-negative Borel functions f and g. In particular, if we take f = 1A

and g = 1B for A,B ∈ B, this implies that

P(X ∈ A, Y ∈ B) = E[1A(X)1B(Y )] = E[1A(X)]E[1B(Y )] = P(X ∈ A)P(Y ∈ B).

That is to say, if X and Y are independent conditionally on {∅,Ω}, then they

are independent. (The converse is also true by linearity and the monotone

convergence theorem.)

We next show that the random variables X and Y are conditionally

independent given G if and only if, for every non-negative G -measurable

random variable Z and all non-negative Borel functions f and g,

E[f(X)g(Y )Z] = E[f(X)ZE[g(Y ) | G ]]. (2)

Suppose first that X and Y are independent conditionally on G . Then

E[f(X)g(Y )Z] = E[E[f(X)g(Y )Z | G ]] = E[ZE[f(X)g(Y ) | G ]]

= E[ZE[f(X) | G ]E[g(Y ) | G ]]
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with the second equality holding as Z is G -measurable and as Z, f and g are

non-negative. Further, as ZE[g(Y ) | G ] is G -measurable and as everything

is a.s. non-negative,

E[ZE[f(X) | G ]E[g(Y ) | G ]] = E[f(X)ZE[g(Y ) | G ]].

Now assume that (2) holds for every G -measurable Z and f, g non-negative

Borel functions. We aim to show that this implies (1). Let us take A ∈ G

and Z = 1A. We have that

E[E[f(X)g(Y ) | G ]1A] = E[f(X)g(Y )1A] = E[f(X)1AE[g(Y ) | G ]]

= E[E[f(X) | G ]E[g(Y ) | G ]1A].

The second equality follows from our hypothesis; the final equality holds

as 1AE[g(Y ) | G ] is G -measurable and as everything is a.s. non-negative.

Therefore, as E[f(X) | G ]E[g(Y ) | G ] is G -measurable and a.s. non-negative

it follows that, with probability 1,

E[f(X)g(Y ) | G ] = E
(
E[f(X) | G ]E[g(Y ) | G ]

∣∣G ) = E[f(X) | G ]E[g(Y ) | G ] .

For the last part of the exercise, we have to show that

E[f(X)g(Y )Z] = E[f(X)ZE[g(Y ) | G ]] (3)

for every G -measurable random variable Z and all Borel functions f, g : R→
[0,∞) if and only if, for each Borel function g : R→ [0,∞),

E[g(Y ) | σ(G , σ(X))] = E[g(Y ) | G ]. (4)

Assume (3). It is immediate that E[g(Y ) | G ] is σ(G , σ(X))-measurable.

We are to show that, for all A ∈ σ(G , σ(X)), E[g(Y )1A] = E[E[g(Y ) | G ]1A].

It suffices, by the theorem on the uniqueness of extensions, to prove this for

all A∩B, where A ∈ G and B ∈ σ(X), as the set {A∩B : A ∈ G , B ∈ σ(X)}
is a generating π-system for σ(G , σ(X)) that contains Ω. So let A ∈ G and

B ∈ σ(X). Then

E[g(Y )1A∩B] = E[ 1B︸︷︷︸
f(X)

g(Y ) 1A︸︷︷︸
Z

] = E[1B1AE[g(Y ) | G ]] = E[E[g(Y ) | G ]1A∩B]

where we have used (3) in the second equality.

Assume now that (4) holds. As f(X)Z is non-negative and σ(G , σ(X))-

measurable and as g(Y ) is non-negative,

E[g(Y )f(X)Z] = E[E[g(Y )f(X)Z | σ(G , σ(X))]]

= E[E[g(Y ) | σ(G , σ(X))]f(X)Z]

= E[E[g(Y ) | G ]f(X)Z]

where, we have used (4) in the second equality.
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Exercise 1.7. Recall that, given a probability space (Ω,F ,P), two sub-σ-

algebras G ,H of F are said to be independent if for every G ∈ G , H ∈H it

holds P(G∩H) = P(G)P(H). Moreover, we know (see Proposition 1.24 in the

lecture notes) that if σ(X,G ) is independent of H , then E(X|σ(G ,H )) =

E(X|G ) a.s.. Hence we seek for an example in which σ(X,G ) and H are

dependent.

Let X1, X2 be independent Bernoulli(1/2), and set H = σ(X1), G = σ(X2)

and

X = 1(X1 = X2) .

Then H and G are independent by construction. Moreover, X is itself a

Bernoulli(1/2) random variable and it is independent of H , since:

P(X = 0, X1 = 0) = P(X1 = 0, X2 = 1) = P(X1 = 0)P(X2 = 1)

= 1/4 = P(X = 0)P(X1 = 0)

and similarly one sees that P(X = x,X1 = y) = P(X = x)P(X1 = y)

for all x, y ∈ {0, 1}. So the assumptions are satisfied. Now notice that

σ(G ,H ) = F and therefore X is σ(G ,H )-measurable, from which

E(X|σ(G ,H )) = X a.s.

On the other hand,

E(X|G ) = E(1(X1 = X2)|X2 = 0)1(X2 = 0) + E(1(X1 = X2)|X2 = 1)1(X2 = 1)

= P(X1 = 0)1(X2 = 0) + P(X1 = 1)1(X2 = 1)

=
1

2
1(X2 = 0) +

1

2
1(X2 = 1) =

1

2

almost surely, since with probability 1 exactly one of the indicator functions

in the last line is non-zero. But then

E(X|σ(G ,H )) 6= E(X|G )

on an event of probability 1, since X takes values in {0, 1}.
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2. Discrete-time martingales

Exercise 2.1. Assume that X is a martingale with respect to its natural

filtration. Then, since the event {X0 = i0, X1 = i1, . . . , Xn = in} is Fn-

measurable for all n ≥ 0 and i0, . . . , in ∈ E, we have

E(Xn+1|X0 = i0, . . . , Xn = in) =
E(Xn+11(X0 = i0, . . . , Xn = in))

P(X0 = i0, . . . , Xn = in)

=
E(E(Xn+1|Fn)1(X0 = i0, . . . , Xn = in))

P(X0 = i0, . . . , Xn = in)

=
E(Xn1(X0 = i0, . . . , Xn = in))

P(X0 = i0, . . . , Xn = in)

=
E(in1(X0 = i0, . . . , Xn = in))

P(X0 = i0, . . . , Xn = in)
= in

almost surely.

Assume, on the other hand, that for all n ≥ 0 and all i0, i1, . . . , in ∈ E it

holds

E(Xn+1|X0 = i0, . . . , Xn = in) = in a.s.

Then, being E countable, we can write

E(Xn+1|Fn) =
∑

i0,...,in∈E
E(Xn+1|X0 = i0, . . . , Xn = in)︸ ︷︷ ︸

in

1(X0 = i0, . . . , Xn = in)

=
∑
in∈E

in1(Xn = in) = Xn a.s.

To conclude that this implies that X is a martingale, take any m > n. Then

using the tower property of the expectation we get

E(Xm|Fn) = E(E(Xm|Fm−1)|Fn) = E(Xm−1|Fn)

= . . . = E(Xn+1|Fn) = Xn a.s.

Exercise 2.2. We say that a process C = (Cn : n ≥ 0) is previsible with

respect to the filtration (Fn : n ≥ 0) if Cn+1 is Fn-measurable for all n ≥ 0.

Suppose that X = (Xn)n≥0 is a martingale on the filtered probability space

(Ω,F , (Fn : n ≥ 0),P), and the previsible process C is bounded. We aim to

show that Y := C •X is a martingale.

It is clear that Y is adapted and integrable. Moreover, for each n ≥ 0 we

have:

E[Yn+1 − Yn | Fn] = E[(C •X)n+1 − (C •X)n | Fn]

= E[Cn+1(Xn+1 −Xn) | Fn] = Cn+1E[Xn+1 −Xn | Fn] = 0

where the second equality holds as Cn+1 is bounded and Fn-measurable

and Xn+1 −Xn is integrable, and the final equality holds by the martingale
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property of X. This shows that Y is itself a martingale. If, on the other

hand, X is a supermartingale and C is bounded and non-negative, then

E[Yn+1−Yn | Fn] = E[Cn+1(Xn+1−Xn) | Fn] = Cn+1E[Xn+1−Xn | Fn] ≤ 0

where the second equality holds as Cn+1 is bounded and Fn-measurable and

Xn+1 −Xn is integrable, while the inequality holds as C is non-negative and

as X is a supermartingale. It follows that Y is a supermartingale.

Exercise 2.3. Let (Xn : n ≥ 1) be a sequence of independent random

variables such that P(Xn = −n2) = n−2 and P(Xn = n2/(n2− 1)) = 1−n−2.

We aim to show that if Sn = X1 + · · · + Xn, then Sn/n → 1 a.s. To this

end, define the collection of events An := {Xn = −n2}. Then, by the first

Borel–Cantelli lemma, P(An i.o.) = 0. It follows that P(Acn a.a.) = 1 and

hence that P(Xn = n2/(n2 − 1) a.a.) = 1. It is thus enough to prove that

Sn/n→ 1 on this lattermost set. By definition, for each ω in this set there

is some Nω ∈ Z>0 such that Xn(ω) = n2/(n2 − 1) for all n ≥ Nω. We thus

see that

Sn(ω)

n
=

1

n

Nω−1∑
k=1

Xk(ω)︸ ︷︷ ︸
Cω

+
1

n

n∑
k=Nω

k2

k2 − 1
=
Cω
n

+
1

n

n∑
k=Nω

(
1 +

1

k2 − 1

)

=
Cω
n

+
n−Nω

n
+

1

n

n∑
k=Nω

1

k2 − 1
= 1 + o(1)

and therefore Sn(ω)/n→ 1 as n→∞. Since this holds for all ω in a set o

measure 1, we conclude Sn/n→ 1 almost surely.

We now want to show that the process (Sn : n ≥ 1) is a martingale with

respect to its natural filtration, (Fn : n ≥ 1), and that it converges to ∞ a.s.

It is clear that (Sn : n ≥ 1) is adapted to its natural filtration. Moreover, as

Sn is a finite sum of integrable random variables, it is integrable. For the

martingale property we note that

E[Sn+1 − Sn | Fn] = E[Xn+1 | Fn] = E[Xn+1] = 0,

where the second equality follows from the independence of Xn+1 from Fn.

It follows that (Sn : n ≥ 1) is a martingale. Finally, for all ω such that

Sn(ω)/n→ 1, it is immediate that Sn(ω)→∞. As the set of all such ω has

full measure, Sn →∞ a.s.

Exercise 2.4. Let T := m1A +m′1Ac . We see that {T = m} = A ∈ Fn ⊆
Fm and {T = m′} = Ac ∈ Fn ⊆ Fm′ . Moreover, if k is neither m nor m′,

then {T = k} = ∅ ∈ Fk. It follows that T is a stopping time.
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For the second part of the exercise, assume that X is a martingale. Then,

if T is a bounded stopping time, E[XT ] = E[X0] by the Optional Stopping

Theorem. Assume, on the other hand, that for every T bounded stopping

time it holds E[XT ] = E[X0]. Then, since n is a bounded stopping time, it

holds E[Xn] = E[X0] for all n ≥ 0. Moreover, we can consider any A ∈ Fn

and define T := (n + 1)1A + n1Ac . By the previous proposition this is a

bounded stopping time so, again by our hypothesis,

E[X0] = E[XT ] = E[Xn+11A +Xn1Ac ] = E[(Xn+1 −Xn)1A] + E[Xn].

As E[X0] = E[Xn], the above implies that E[Xn+11A] = E[Xn1A]. As we

have assumed that X is integrable and adapted and as A ∈ Fn was arbitrary,

E[Xn+1 | Fn] = Xn a.s. We conclude that X is a martingale.

Exercise 2.5. Suppose that X = (Xn : n ≥ 0) is a martingale (respectively,

a supermartingale) and that T is an a.s. finite stopping time. We aim to show

that if there is some M ≥ 0 such that |X| ≤ M a.s. then E[XT ] = E[X0]

(respectively, E[XT ] ≤ E[X0]). To see this, recall that XT is a martingale

(respectively, a supermartingale). Since T <∞ a.s., it follows that T ∧n→ T

a.s. and therefore

E[XT ] = E
[

lim
n→∞

XT∧n

]
= lim

n→∞
E[XT∧n] = lim

n→∞
E[XT∧0] = E[X0].

The second equality holds by the dominated convergence theorem with M

as the dominating (degenerate) random variable, the third equality holds

as XT is a martingale. In the case where X is a supermartingale, the third

equality becomes ‘≤’ by the supermartingale property.

For the second part of the exercise, assume that E(T ) <∞ and that X

is a martingale (respectively, a supermartingale) with bounded increments.

We aim to show that E[XT ] = E[X0] (respectively, E[XT ] ≤ E[X0]).

Being T integrable, it is a.s. finite, so T ∧ n→ T a.s. Now, for all n ≥ 0,

we a.s. have that

|XT∧n| =

∣∣∣∣∣X0 +

T∧n∑
k=1

(Xk −Xk−1)

∣∣∣∣∣ ≤ |X0|+
T∧n∑
k=1

|Xk −Xk−1| ≤ |X0|+MT.

The far right-hand side of the above is integrable, so we can apply the

dominated convergence theorem to get

E[XT ] = E
[

lim
n→∞

XT∧n

]
= lim

n→∞
E[XT∧n] = lim

n→∞
E[XT∧0] = E[X0] ,

where the third equality holds as XT is a martingale. As in the proof of

the previous proposition, in the case where X is a supermartingale the third

equality becomes ‘≤’ by the supermartingale property.
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Exercise 2.6. Let T be a Fn-stopping time, and suppose that for some

integer N > 0 and some ε > 0 it holds

P(T ≤ N + n|Fn) ≥ ε ∀n ≥ 0 .

We aim to show that E(T ) <∞.

To start with, we show that P(T > kN) ≤ (1− ε)k for all k ≥ 0.

P(T > kN) = P(T > N, T > 2N, . . . , T > kN)

= E(P(T > N, T > 2N, . . . , T > kN |FN ))

= E
(
1(T > N)P(T > 2N, . . . , T > kN |FN )︸ ︷︷ ︸

iterate

)
= E

(
1(T > N)E

(
1(T > 2N, . . . , T > kN)|FN

))
= E

(
1(T > N)E

(
E(1(T > 2N, . . . , T > kN)|F2N )|FN

))
= E

(
1(T > N)E

(
1(T > 2N)P(T > 3N, . . . , T > kN |F2N )︸ ︷︷ ︸

iterate

∣∣∣∣FN

))
= . . .

= E
(
1(T > N)E

(
1(T > 2N) · · ·P

(
T > kN

∣∣∣∣F(k−1)N

)
︸ ︷︷ ︸

≤1−ε

· · ·
∣∣∣∣FN

)

≤ (1− ε)k .

From this we can conclude, since

E(T ) =

∞∑
n=0

P(T ≥ n) ≤
∞∑
n=0

P(T ≥ knN) = N

∞∑
k=0

P(T ≥ kN) ≤ N
∞∑
k=0

(1−ε)k =
N

ε
<∞

where we have set kn = bn/Nc.

Exercise 2.7. We are playing a game in which our winnings per unit stake

on the game at time n ≥ 1 is εn, where (εn : n ≥ 1) is an i.i.d. sequence of

random variables such that

P(εn = 1) =

 1 , with probability p

−1 , with probability q = 1− p

where p ∈ (1/2, 1). Let Zn denote our fortune at time n and let Cn be our

stake on the game at time n, with 0 ≤ Cn < Zn−1. Our goal in this game is

to choose a strategy that maximises our expected interest rate E[log(ZN/Z0)],

where Z0 is our initial fortune and N is some fixed time corresponding to

how long we are to play the game.
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Assume that C is a previsible process. Then we aim to show that (logZn−
nα : n ≥ 1) is a supermartingale, where α denotes the entropy

α := p log p+ q log q + log 2.

To see this, note that for each n ≥ 0, Zn+1 = Zn + εn+1Cn+1 by definition.

Therefore:

E[logZn+1 | Fn] = E[log(Zn + εn+1Cn+1)|Fn]

= E[log(Zn + Cn+1)1(εn+1 = 1)|Fn] + E[log(Zn − Cn+1)1(εn+1 = −1)|Fn]

= p log(Zn + Cn+1) + q log(Zn − Cn+1)

= p log

(
Zn
(
1 +

Cn+1

Zn

))
+ q log

(
Zn
(
1− Cn+1

Zn

))
= logZn + p log

(
1 +

Cn+1

Zn

)
+ q log

(
1− Cn+1

Zn

)
.

almost surely, where we have used that the quantity log(Zn ± Cn+1) is

Fn-measurable. Let us now define the function

f(x) := p log(1 + x) + q log(1− x)

for x ∈ [0, 1). By elementary calculus, f is maximised at p−q and f(p−q) =

log 2 + p log p+ q log q = α. Therefore

E[logZn+1 | Fn] = logZn + f(Cn+1/Zn) ≤ logZn + α a.s. (5)

from which

E[logZn+1 − (n+ 1)α | Fn] ≤ logZn − nα a.s.

The function logZn − nα is clearly Fn-measurable and integrable for each

n ≥ 0, and hence we conclude that the process (logZn − nα : n ≥ 0) is a

supermartingale. Note that E[log(ZN/Z0)] = E[logZN ]− logZ0 ≤ Nα.

Finally, it is clear that if we take Cn+1 := (p − q)Zn in (5) then all

inequalities above become equalities, and so (logZn − nα : n ≥ 0) is in fact

a martingale for this strategy. As p− q is the unique maximiser of f , this

strategy is the unique optimal strategy.
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