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Abstract

We study the scaling limit of the capacity of the range of a simple random walk on the
integer lattice in dimension four. We establish a strong law of large numbers and a central limit
theorem. The asymptotic behaviour is analogous to that found by Le Gall in ’86 [28] for the
size of the range in dimension two.
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1 Introduction

This paper is devoted to the study of the capacity of the range of a random walk in dimension
four. The point of view we adopt is that the capacity is a hitting probability. More precisely, the
capacity of a set is proportional to the probability a random walk sent from infinity hits the set.
Then, the capacity of the range of a random walk is cast into a problem of intersection of paths,
and dimension four is critical in view of classical results of Dvoretsky, Erdös and Kakutani [14]
establishing that the paths of two independent Brownian motions do not intersect if, and only if,
dimension is four or larger.

The capacity of a set A ∈ Z4 has two representations corresponding to different viewpoints: one
as an escape probability, the other as a hitting probability. Indeed, let Px be the law of a simple
random walk starting at x, let Gd be the discrete Green’s function, and let HA and H+

A stand
respectively for the hitting time of a finite set A and the return time in A. Then

Cap (A) =
∑
x∈A

Px(H+
A =∞) = lim

‖y‖→∞

Py(HA <∞)

Gd(0, y)
. (1.1)

One easily passes from one representation in (1.1) to the other using the last passage decomposition
formula, see (2.8) below.

Denote by {S(n), n ∈ N} a simple random walk in Z4. For two integers m,n, the range R[m,n]
(or simply Rn when m = 0) in the time period [m,n] is defined as

R[m,n] = {S(m), . . . , S(n)}.

Our first result is a strong law of large numbers for Cap (Rn).
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Theorem 1.1. Let S be a simple random walk in Z4. Almost surely,

lim
n→∞

log n

n
· Cap (Rn) =

π2

8
.

Our second result is a central limit theorem for Cap (Rn).

Theorem 1.2. Let S be a simple random walk in Z4. Then, as n→∞

(log n)2

n
· (Cap (Rn)− E[Cap (Rn)])

(d)
=⇒ −

(π
2

)4
· γG

(
[0, 1]2

)
,

where γG
(
[0, 1]2

)
is formally defined as

γG
(
[0, 1]2

)
=

∫ 1

0

∫ 1

0
G(βs, βt) ds dt− E

[∫ 1

0

∫ 1

0
G(βs, βt) ds dt

]
, (1.2)

with G the continuous Green’s function and (βs, s ≥ 0) a standard four-dimensional Brownian

motion and
(d)

=⇒ stands for convergence in distribution.

Remark 1.3. Although both terms appearing in the definition of γG([0, 1]2) have infinite expecta-
tion, we show, in Section 4, how to make sense of γG

(
[0, 1]2

)
following Le Gall’s approach to define

the self-intersection local time, see [27, 28, 29].

Remark 1.4. Theorem 1.2 shows that the capacity of the range in 4 dimensions behaves in the
same way as the size of the range in 2 dimensions as shown by Le Gall in ’86 [28]:

(log n)2

n
· (|Rn| − E[|Rn|])

(d)
=⇒ −2π2 · γ([0, 1]2),

where γ([0, 1]2) is defined formally via

γ([0, 1]2) =

∫ 1

0

∫ 1

0
δ(0)(βs − βt) ds dt− E

[∫ 1

0

∫ 1

0
δ(0)(βs − βt) ds dt

]
,

where β is a standard two-dimensional Brownian motion.

As a corollary of our result we obtain in particular the asymptotic behaviour of the variance
of Cap(Rn).

Corollary 1.5. Let S be a simple random walk in Z4. Then

lim
n→∞

(log n)4

n2
Var (Cap (Rn)) =

(π
2

)8
· E
[(
γG
(
[0, 1]2

))2]
.

Seen as a normalised hitting probability, the capacity of the range of a walk is an object which
appeared in disguised form in topics linked with intersection of paths of random walks. This latter
topic grew already large in the nineties, as Lawler’s ’91 book [24] testifies. One reason for that
is the many diverse sources of motivation: (i) quantum field theories with a seminal insight of
Symanzik [34], and with contributions by Lawler [22, 23], Aizenman [1], Felder and Frölich [16], to
name a few (see the book [17] for a historical account and references therein), (ii) probability and
the non-Markovian model of self-avoiding walk, with contributions from Brydges and Spencer [6],
Madras and Slade [31], and Lawler [21], (iii) conformal field theories, and the intersection exponents
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relations in dimension two and with contributions by Duplantier and Kwon [11], Duplantier [10],
Burdzy and Lawler [7], and Lawler, Schramm and Werner [26] and references therein.

The models studied can be either discrete random walks, or their continuous counterpart, the
Wiener sausages. In the mid-nineties, Aizenman [1], Albeverio and Zhou [2], Pemantle Peres and
Shapiro [32] and Khoshnevisan [20] proposed useful methods and estimates for the intersection of
two Wiener sausages. These estimates were important in understanding how small was the trace of
a Brownian motion. In 2004, van den Berg, Bolthausen and den Hollander [36] studied the upward
deviations for the volume of intersection of two Wiener sausages, and established a Large Deviations
Principle. More recently Erhard and Poisat [15] also established large deviations estimates for the
capacity of a Wiener sausage.

There is recently a revival of problems linked with intersection of paths. The model of random
interlacements was invented by Sznitman [35] initially to study the trace of a walk, living in d-
dimensional torus of side N for a time Nd. Sznitman introduced a measure on infinite paths on the
infinite lattice of random walks whose probability of avoiding any given set is proportional to the
exponential of minus its Newtonian capacity. Recently Rath and Sapozhnikov [33], and Chang and
Sapozhnikov [9] established moments and deviation bounds for the capacity of the union of ranges
of paths. In [5] we observed that the precise two sided non-intersection bounds of Lawler [24] yield
in dimension four,

lim
n→∞

log n

n
E[Cap(Rn)] =

π2

8
. (1.3)

Soon after this, Chang [8] obtained a sharp estimate on the second moment:

lim
n→∞

E[Cap(Rn)2]

E[Cap(Rn)]2
= 1,

implying a weak law of large numbers. Chang [8] also established a fluctuation result in dimension
three by coupling the walk and the Brownian motion:

Cap(Rn)

σ
√
n

(d)
=⇒ Cap(β[0, 1]), (1.4)

with σ some renormalising constant and β[0, 1] the trace of a three-dimensional Brownian motion
between time 0 and 1. In [5], we also proved a standard central limit theorem in dimension larger
than or equal to 6 (with a standard

√
n normalising factor, and a Gaussian limit), while the law of

large numbers had already been obtained in dimension 5 and larger by Jain and Orey [18], almost
fifty years ago. All these results for the capacity of the range are complete analogues of what is
known for a long time for the size of the range, see [13, 19, 28], with only a drop of two dimensions
to go from results on the capacity to those concerning the size of the range. The only case in this
direction which is yet unsolved is the question of the central limit theorem for the capacity of the
range in dimension 5.

Recently, van den Berg, Bolthausen and den Hollander [37] advocated a new geometric character-
istic, the torsional rigidity of the complement of a Wiener sausage, as a way to probe the shape of
the sausage. In order to obtain leading asymptotics for the torsional rigidity, one needs a law of
large numbers for the capacity of a Wiener sausage, which is not proved yet in dimension four; see
however our companion paper [4] for a partial result in this direction. Our Theorem 1.1 establishes
this asymptotics for the discrete model, and thus prepares the study of torsional rigidity for random
walk.

Our own motivation for studying the capacity of the range of a random walk comes from studying
a random walk conditioned on being localised for time N in a ball of volume of order N [3]. In this
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regime the localised walk necessarily intersects often its own path, and one of the main technical
estimates in [3] concerns the event of visiting a set Λ made up of non-overlapping balls of fixed
radius. We establish that visiting each ball making up Λ the same number of times is related to the
capacity of Λ. This allowed us to obtain rough estimates on the capacity of the range of a localised
walk, and convinced us that the capacity of the range is a relevant object to consider.

Heuristics. We wish to explain at a heuristic level the scaling of the capacity in d = 4, as well
as the reason for our Central Limit Theorem. In the way, we present a simple decomposition
formula for the capacity of two finite sets, and highlight the connection with the volume of the
range in d = 2.

Let us start by explaining in simple terms why the scaling of the capacity of the range is n/ log(n)
in dimension 4. Consider (1.1) where A = Rn, and observe that it is enough to consider the
site x on the boundary of a ball, say of radius R, containing the set A: a walker coming from
infinity basically spreads uniformly on the boundary of such a ball when it hits it, and (1.1) is
almost correct when considering x uniformly distributed on the boundary of ball of radius R and
normalised by Gd(0, R), since Gd(0, y)/Gd(0, R) is the probability of eventually hitting the ball of
radius R when starting at y. Now, for time n, the walk typically stays in a ball of radius R =

√
n,

and we consider R of this order. We need therefore to estimate the probability that two independent
walks starting at a distance

√
n meet. More precisely, we need to estimate

P0,x(R[0, n] ∩ R̃[0,∞) 6= ∅), with ‖x‖ ∼
√
n.

To estimate this intersection event, Lawler [24] counts the number of times the two paths intersect.
Its expectation is expressed as the probability the two walks meet times the mean number of
meetings after the first, that is when they start from the same point. Then, simple computations
give the following

E0,0[|R[0, n] ∩ R̃[0,∞)|] � log(n), and E0,x[|R[0, n] ∩ R̃[0,∞)|] � 1, when ‖x‖ ∼
√
n.

Then, the order of the probability of intersection is obtained by taking the ratio of the two previous
quantities, and dividing by Gd(0, R) which is of order 1/R2. This is established rigorously in
Section 4.3 of Lawler [24]. The scaling for the capacity follows, at least heuristically.

A simple and key observation of Le Gall [28] is that since by symmetry of the walk, the range
R[0, 2n] translated by S(n), is the union of two independent ranges: R1

n = R[0, n] − S(n) and
R2
n = R[n, 2n]− S(n), the exclusion-inclusion formula for the volume of a union yields

|R1
n ∪R2

n| = |R1
n|+ |R2

n| − |R1
n ∩R2

n|. (1.5)

This is the starting block of Le Gall’s proof. Our starting point is a simple and key observation
that the capacity of the range obeys a decomposition formula, which plays exactly the same role
as the basic exclusion-inclusion formula does for the volume of the range.

Proposition 1.6. Let A and B be two finite subsets of Zd. We have

Cap (A ∪B) = Cap (A) + Cap (B)− χ(A,B)− χ(B,A)− ε(A,B), (1.6)

where
χ(A,B) =

∑
y∈A

∑
z∈B

Py
(
H+
A∪B =∞

)
Gd(y, z)Pz

(
H+
B =∞

)
,

and 0 ≤ ε(A,B) ≤ Cap (A ∩B).
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We intend to apply (1.6) with A = R1
n and B = R2

n. In dimension 4, it turns out that ε(A,B) is
innocuous. As in Le Gall’s proof of the CLT for the volume of the range in dimension 2 [28], we
iterate (1.6) and arrive at a decomposition of the capacity of the range as the sum of a rescaled
self-similar part, consisting of a sum of independent and (almost) identically distributed terms, plus
a sum of cross terms. Our proofs establish that for the law of large numbers it is the self-similar
part which dominates, the cross terms being of smaller order than n/ log n, while for the central
limit theorem, it is the opposite situation: the fluctuations of the self-similar part are negligible
compared to those of the cross terms. This striking phenomenon is exactly the same as the one Le
Gall discovered some thirty years ago, when proving the central limit theorem for the volume of
the range [28].

We are now in position to shed some light on the form of our CLT. We consider χ(R1,R2) and
expect, as Theorem 1.1 essentially teaches, that typically and to leading order

for x ∈ R1
n, Px

(
H+
R1
n∪R2

n
=∞

)
∼ π2

8
· 1

log n
, for y ∈ R2

n, Py
(
H+
R2
n

=∞
)
∼ π2

8
· 1

log n
.

Note that in dimension higher than four, typically for x ∈ R[0, n], Px
(
H+
R[0,n] =∞

)
is rather of

order 1. Our key technical estimates is then to make the escape events into local events (in a space
scale much smaller than

√
n), and thus transform the intersection term in a term looking to leading

order like (π2
8
· 1

log(n)

)2
·
∑
x∈R1

n

∑
y∈R2

n

Gd(x, y). (1.7)

The expression (1.7), in conjunction with the decomposition (1.6) which we iterate, explains heuris-
tically the form (1.2).

An interesting point, is that the order of magnitude of the cross term χ(R1
n,R2

n) in dimension d+2
is exactly the same as the order of magnitude of the intersection term |R1

n ∩ R2
n| in dimension d,

which heuristically explains the drop of two dimensions in all the results for the volume of the
range, compared to what happens for its capacity.

The rest of the paper is organised as follows. In Section 2, we start by recalling known estimates
on Green’s kernel, and deriving useful simple estimates on random walks. Then we present the
proof of Proposition 1.6. The Strong Law of Large Numbers is established in Section 3.3 after a
rough second estimate is obtained for the cross term. Section 4 studies the limiting object in the
CLT. Section 5 presents our non-intersection events – Proposition 5.2 which generalises Lawler’s
Theorem 5.1. Section 6 presents the asymptotics for the cross term obtained by the method of
moments. Section 7 establishes the CLT based on estimates of Section 6, and the recursive use of
the decomposition. Finally Section 8 gathers computations linked with Section 5.

2 Preliminaries

2.1 Notation and standard estimates

We mostly use the symbol S to denote a random walk, and use both notation Sk and S(k) to denote
its position at time k. When 0 ≤ a ≤ b are real numbers, R[a, b] denotes R[[a], [b]], where [x] stands
for the integer part of x. We also write Ra for R[0, [a]], and S(n/2) for S([n/2]).

For positive functions f, g we write f ∼ g if f(n)/g(n)→ 1 as n→∞. We also write f(n) . g(n)
if there exists a constant c > 0 such that f(n) ≤ cg(n) for all n and f(n) & g(n) if g(n) . f(n).
Finally, we use the notation f(n) � g(n) if both f(n) . g(n) and f(n) & g(n).
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For α > 0, and n ≥ 2, we note nα := n · (log n)−α.

The Euclidean norm of x ∈ Z4 is denoted ‖x‖, and the Euclidean ball of center x and radius r is
denoted B(x, r). We denote by Px the law of a simple random walk starting from x, and simply
write P when x = 0. Likewise Px,x′ denotes the law of two independent random walks starting
from x and x′, and similarly when there are more walks. Recall that HA denotes the hitting time
of a set A, and we abbreviate this in Hx when A is reduced to a single point x ∈ Zd.

We write
pk(x, y) = Px(Sk = y).

The function pk is symmetric in x and y, and one has pk(x, y) = pk(0, y − x) := pk(y − x). Define

fk(x) =
8

π2k2
exp

(
−2
‖x‖2

k

)
. (2.1)

A well-known estimate, see Proposition 2.1.2 (b) in [25], is that for all k ≥ 1

P
(

max
`≤k
‖S`‖ ≥ r

)
≤ C · e−c·r2/k, (2.2)

for some positive constants c and C. Furthermore, for any fixed α < 2/3, one has for all k ≥ 1 and
x with pk(x) > 0 and ‖x‖ ≤ kα, (see Proposition 1.2.5 in [24]):

pk(x) = fk(x)(1 +O(k3α−2)). (2.3)

One deduces in particular the following useful estimate:

P(‖Sk‖2 ≤ k/R) = O(R−2). (2.4)

The discrete Green’s function Gd is defined by

Gd(x, y) =
∑
k≥0

Px(Sk = y) = Px(Hy <∞) ·Gd(0, 0).

We also write Gd(x) = Gd(0, x), and recall that Gd is symmetric, and satisfies Gd(x, y) = Gd(y−x).

The continuous Green’s function G(x, y) is also symmetric and satisfies G(x, y) = G(0, y − x) :=
G(y − x). It is defined for z ∈ R4 non zero, by

G(z) =
1

2π2
· 1

‖z‖2
. (2.5)

These two functions are linked by the relation (see Theorem 4.3.1 in [25]):

Gd(x) = 4G(x) +O
(

1

1 + ‖x‖4

)
, (2.6)

for x ∈ Z4. We will also use the following estimate (see Proposition 6.5.1 and 6.5.2 in [25]): there
exists a constant C > 0, such that for all x and r > 0,

Px(HB(0,r) <∞) ≤ C · r2

1 + ‖x‖2
. (2.7)

Finally we prove two useful estimates on the heat kernel pk(x):
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Claim 2.1. Let x and k be such that
√
k ≤ ‖x‖ ≤ k3/5. Then there exists a positive constant C

(independent of x) so that for all i ≤ k we have

pi(x) ≤ C fk(x).

Proof. Suppose first that i ≤ k1−ε, for some ε > 0 to be fixed later. Then one can use (2.2) which
gives

pi(x) ≤ P(‖Si‖ ≥ ‖x‖) . exp(−c‖x‖
2

i
) . exp(− c

2
kε − 2

‖x‖2

k
) . fk(x),

using for the third inequality that for k large enough, ‖x‖2/i ≥ max(kε, (2/c) · ‖x‖2/k).

Suppose next that k1−ε ≤ i ≤ k/2. One has ‖x‖2 ≤ k3/5 ≤ i3/5(1−ε). Now choose ε such that
3/5(1− ε) < 2/3. Then one can use the local CLT (2.3), which gives

pi(x) .
1

i2
exp

(
−2 ‖x‖2

i

)
=
‖x‖4

i2
exp

(
−‖x‖

2

i

)
· 1

‖x‖4
exp

(
−‖x‖

2

i

)
.

Using that the function y2e−cy is upper bounded by a constant, the assumption that i ≤ k/2 and
‖x‖ ≥

√
k, we obtain

pi(x) .
1

k2
exp

(
−2 ‖x‖2

k

)
and this completes the proof in the case i ≤ k/2.

Suppose finally that k/2 ≤ i ≤ k. Then we have

pi(x) .
1

i2
exp

(
−2 ‖x‖2

i

)
.

1

k2
exp

(
−2 ‖x‖2

k

)
and this finishes the proof.

Recall next the notation nα = n/(log n)α.

Claim 2.2. Let i, k, n ∈ N and x, z ∈ Z4 satisfy k ≥ nα, ‖x‖ ≤
√
n(log n)2, i ≤ k/(log n)3α and

‖z‖ ≤
√
i(log n)3α/4. Then for all α > 8 we have as n→∞

fk−i(x− z) = fk(x) · (1 + o(1)).

Proof. First of all we get as n→∞
1

k2
=

1

(k − i)2
· (1 + o(1)).

We next turn to the exponential terms in the expression for fk. We have

‖x‖2

k
− ‖x− z‖

2

(k − i)
=

(k − i)‖x‖2 − k(‖x‖2 − 2〈x, z〉+ ‖z‖2)
k(k − i)

=
2k〈x, z〉 − k‖z‖2 − i‖x‖2

k(k − i)
.

It suffices to prove that this last expression tends to 0 as n→∞. By the assumption

i‖x‖2

k(k − i)
. (log n)4−2α and

k ‖z‖2

k(k − i)
. (log n)−3α/2,

and since α > 8 they both tend to 0. Finally, by Cauchy-Schwarz we get

|〈x, z〉|
k − i

≤ ‖x‖‖z‖
k − i

. (log n)2−
α
4 → 0 as n→∞,

again by using that α > 8 and this completes the proof.
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2.2 A decomposition formula for the capacity

Recall the last passage decomposition formula (see for instance Proposition 4.6.4 in [25]): for any
finite set A ⊆ Zd and x /∈ A,

Px(HA <∞) =
∑
y∈A

Gd(x, y) · Py(H+
A =∞). (2.8)

We also recall two well-known formulas for the capacity of a finite set A ⊆ Zd. First

Cap (A) = lim
‖x‖→∞

Px(HA <∞)

Gd(x, 0)
, (2.9)

and for any y ∈ A,

Py(H+
A =∞)

Cap(A)
= lim
‖x‖→∞

Px
(
S(HA) = y | HA <∞

)
. (2.10)

The first formula is obtained through the last passage decomposition formula (2.8) and the definition
of the capacity (1.1), and the second is Theorem 2.1.3 of Lawler’s book [24].

Proof of Proposition 1.6. Consider two finite subsets A and B of Zd. One has

Px(HA∪B <∞) = Px(HA <∞) + Px(HB <∞)−Px(HA <∞, HB <∞) (2.11)

= Px(HA <∞) + Px(HB <∞)− (Px(HA < HB <∞) + Px(HB < HA <∞))

− Px(HA = HB <∞).

Consider for instance the term Px(HA < HB < ∞). Conditioning on the possible hitting point
in A and using the Markov property yield:

Px(HA < HB <∞) =
∑

y∈A\B

Px
(
S(HA∪B) = y, HA∪B <∞

)
Py
(
HB <∞

)
=Px

(
HA∪B <∞

) ∑
y∈A\B

Px
(
S(HA∪B) = y | HA∪B <∞

)
Py
(
HB <∞

)
.

Then, use (2.9) and (2.10) to obtain

lim
x→∞

Px(HA < HB <∞)

Gd(0, x)
=

∑
y∈A\B

Py
(
H+
A∪B =∞

)
Py
(
HB <∞

)
.

Finally by using the last passage formula (2.8), we get the desired limit

lim
x→∞

Px(HA < HB <∞)

Gd(0, x)
=

∑
y∈A\B

∑
z∈B

Py
(
H+
A∪B =∞

)
Gd(y, z)Pz

(
H+
B =∞

)
.

By symmetry one also has

lim
x→∞

Px(HB < HA <∞)

Gd(0, x)
=

∑
y∈B\A

∑
z∈A

Py
(
H+
A∪B =∞

)
Gd(y, z)Pz

(
H+
B =∞

)
.

We also obtain the existence of the limit ε(A,B) of Px(HA = HB <∞)/Gd(0, x), as x→∞, since
in (2.11) all other ratios are shown to converge. To conclude just note that

Px(HA = HB <∞) ≤ Px(HA∩B <∞),

which gives ε(A,B) ≤ Cap (A ∩B).
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We will apply successively the decomposition of Proposition 1.6. To this end, we define for i ≥ 1
and j ≤ 2i,

R(i,j)
n := R[(j − 1)2−in, j2−in].

Proposition 2.3. Fix p ∈ N. Then we have

Cap (Rn) =
2p∑
j=1

Cap
(
R(p,j)
n

)
−

p∑
i=1

2i−1∑
j=1

χn(i, j)− εn,

where E
[
ε2n
]

= O((log n)2) and

χn(i, j) := χ(R(i,2j−1)
n ,R(i,2j)

n ) + χ(R(i,2j)
n ,R(i,2j−1)

n ).

Proof. The proof follows directly by applying repeatedly Proposition 1.6 to Rn. Moreover, from
Proposition 1.6 we have that in every subdivision the term ε is upper bounded by the size of
the intersection of two independent ranges. A straightforward calculation shows that this has
expectation log n (see for instance [24, Section 3.4]). The bound on the second moment follows
from [30, Lemma 3.1]. Since we are only taking a finite sum, the result follows.

3 Strong law of large numbers

In this section we prove Theorem 1.1. The main part of the proof is to obtain good bounds on the
first and second moments of the cross term χn(1, 1) appearing in the decomposition formula of the
capacity. More precisely we show that

Lemma 3.1. The first and second moments of χn(1, 1) satisfy

E[χn(1, 1)] . n · log log n

(log n)2
and (3.1)

E
[
χn(1, 1)2

]
. n2 · (log log n)2

(log n)4
. (3.2)

Then, in Section 3.3, we deduce the strong law of large numbers by using our decomposition of the
capacity, Proposition 2.3. Section 3.1 is devoted to some preliminary facts needed for the proof of
Lemma 3.1.

3.1 Preliminaries

We first recall a standard fact, which directly follows from (2.6): the mean total time that a walk
spends in a ball of radius R is of order at most R2. More precisely∑

k∈N
P(‖S(k)‖ ≤ R) =

∑
x∈B(0,R)

Gd(0, x) = O(R2). (3.3)

Next we present a lemma which will be needed in the second moment estimate, and which deals
with intersecting the trace of a path Rn by two independent random walks starting from far apart.
The proof follows basically from estimates of Lawler [24]. Recall that nα = n/(log n)α.
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Lemma 3.2. Let α > 0. Consider three independent random walks S, S1, S2 starting at the origin,
and let x, y ∈ Zd with ‖x‖2, ‖y‖2 ≥ nα. There is a constant C > 0, such that for n large enough,

P
(
(x+R1[0,∞)) ∩Rn 6= ∅, (y +R2[0,∞)) ∩Rn 6= ∅

)
≤ C ·

(
log logn

log n

)2

. (3.4)

Proof. The proof consists in showing that even if the two events considered in (3.4) are not indepen-
dent, one can still dissociate them. The argument is standard, but we include it for completeness.
We introduce two random times

σx = inf{k : S(k) ∈ x+R1[0,∞)}, and σy = inf{k : S(k) ∈ y +R2[0,∞)}.

Note that σx (resp. σy) is independent of S2 (resp. of S1). We can express the non-intersection
event in terms of σx and σy:

P
(
(x+R1[0,∞)) ∩Rn 6= ∅, ((y +R2[0,∞)) ∩Rn 6= ∅

)
≤ P(σx ≤ σy ≤ n) + P(σy ≤ σx ≤ n) .

By symmetry, it is enough to deal with the first probability on the right-hand side. Conditioning
on S1 and σx, we get

P(σx ≤ σy ≤ n) ≤ E
[
1(σx ≤ n) PS(σx)

(
R[0, n− σx] ∩ (y +R2[0,∞)) 6= ∅

)]
≤ E

[
1(σx ≤ n) PS(σx)

(
R[0, n] ∩ (y +R2[0,∞)) 6= ∅

)]
.

Note that since ‖y‖2 ≥ nα, we have using (2.7),

P
(
σx ≤ n, ‖S(σx)− y‖2 ≤ nα+2

)
≤ P

(
HB(y,√nα+2) <∞

)
.

1

(log n)2
.

Now, on the event {‖S(σx)− y‖2 ≥ nα+2}, [24, Theorem 4.3.3] shows that

PS(σx)
(
(y +R2[0,∞)) ∩R[0, n] 6= ∅

)
.

log logn

log n
.

Thus by another application of [24, Theorem 4.3.3] we get

P(σx ≤ σy ≤ n) . P(σx ≤ n) · log log n

log n
.

(
log logn

log n

)2

,

and this completes the proof.

3.2 First and second Moment estimates of the cross terms

Proof of Lemma 3.1. Note first that by reversibility of the walk, χn(1, 1) is equal in law to
χ(Rn/2, R̃n/2) + χ(R̃n/2,Rn/2), with R and R̃ the ranges of two independent walks S and S̃.
By symmetry (and Cauchy-Schwarz) it is enough to bound the first and second moments of
χ(Rn/2, R̃n/2). However, to avoid annoying factors 1/2 everywhere, we will bound the term

χ(Rn, R̃n) instead, which is of course entirely equivalent. Recall that for any finite sets A and B,
we have by definition of χ(A,B) and using also the last exit formula (2.8):

χ(A,B) =
∑
y∈A

Py(H+
A∪B =∞) · Py(HB <∞).

10



Of course the first moment bound (3.1) follows from (3.2) by using Jensen’s inequality, but it might
be interesting to include a direct proof of (3.1) first, as it might serve as a warmup for the proof of
the second moment estimate.

So let us prove (3.1). For this we need to consider two additional independent random walks S1

and S̃1 starting from the origin and also independent of S and S̃. Denote their ranges by R1

and R̃1 respectively. We start with a handy bound:

χ(Rn, R̃n) =
n∑
k=1

1(Sk /∈ Rk−1)P((Sk +R1[1,∞)) ∩ (Rn ∪ R̃n) = ∅, (Sk + R̃1[0,∞)) ∩ R̃n 6= ∅ | S, S̃)

≤
n∑
k=1

P
(
(Sk +R1[1,∞)) ∩Rn = ∅ | S

)
· P
(
(Sk + R̃1[0,∞)) ∩ R̃n 6= ∅ | S, S̃

)
.

Taking expectation on both sides and choosing any α > 2, we get using (3.3) at the first line and
Lawler’s results [24, Theorem 3.5.1 and 4.3.3] at the second and fourth lines:

E[χ(Rn, R̃n)] ≤
n∑
k=1

∑
‖x‖2≥nα

P
(
(x+R1[1,∞)) ∩Rn = ∅, Sk = x

)
P
(
(x+ R̃1[0,∞)) ∩ R̃n 6= ∅

)
+O(nα)

.
n∑
k=1

P
(
(Sk +R1[1,∞)) ∩Rn = ∅

)
· log log n

log n
+O(nα)

.
n−nα∑
k=nα

P
(
(Sk +R1[1,∞)) ∩Rn = ∅

)
· log logn

log n
+O(nα)

. n · log logn

(log n)2
,

proving already (3.1).

When taking the square, we need more notation. So let {S, S̃, S1, S2, S̃1, S̃2} be independent
random walks all starting at the origin. Fix α > 4, and introduce the following event

An(k1, k2) = {‖S(k1)‖2 ≥ nα and ‖S(k2)‖2 ≥ nα}.

To simplify notation, write also Ri for Ri[0,∞) and Ri+ for Ri[1,∞). Now, using (3.3) at the
second line and Lemma 3.2 at the fourth line, we arrive at

E
[
χ(Rn, R̃n)2

]
≤

n∑
k1=1

n∑
k2=1

P
(
(Ski +Ri+) ∩Rn = ∅, (Ski + R̃i) ∩ R̃n 6= ∅, ∀i = 1, 2

)
≤
∑
k1,k2

P
(
An(k1, k2), (Ski +Ri+) ∩Rn = ∅, (Ski + R̃i) ∩ R̃n 6= ∅,∀i = 1, 2

)
+O(n · nα)

≤
∑
k1,k2

∑
x1,x2

P
(
An(k1, k2), Ski = xi, (xi +Ri+) ∩Rn = ∅, ∀i = 1, 2

)
× P

(
(xi + R̃i) ∩ R̃n 6= ∅, ∀i = 1, 2

)
+O(n · nα)

.
∑
k1,k2

P
(
An(k1, k2), (Ski +Ri+) ∩Rn = ∅, ∀i = 1, 2

)
·
(

log logn

log n

)2

+O(n · nα)

.
∑

nα≤k1≤k2−nα≤n−2nα

P
(
(Ski +Ri+) ∩Rn = ∅, ∀i = 1, 2

)
·
(

log log n

log n

)2

+O(n · nα).
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We deal now with the non-intersection terms for which we removed the space constraints but we
added time constraints. From the walk S, we form two walks stemming from position Sm with
m = [(k1 + k2)/2]. One walk goes backward, and is denoted S3, and another one goes forward and
is denoted S4. Translating the origin to Sm we obtain using [24, Theorem 3.5.1],

P
(
(Ski +Ri+) ∩Rn = ∅, ∀i = 1, 2

)
≤P
(
(S3
m/2 +R1

+) ∩R3[0,m] = ∅
)

× P
(
(S4
m/2 +R2

+) ∩R4[0, n−m] = ∅
)

= O
(

1

(log n)2

)
,

which proves (3.2).

3.3 Strong law of large numbers

We are now ready for the proof of Theorem 1.1. The first step is to use the dyadic division of the
capacity to produce self-similar independent terms at smaller scales. If this scale is well chosen, then
the result of the previous section shows that the cross terms χn(i, j) are negligible, by a simple
application of Chebyshev’s inequality. On the other hand using Borel-Cantelli and Chebyshev’s
inequality again, one can show that the self-similar part converges almost surely, at least along
some subsequence growing sub-exponentially fast. Finally using the monotonicity of the capacity
we can deduce the convergence along the full sequence.

Proof of Theorem 1.1. Choose L as a function of n, such that (log n)4 ≤ 2L ≤ 2(log n)4. In
particular one has L � log log n. Proposition 2.3 shows that

Cap (Rn) =

2L∑
j=1

Cap
(
R(L,j)
n

)
− ξn − εn, (3.5)

where E[εn] = O(2L log n) = O((log n)5), and

ξn =

L∑
i=1

2i−1∑
j=1

χn(i, j).

Now (3.2) shows that

E[χn(i, j)2] . n2 · (log log n)2

22i(log n)4
,

for all i ≤ L and j ≤ 2i−1. Using Cauchy-Schwarz and the independence of the (χn(i, j))j for any
fixed i, this gives

Var (ξn) ≤ L ·
L∑
i=1

Var

2i−1∑
j=1

χn(i, j)

 = L ·
L∑
i=1

2i−1Var (χn(i, 1)) = O
(
n2 · (log log n)3

(log n)4

)
.

This together with Chebyshev’s inequality give

P
(
|ξn − E[ξn] | > ε

n

log n

)
.

(log log n)3

(log n)2
, (3.6)
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where ε > 0. On the other hand, using the trivial bound Cap(Rn) ≤ |Rn| ≤ n, and Chebyshev’s
inequality again for a sum of independent terms, we get

P

 2L∑
j=1

∣∣∣Cap
(
R(L,j)
n

)
− E

[
Cap

(
R(L,j)
n

)]∣∣∣ > ε
n

log n

 .
1

(log n)2
. (3.7)

Now consider the subsequence an = exp(n3/4), and observe that it satisfies

∑
n

(log log an)3

(log an)2
<∞.

Therefore (3.1), (3.6) and Borel-Cantelli show that almost surely

lim
n→∞

log an
an

· ξan = 0.

Similarly using the bound E[εn] = O((log n)5), we deduce using Markov’s inequality that almost
surely

lim
n→∞

log an
an

· εan = 0.

Finally, using (1.3), (3.5), (3.7) and Borel-Cantelli again, we deduce that almost surely

lim
n→∞

log an
an

· Cap(Ran) =
π2

8
.

The proof is almost finished now. To conclude first observe that Cap(Rn) is nondecreasing, since
for any A ⊂ B, one has Cap(A) ≤ Cap(B). Thus if for n ≥ 1, we define kn as the unique integer,
such that akn ≤ n < akn+1, we have

Cap (R[0, akn ]) ≤ Cap (R[0, n]) ≤ Cap (R[0, akn+1]) .

On the other hand akn+1/akn goes to 1, as n→∞, and this implies that in fact the full sequence
(log n/n) · Cap (R[0, n]) converges.

Remark 3.3. Note that for the last part of the proof we used exactly the same strategy as
Dvoretzky and Erdös in their pioneering work on the range [13]. They also first proved an almost
sure limiting result along a subsequence growing subexponentially fast (using also Chebyshev’s
inequality and good bounds on the variance), and then deduced the strong law of large numbers
using a monotonicity argument. However, the idea that a decomposition like (1.5) could be useful in
obtaining sharp variance bounds and a central limit theorem came much later, in Le Gall’s papers
[28, 29].

4 Existence and definition of the limiting term

The goal of this section is to give a precise definition of the limiting term appearing in Theorem 1.2.
We also prove a Carleman’s condition for the sum approximating it.
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4.1 Carleman’s condition

We recall that Carleman’s condition holds for a nonnegative random variable X, if its sequence of
moments mp := E[Xp] satisfies: ∑

p≥1
(mp)

− 1
2p = ∞.

Proposition 4.1. Let

X =

∫ 1

0

∫ 1

0

1

|βs − β̃t|2
ds dt,

where β and β̃ are two independent standard 4-dimensional Brownian motions. There exists a
constant C > 0, such that

E [Xp] ≤ Cp · p2p,

for all p ≥ 1. In particular Carleman’s condition holds for X.

Remark 4.2. Note that by reversibility of the Brownian path, and scaling invariance, one has

X
(d)
= 2

∫ 1/2

0

∫ 1

1/2

1

|βs − βt|2
ds dt.

Proof. First, by using Jensen’s inequality we get

E[Xp] .
∫ 1

0
dtE

[(∫ 1

0

ds

‖βs − β̃t‖2

)p]
.

A symmetry argument gives

E[Xp] . p!

∫ 1

0
dt

∫
0≤s1≤...≤sp≤1

E

[
1

‖βs1 − β̃t‖2 · · · ‖βsp − β̃t‖2

]
ds1 . . . dsp. (4.1)

By using standard properties of the Brownian motion, we can write∫
0≤s1≤...≤sp≤1

E

[
1

‖βs1 − β̃t‖2 · · · ‖βsp − β̃t‖2

]
ds1 . . . dsp (4.2)

=

∫
0≤s1≤...≤sp≤1

E

[
1

‖βs1 − β̃t‖2 · · · ‖βsp−1 − β̃t‖2
E

(
1

‖βsp − β̃t‖2

∣∣∣ (βu)u≤sp−1 , β̃t

)]
ds1 . . . dsp

=

∫
0≤s1≤...≤sp−1≤1

ds1 . . . dsp−1E

[
1

‖βs1 − β̃t‖2 · · · ‖βsp−1 − β̃t‖2

∫ 1−sp−1

0
E
(

1

‖βs − xp‖2
∣∣∣ xp) ds

]
,

with xp = βsp−1 − β̃t. Now we need the two following lemma.

Lemma 4.3. One has∫ 1

0
E
[

(a+ | log ‖βs − x‖|)k

‖βs − x‖2

]
ds .

k+1∑
`=0

(4k)` · (a+ 1 + | log ‖x‖|)k+1−` ,

uniformly in x ∈ R4 \ {0}, a ≥ 0 and k ≥ 0.
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Lemma 4.4. For all k ≥ 1 and a ≥ k,∫ 1

0
E
[
(a+ | log ‖β̃t‖|)k

]
dt . k · ak.

We prove these two lemmas in the Appendix. Let us now conclude the proof of the proposition.
First one can use Lemma 4.3 and by induction, we can bound the last integral in (4.2) by

Cp ·
p∑
`=0

α` · (4p)`(p+ | log ‖β̃t‖|)p−`,

where C is a constant and

α` := # {1 ≤ i1 ≤ · · · ≤ i` ≤ p} =
p`

`!
.

Then using Lemma 4.4, (4.1), and (4.2) we obtain the upper bound

E[Xp] . Cp · p2p ·
p∑
`=0

(4p)`

`!
. (Ce4)p · p2p,

which proves the proposition.

4.2 The limiting term

We have now all the ingredients to define properly the term γG([0, 1]2), appearing in Theorem 1.2.
First define the following subsquares of [0, 1]2:

Ai,j = [(2j − 2)2−i, (2j − 1)2−i]× [(2j − 1)2−i, (2j)2−i],

for i ≥ 1 and j ≤ 2i−1. Define also C1 = {s, t ∈ [0, 1] : s ≤ t}, the closure of the union of all these
squares.

A straightforward computation shows that

E
[∫ 1

0

∫ 1

0
G(βs, βt) ds dt

]
=∞.

However, if we consider disjoint intervals, then this expectation is finite as we already proved in
Proposition 4.1, i.e.

E

[∫ 1/2

0

∫ 1

1/2
G(βs, βt) ds dt

]
<∞,

and by scaling the same fact holds when integrating over any of the squares Ai,j . This observation
is at the heart of the following proposition:

Proposition 4.5. Let β be a standard 4-dimensional Brownian motion. Then the following limit
exists in L2:

γG(C1) :=
∞∑
i=1

2i−1∑
j=1

(∫
Ai,j

G(βs, βt) ds dt− E

[∫
Ai,j

G(βs, βt) ds dt

])
.
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Remark 4.6. Note that by definition one simply has γG([0, 1]2) = 2 γG(C1).

Proof. By Brownian scaling we have for any j ≤ 2i−1,∫
Ai,j

G(βs, βt) ds dt
law
=

1

2i−1

∫ 1/2

0

∫ 1

1/2
G(βs, βt) ds dt, (4.3)

and moreover, by Proposition 4.1 these random variables have finite second moment. Now by the
triangle inequality for the L2-norm we have∥∥∥∥∥∥

n∑
i=1

2i−1∑
j=1

(∫
Ai,j

G(βs, βt) ds dt− E

[∫
Ai,j

G(βs, βt) ds dt

])∥∥∥∥∥∥
2

≤
n∑
i=1

∥∥∥∥∥∥
2i−1∑
j=1

(∫
Ai,j

G(βs, βt) ds dt− E

[∫
Ai,j

G(βs, βt) ds dt

])∥∥∥∥∥∥
2

=
n∑
i=1

2i−1∑
j=1

E

(∫
Ai,j

G(βs, βt) ds dt− E

[∫
Ai,j

G(βs, βt) ds dt

])2
1/2

,

where for the last inequality we used the independence of the terms
∫
Ai,j

G(βs, βt) ds dt, when the

rectangles Ai,j are all in the same subdivision. Using (4.3) this last sum is equal to

n∑
i=1

√√√√ 2i−1

22(i−1)
·Var

(∫ 1/2

0

∫ 1

1/2
G(βs, βt) ds dt

)
=

√√√√Var

(∫ 1/2

0

∫ 1

1/2
G(βs, βt) ds dt

)
n∑
i=1

1

2(i−1)/2
,

which converges as n→∞.

5 Intersection and non-intersection probabilities

The goal of this section is to obtain an asymptotic expression for the probability of non-intersection
of a two sided walk with simple random walk, when one walk is conditioned to end up at a specific
location. Our proofs will rely heavily on the following estimate of Lawler on the non-intersection
probability of a two sided-walk with a simple random walk.

Theorem 5.1. ([24, Corollary 4.2.5]) Let R1,R2 and R3 be the ranges of three independent random
walks in Z4 starting at 0. Then,

lim
n→∞

log n · P
(
(R1[0, n] ∪R2[0, n]) ∩R3[1,∞) = ∅, 0 6∈ R1[1, n]

)
=
π2

8
. (5.1)

Recall the definition of fk(x) from (2.1) and also the shorthand notation nα = n/(log n)α.

Proposition 5.2. Let α > 10, n − nα > k > nα and x ∈ Z4 with
√
n2α ≤ ‖x‖ ≤

√
n(log n)2. Let

R1,R2 and R3 be the ranges of three independent random walks starting from 0. Then

P
(
(R1[0, k] ∪R2[0, n]) ∩R3[1,∞) = ∅, S1(k) = x, 0 /∈ R1[1, k]

)
=
π2

8
· 1

log n
· pk(x) · (1 + o(1))

+O
(

1

(log n)3/2
· fk (x/2)

)
.
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Note that in the expression above we cannot always absorb the second term in the o(1) term,
since pk(x) is not always comparable to fk(x/2). However, this second term is going to be negligible
when we take the sum over all time indices and all points in space.

The rest of this section is devoted to the proof of the above proposition.

The following lemma on the probability that two walks intersect when one walk is conditioned to
end up at a specific location is a crucial ingredient in the proof of the proposition above and will
be used in later parts too.

Lemma 5.3. There exists a positive constant C so that the following holds. Let z ∈ Z4 and let S1

and S2 be two independent simple random walks in Z4 starting from 0 and z respectively. For
a, k ∈ N and b ∈ N ∪ {∞} let A(a, b, k) = {R1[0, k] ∩ R2[a, b] 6= ∅}. Then for all x ∈ Z4 with
‖x‖ ≤ k2/3 we have

P0,z

(
A(a, b, k), S1(k) = x

)
≤ Cfk (x/2) ·max (P0,z(A(a, b, k)) ,Px,z(A(a, b, k))) .

We now state two lemmas and a claim whose proofs are deferred after the proof of Proposition 5.2.

Lemma 5.4. Let α > 10. Let nα < k < n − nα, i = k/(log n)5α and
√
n2α ≤ ‖x‖ ≤

√
n(log n)2.

Let R1,R2 and R3 be the ranges of three independent random walks starting from 0. Then we have

P
(
(R1[0, i] ∪R2[0, n]) ∩R3[1,∞) = ∅, S1(k) = x, 0 /∈ R1[1, i]

)
=
π2

8
· 1

log n
· pk(x) · (1 + o(1)).

Lemma 5.5. Same assumptions as in Lemma 5.4. We have

P
(
(R1[0, i] ∪R2[0, n]) ∩R3[1,∞) = ∅,R1[i, k] ∩R3[1,∞) 6= ∅, S1(k) = x

)
. fk(x/2) · log log n

(log n)3/2
.

Claim 5.6. Let α > 0, k > nα and ‖x‖ ≤ k2/3. Then we have

P
(
S1(k) = x, nα < H0 < k

)
. fk(x) · (log n)2α

n
.

We now give the proof of Proposition 5.2 which is an easy consequence of the results above and
then we will prove Lemmas 5.3, 5.4 and 5.5 and Claim 5.6.

Proof of Proposition 5.2. Let i = k/(log n)2α as in Lemma 5.4. Then we can write

P
(
(R1[0, k] ∪R2[0, n]) ∩R3[1,∞) = ∅, S1(k) = x, 0 /∈ R1[1, k]

)
= P

(
(R1[0, i] ∪R2[0, n]) ∩R3[1,∞) = ∅, S1(k) = x, 0 /∈ R1[1, i]

)
− P(R1[0, i] ∪R2[0, n]) ∩R3[1,∞) = ∅, S1(k) = x, 0 /∈ R1[1, i],

{R1[i, k] ∩R3[1,∞) 6= ∅} ∪ {0 ∈ R1[i, k]}).

For the first term we use Lemma 5.4 to get the asymptotic expression of the statement. Regarding
the second probability by the union bound it is upper bounded by

P
(
(R1[0, i] ∪R2[0, n]) ∩R3[1,∞) = ∅, S1(k) = x,R1[i, k] ∩R3[1,∞) 6= ∅

)
+P
(
S1(k) = x, 0 /∈ R1[1, i], 0 ∈ R1[i, k]

)
.

The first term can be bounded using Lemma 5.5 and the second one using Claim 5.6.

17



Proof of Lemma 5.3. We assume that pk(x) > 0, since otherwise the statement is trivial. Sup-
pose first that ‖x‖2 ≤ k. Then in this case pk(x) � 1/k2, and hence for all y ∈ Z4 we have
pk/2(y) ≤ C/k2 � pk(x). We now get

P0,z(A(a, b, k), S1(k) = x) =
∑
y

P0,z(A(a, b, k), S1(k) = x, S1(k/2) = y)

≤
∑
y

P0,z

(
R2[a, b] ∩R1[0, k/2] 6= ∅, S1(k/2) = y, S1(k) = x

)
+
∑
y

P0,z

(
R2[a, b] ∩R1[k/2, k] 6= ∅, S1(k/2) = y, S1(k) = x

)
.

Using a time inversion and the Markov property this last sum is equal to∑
y

P0,z

(
A(a, b, k/2), S1(k/2) = y

)
· pk/2(y, x) +

∑
y

Px,z
(
A(a, b, k/2), S1(k/2) = y

)
· pk/2(y, 0)

. pk(x) ·
∑
y

P0,z

(
A(a, b, k/2), S1(k/2) = y

)
+ pk(x) ·

∑
y

Px,z
(
A(a, b, k/2), S1(k/2) = y

)
. pk(x) · P0,z (A(a, b, k/2)) + pk(x) · Px,z (A(a, b, k/2))

. pk(x) ·max(P0,z (A(a, b, k)) ,Px,z (A(a, b, k))).

This completes the proof in the case when ‖x‖2 ≤ k.

Suppose next that ‖x‖2 ≥ k. We write Bx = B(x, ‖x‖ /2) and Sx = ∂Bx. We define σx as the last
visit time to Sx before time k and τx for the first hitting time of Sx (both for the walk S1). For all
i ≤ k and w ∈ Z4 we have

Pw(S1(i) = x, τx ≤ i) =
∑
j≤i

∑
y∈Sx

Pw(τx = j, S1(j) = y, S1(i) = x)

=
∑
j≤i

∑
y∈Sx

Pw(τx = j, S1(j) = y) · pj−i(y, x) . fk(x/2) · Pz(τx ≤ i) . fk(x/2), (5.2)

where the first inequality follows from Claim 2.1. Now one can write

P0,z(A(a, b, k), S1(k) = x) ≤ P0,z

(
R2[a, b] ∩R1[0, σx] 6= ∅, S1(k) = x

)
+ P0,z

(
R2[a, b] ∩R1[σx, k] 6= ∅, S1(k) = x

)
.

(5.3)

In order to bound the first term, let us define

I := inf{i ≥ 0 : S1(i) ∈ R2[a, b]}.

Note that for any i, the event {I = i} is σ(R1[0, i]) ∨ σ(R2[a, b])-measurable. Therefore by the
Markov property we obtain

P0,z

(
R2[a, b] ∩R1[0, σx] 6= ∅, S1(k) = x

)
=
∑
w

∑
i≤k

P0,z

(
I = i, σx ≥ i, S1(i) = w, S1(k) = x

)
=
∑
w, i

P0,z

(
I = i, S1(i) = w

)
· Pw(S1(k − i) = x, τx ≤ k − i)

. fk(x/2) ·
∑
w, i

P0,z

(
I = i, S1(i) = w

)
. fk(x/2) · P0,z (A(a, b, k)) ,
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where we used (5.2) for the first inequality. Now concerning the second term in (5.3), one can look
at the path backwards in time, and observe that seen from x, σx is now the first hitting time of Sx,
namely τx. Therefore, using the strong Markov property,

P0,z

(
R2[a, b] ∩R1[σx, k] 6= ∅, S1(k) = x

)
=

∑
y∈Sx, i≤k

P0,z

(
R2[a, b] ∩R1[i, k] 6= ∅, S1(i) = y, σx = i, S1(k) = x

)
=
∑
y,i

Px,z
(
A(a, b, k − i), S1(k − i) = y, τx = k − i

)
· pi(y)

. fk(x/2)
∑
y,i

Px,z
(
A(a, b, k), S1(k − i) = y, τx = k − i

)
. fk(x/2) · Px,z (A(a, b, k)) ,

where for the first inequality we used Claim 2.1 again. This now completes the proof.

Proof of Lemma 5.4. This proof is very similar to [24, Proposition 4.3.2], but we include it here
for the sake of completeness. Again we assume that pk(x) > 0, otherwise the statement is trivial.

We define D = {‖S1(i)‖ ≤
√
i(log n)α+6}. Then P(Dc) ≤ exp(−(log n)α+6). We set

A =
{

(R1[0, i] ∪R2[0, n]) ∩R3[1,∞) = ∅, 0 /∈ R1[1, i]
}
.

Then by Lawler’s estimate, Theorem 5.1, we have that

P(A) =
π2

8
· 1

log n
· (1 + o(1)).

We now obtain

P
(
A,S1(k) = x,D

)
≤ P

(
A,S1(k) = x

)
≤ P

(
A,S1(k) = x,D

)
+ P(Dc) .

By the Markov property we now get

P
(
A ∩D,S1(k) = x

)
= P

(
S1(k) = x

∣∣ A ∩D)P(A ∩D) = pk(x)(1 + o(1))P(A ∩D) ,

where the last equality follows from (2.3) and Claim 2.2, since after conditioning on D, the time
changes to k − i and the walk starts from some z with ‖z‖ ≤

√
i(log n)α+6. We also have

P(A ∩D) = P(A)− P(A ∩Dc) = P(A) (1 + o(1)),

since P(A ∩Dc) ≤ P(Dc) ≤ exp(−(log n)α+6) and P(A) � 1/ log n. So far we have showed that

P
(
A ∩D,S1(k) = x

)
= pk(x)(1 + o(1))P(A) .

By the assumption on the values of x and k, we get that

P(A) pk(x) & exp(−c(log n)α+4).

Therefore,
P
(
A ∩D,S1(k) = x

)
+ P(Dc) = pk(x)P(A) (1 + o(1))

and this completes the proof.
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Proof of Lemma 5.5. Define ` = i/(log n)2α+20. Then we can upper bound the probability of
the statement as follows

P
(
(R1[0, i] ∪R2[0, n]) ∩R3[1,∞) = ∅,R1[i, k] ∩R3[1,∞) 6= ∅, S1(k) = x

)
≤ P

(
R2[0, n] ∩R3[1, `] = ∅,R1[i, k] ∩R3[1,∞) 6= ∅, S1(k) = x

)
≤ P

(
R2[0, n] ∩R3[1, `] = ∅,R1[i, k] ∩R3[1, `] 6= ∅, S1(k) = x

)
+ P

(
R2[0, n] ∩R3[1, `] = ∅,R1[i, k] ∩R3[`,∞) 6= ∅, S1(k) = x

)
(5.4)

From Lemma 5.3 we have

P
(
R1[i, k] ∩R3[1, `] 6= ∅, S1(k) = x

)
. fk(x/2) ·max(Px,0

(
R1[i, k] ∩R3[1, `] 6= ∅

)
,P
(
R1[i, k] ∩R3[1, `] 6= ∅

)
).

We now define

D3 =

{
max
j≤`
‖S3(j)‖ ≤

√
i

(log n)4

}
.

By the choice of ` we have P(Dc
3) ≤ exp(−(log n)α+6). We also let

D1 =

{
‖S1(i)‖ ≥

√
i

(log n)2

}
.

Then P(Dc
1) ≤ 1

(logn)2
, and hence we obtain for z ∈ {0, x} that

Pz,0
(
R1[i, k] ∩R3[1, `] 6= ∅

)
≤ P(Dc

3) + P(Dc
1) + Pz,0

(
R1[i, k] ∩R3[1, `] 6= ∅, D1, D3

)
≤ 2

(log n)2
+ max
‖w‖≥

√
i/(logn)2

Pw
(
HB

(
0,

√
i

(logn)4

) <∞
)

.
1

(log n)2
,

where for the last inequality we used (2.7). So we overall get that

P
(
R2[0, n] ∩R3[1, `] = ∅,R1[i, k] ∩R3[1, `] 6= ∅, S1(k) = x, 0 /∈ R1[i, k]

)
. fk(x/2) · 1

(log n)2
.

Regarding the probability appearing in (5.4) we obtain

P
(
R2[0, n] ∩R3[1, `] = ∅,R1[i, k] ∩R3[`,∞) 6= ∅, S1(k) = x, 0 /∈ R1[i, k]

)
≤ P

(
R2[0, n] ∩R3[1, `] = ∅,R1[i, k] ∩R3[`,∞) 6= ∅, S1(k) = x,D3

)
+ P(Dc

3)

. P
(
R2[0, n] ∩R3[1, `] = ∅,R1[i, k] ∩R3[`,∞) 6= ∅, S1(k) = x,D3

)
+ fk(x/2) · 1

(log n)4
, (5.5)

where for the last inequality we used that for x and k as in the statement of the lemma we have

pk(x) & exp
(
−(log n)α+4

)
and P(Dc

3) ≤ exp(−(log n)α+6).

The first term of (5.5) is upper bounded by∑
‖z‖≤

√
i

(logn)4

P0,z

(
R1[i, k] ∩R3[1,∞) 6= ∅, S1(k) = x

)
P
(
R2[0, n] ∩R3[1, `] = ∅, S3(`) = z

)
. (5.6)

20



Using Lemma 5.3 again and [24, Theorem 4.3.3] we get that for all z in the range as above

Pz,0
(
R1[i, k] ∩R3[1,∞) 6= ∅, S1(k) = x

)
. fk(x/2) · log logn

log n
.

Therefore, the sum of (5.6) becomes upper bounded by

P
(
R2[0, n] ∩R3[1, `] = ∅

)
· fk(x/2) · log log n

log n
� fk(x/2) · log log n

(log n)3/2
,

where for the equivalence we used [24, Theorem 4.4.1]. Substituting this into (5.5) finishes the
proof.

Proof of Claim 5.6. In order to upper bound the probability of this event we consider two cases,
either ‖x‖ ≤

√
k or ‖x‖ >

√
k. If ‖x‖ ≤

√
k, then using reversibility and the Markov property we

obtain

P
(
S1(k) = x, nα < H0 < k

)
= P

(
S1(k) = x, nα < H0 ≤

k

2

)
+ P

(
S1(k) = x,

k

2
< H0 < k

)
=
∑
z

P
(
S1(k/2) = z, S1(k) = x, nα < H0 ≤

k

2

)
+
∑
z

P
(
S1(k/2) = z, S1(k) = x,

k

2
< H0 < k

)
. pk(x)P

(
nα < H0 ≤

k

2

)
+ pk(x)Px(H0 <∞) . pk(x) · (log n)2α

n
.

We turn to the case ‖x‖ >
√
k. We now have using the Markov property

P
(
S1(k) = x, nα < H0 < k

)
= P

(
S1(k) = x

∣∣ nα < H0 < k
)
P(nα < H0 < k)

≤ sup
i<k

pi(x) · P(nα < H0 < k) . fk(x) · (log n)2α

n
,

where for the last inequality we used Claim 2.1.

6 Joint convergence in law of the cross terms

The main purpose of this section is to prove the joint convergence in law of the cross terms. First
recall the definition of the squares

Ai,j = [(2j − 2)2−i, (2j − 1)2−i]× [(2j − 1)2−i, (2j)2−i],

for i ≥ 1 and j ≤ 2i−1. Recall also the definition of the cross terms from Proposition 2.3:

χn(i, j) = χ(R(i,2j−1)
n ,R(i,2j)

n ) + χ(R(i,2j)
n ,R(i,2j−1)

n ),

with
R(i,j)
n = R[(j − 1)2−in, j2−in].

Proposition 6.1. Let p ≥ 1 be a fixed integer. Then as n→∞,(
8(log n)2

π4 · n
· χn(i, j)

)
1≤i≤p, 1≤j≤2i−1

(d)
=⇒

(∫
Ai,j

G(βs, βt) ds dt

)
1≤i≤p, 1≤j≤2i−1

. (6.1)

Moreover, all moments converge.
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Our strategy for proving this proposition is first to localize in a certain sense all the χn(i, j). More
precisely we prove that for any given i and j ≤ 2i−1, the term χn(i, j) can be written as a sum of
two elements, one being a localised version of this cross term (the so-called χn,α(i, j), see below),
and the other one having a negligible expectation. So to prove the joint convergence in law of the
cross terms, we are led to prove only the joint convergence in law of the χn,α(i, j). To prove this
in turn, we show the convergence of the joint moments, which is indeed sufficient thanks to the
results of Section 4.1 and Carleman’s criterion (see Section 3.3.5 in [12]).

Now the χn,α(i, j) have the great advantage that their joint moments reduce (after some tedious
computation) to a product of non-intersection probabilities (whose asymptotics have been computed
in the previous section) times a product of Green’s function. Then a separate argument shows that
this product of Green’s functions converges to its continuous counterpart.

Before digging into the proof, we gather some basic preliminary estimates in the next subsection.

6.1 Preliminaries

We start with an elementary fact which directly follows from the local CLT (2.3): there is a constant
C > 0, such that for all k ≥ 0,

E[Gd(Sk)] ≤ C · 1

k + 1
and E

[
Gd(Sk)

2
]
≤ C · 1

k2 + 1
. (6.2)

Now for α > 0, recall that nα = n/(log n)α, and define the event

Bα = {(x, y) :
√
n2α ≤ ‖x‖, ‖y‖ ≤

√
n(log n)2, ‖x− y‖ ≥

√
n2α}. (6.3)

Lemma 6.2. Let S and S̃ be two independent random walks and let α > 0. Then

n∑
k=0

nα∑
`=0

E
[
Gd
(
Sk − S̃`

)]
. nα · log n, (6.4)

n∑
k=0

n∑
`=n−nα

E
[
Gd
(
Sk − S̃`

)]
. nα, (6.5)

and
n∑

k,`=0

∑
(x,y)/∈Bα

P(Sk = x, S̃` = y) ·Gd(x, y) . n2α · (log n)2. (6.6)

Proof. Note that Sk−S̃` is equal in law to Sk+`. Thus by using (6.2), we deduce that for any k ≥ 1,

nα∑
`=0

E
[
Gd
(
Sk+`

)]
.

nα∑
`=0

1

k + `
.

nα
k
.

Summing over k proves (6.4). The proof of (6.5) is entirely similar.

We prove now (6.6). Using (2.4) yields

P(‖Sk − S̃`‖2 ≤ n2α) = P(‖Sk+`‖2 ≤ n2α) .
n22α

1 + (k + `)2
.
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Similarly one has

P(‖Sk‖2 ≤ n2α) .
n22α

1 + k2
and P(‖S̃`‖2 ≤ n2α) .

n22α
1 + `2

.

Therefore by using (6.4) and Cauchy-Schwarz, we get

E
[
Gd(Sk, S̃`)1((Sk, S̃`) /∈ Bα)

]
.

n2α
1 + k + `

(
1

1 + k
+

1

1 + `

)
.

The result follows by summing over k and `, and using also (2.2).

Lemma 6.3. For all i ≥ 1 there exists a constant C > 0, such that for all j ≤ 2i−1, one has

1

n
· E

 ∑
(k,`)∈Ani,j

1(‖Sk − S`‖ ≤ ε
√
n) ·Gd(Sk, S`)

 ≤ C · ε log
1

ε
.

Proof. By considering two independent random walks we get

E

 ∑
(k,`)∈Ani,j

1(‖Sk − S`‖ ≤ ε
√
n) ·Gd(Sk, S`)

 .
1

n

n∑
k=1

k
∑

z:‖z‖≤
√
εn

pk(z)Gd(z)

.
1

n

n∑
k=1

∑
z:‖z‖≤

√
εn

k × exp(−‖z‖2/(2k))

k2
Gd(z).

(6.7)

Summing over z we now obtain∑
z:‖z‖≤

√
εn

exp(−‖z‖2/(2k))Gd(z) .
∫ √εn
0

exp(−r2/(2k))

r2
r3 dr = k(1− exp(−εn/(2k))).

Summing over k we get

1

n

n∑
k=1

(
1− exp(−εn/2k)

)
≤ ε+

1

n

n∑
k=εn

ε
n

2k
. ε log(1/ε)

and this concludes the proof.

Lemma 6.4. We have ∑
x,y∈Zd

∑
k≤n

∑
`≤n

fk(x)f`(y/2)Gd(x, y) . n.

Proof. The proof follows immediately by substituting the expression for f and using (2.6).

6.2 Localisation of one cross term

For any n ≥ 1, i ≥ 1 and j ≤ 2i−1, define

Ani,j := {(2j − 2)2−in, . . . , (2j − 1)2−in} × {(2j − 1)2−in, . . . , j2−i+1n},

and for any α > 0,

An,αi,j : = {(2j − 2)2−in+ nα, . . . , (2j − 1)2−in− nα} × {(2j − 1)2−in+ nα, . . . , j2
−i+1n− nα}

at least for n large enough, to make sense of this definition, and with the usual convention to take
integer parts when needed.
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Lemma 6.5. Let i, j be positive integers with j ≤ 2i−1. For all α > 3 we have

χn(i, j) = 2 · χn,α(i, j) + εn,α(i, j),

where E[εn,α(i, j)] = o(n/(log n)2) and

χn,α(i, j) =
∑

(k,`)∈An,αi,j

∑
(x,y)∈Bα

P
(
R[k − n4α, k + n4α] ∩ (x+R1) = ∅, Sk = x /∈ R[k − n4α, k)

∣∣ S)
× Gd(x, y) · P

(
R[`− n4α, `+ n4α] ∩ (y +R2) = ∅, S` = y /∈ R[`− n4α, `)

∣∣ S) ,
with Bα as in (6.3) and R1 and R2 the ranges of two independent random walks starting from 0
and where for simplicity we used the convention R1 = R1[1,∞) and similarly for R2.

In order to prove the lemma above, we first approximate χn(i, j) by an expression without locali-
sation which we call χ̃n,α(i, j), and which decorrelates the two parts of the range in some sense.

Lemma 6.6. With the same notation as in Lemma 6.5, we have

χn(i, j) = 2 · χ̃n,α(i, j) + ε̃n,α(i, j),

where E[ε̃n,α(i, j)] = o(n/(log n)2) and

χ̃n,α(i, j) =
∑

(k,`)∈An,αi,j
(x,y)∈Bα

P
(
R[(2j − 1)2−in, j2−in] ∩ (y +R2) = ∅, S` = y /∈ R[(2j − 1)2−in, `)

∣∣ S)
×Gd(x, y) · P

(
R[(2j − 2)2−in, (2j − 1)2−in] ∩ (x+R1) = ∅, Sk = x /∈ R[(2j − 2)2−in, k)

∣∣ S) .
Proof of Lemma 6.6. Since i and j are going to be kept fixed while n will tend to infinity, we
will not lose generality in doing the proof for i = 0 and j = 1. Also by moving the origin to S(n),
and looking at the range R[0, n] backwards, one is led to consider χ(Rn, R̃n) + χ(R̃n,Rn), with
Rn and R̃n two independent ranges. So it suffices to treat the term χ(Rn, R̃n).

By the independence of R1 and R2 we get

χ(Rn, R̃n) =
n∑

k,`=0

∑
x,y

Gd(x, y) · P((Rn ∪ R̃n) ∩ (x+R1) = ∅, Sk = x /∈ R[0, k) | S, S̃)

× P(R̃n ∩ (y +R2) = ∅, S̃` = y /∈ R̃[0, `) | S̃).

Lemma 6.2 shows that we can restrict the sum over nα ≤ k, ` ≤ n − nα and (x, y) ∈ Bα at a cost
of at most nα log n in expectation. The probability term appearing above is equal to

P
(
Rn ∩ (x+R1) = ∅, Sk = x /∈ R[0, k)

∣∣ S) · P(R̃n ∩ (y +R2) = ∅, S̃` = y /∈ R̃[0, `)
∣∣∣ S̃)

− P
(
Rn ∩ (x+R1) = ∅, R̃n ∩ (y +R2) = ∅, R̃n ∩ (x+R1) 6= ∅,

Sk = x /∈ R[0, k), S̃` = y /∈ R̃[0, `)|S, S̃
)
.

The first term is equal to the probability term in the expression of χ̃n,α. So we now turn to the
second term. On the event {Sk = x}, by moving the origin to point x and reversing time we can
write

{Rn ∩ (x+R1) = ∅} = {(R3[0, k] ∪R4[0, n− k]) ∩R1 = ∅},
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where R3 and R4 are the ranges of two independent walks starting from 0. Applying the same to R̃
we get that the event under consideration is contained in the intersection of the following events

{(R3[0, k] ∪R4[0, n− k]) ∩R1 = ∅, S3(k) = −x}

{(R̃3[0, `] ∪ R̃4[0, n− `]) ∩R2 = ∅, S̃3(`) = −y}

{(R̃3[0, `] ∪ R̃4[0, n− `]) ∩ (x− y +R1) 6= ∅, S̃3(`) = −y}.

(6.8)

Setting i = nβ with β = 10α+ 4 we next define

A1 = {(R3[0, k] ∪R4[0, n− k]) ∩R1[0, i] = ∅, S3(k) = −x}

A2 = {R̃3[0, `] ∩R2 = ∅, S̃3(`) = −y}

A3 = {R̃4[0, n− `] ∩R2 = ∅}

A4 = {R̃3[0, `] ∩ (x− y +R1[0, i]) 6= ∅, S̃3(`) = −y}

A5 = {R̃3[0, `] ∩ (x− y +R1[i,∞)) 6= ∅, S̃3(`) = −y}

A6 = {R̃4[0, n− `]) ∩ (x− y +R1[0, i]) 6= ∅}

A7 = {R̃4[0, n− `]) ∩ (x− y +R1[i,∞)) 6= ∅}.

The first event in (6.8) is contained in A1; the second one is contained in A2 ∩ A3, and the third
one is contained in the union of A4, A5, A6 and A7. Therefore we get that the probability of the
intersection of the events appearing in (6.8) is upper bounded by

P(A1, A2, A6) + P(A1, A2, A7) + P(A1, A3, A4) + P(A1, A3, A5) . (6.9)

The first step now is to decorrelate the events where the range R1 appears. Lemma 5.3 gives

P(A4) = P
(
R̃3[0, `] ∩ (x− y +R1[0, i]) 6= ∅, S̃3(`) = −y

)
. f`(y/2)×

max
(
P
(
R̃3[0, `] ∩ (x− y +R1[0, i]) 6= ∅

)
,P−y,0

(
R̃3[0, `] ∩ (x− y +R1[0, i]) 6= ∅

))
.

(6.10)

Defining the event D = {‖S1(r)‖ ≤
√
i(log n)α+2, ∀ r ≤ i} we get from (2.2)

P(Dc) . exp
(
−(log n)2α+4

)
. (6.11)

On the event D, in order for R̃3[0, `] and x − y +R1[0, i] to intersect, S̃3 must hit a ball centred
at x − y of radius

√
i(log n)2 or a ball centred at x of the same radius (depending on whether we

start from 0 or −y). Since ‖x− y‖ ≥ √n2α and ‖x‖ ≥ √n2α, using (2.7) we get

P
(
R̃3[0, `] ∩ (x− y +R1[0, i]) 6= ∅

)
∨ P−y,0

(
R̃3[0, `] ∩ (x− y +R1[0, i]) 6= ∅

)
.

1

(log n)4
, (6.12)

where the last inequality follows from the choice of β (recall that i = nβ with β = 10α+ 4).

Using (6.10), (6.12) and the independence between R̃3 and R̃4 we get

P(A1, A3, A4) .
1

(log n)4
· pk(x)f`(y/2) · P(A3) ≤

1

(log n)4
· pk(x)f`(y/2).

Similarly we get the same upper bound for P(A1, A2, A6). It remains to bound the probabilities
P(A1, A2, A7) and P(A1, A3, A5). By the independence between the walks again we get

P(A1, A2, A7) = P(A2)P(A1, A7) and P(A1, A3, A5) = P(A3)P(A1, A5) .
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For the probability of the event A2 by exactly the same proof as in Lemma 5.4 we have for a suitable
γ > 0

P(A2) ≤ P
(
R̃3

[
0,

`

(log n)γ

]
∩R2 = ∅, S̃3(`) = −y

)
. p`(y) · 1√

log n
,

where in the last inequality we also used [24, Theorem 4.4.1]. By [24, Theorem 4.4.1] again we get

P(A3) .
1√

log n
.

We now upper bound the probability P(A1, A5). The probability P(A1, A7) can be bounded using
similar ideas. Recall the definition of the event D above. Then from (6.11) and the independence
between the two walks we get

P
(
Dc, S3(k) = −x, S̃3(`) = −y

)
≤ 1

(log n)4
pk(x)p`(y),

since for the range of x and k that we are looking at we have pk(x) & exp(−(log n)α+4). Condi-
tioning on S1(i), the events A1 and A5 become independent, and hence we obtain

P(A1, A5, D) ≤
∑

‖z‖≤
√
i(logn)α+2

P
(
A1

∣∣ S1(i) = z
)
P
(
S1(i) = z

)
P
(
A5

∣∣ S1(i) = z
)
. (6.13)

From Lemma 5.3 again and [24, Theorem 4.3.3] we obtain for all z with ‖z‖ ≤
√
i(log n)α+2

P
(
A5

∣∣ S1(i) = z
)
.

log log n

log n
· f`(y/2).

Plugging this into (6.13) gives

P(A1, A5, D) . f`(y/2)
log logn

log n
P(A1) . f`(y/2)pk(x)

log logn

(log n)2
+O

(
log logn

(log n)5/2
· fk(x/2) · f`(y/2)

)
,

where for the last inequality we used Proposition 5.2. Therefore we conclude that the sum of
probabilities appearing in (6.9) is upper bounded by

1

(log n)7/3
· (pk(x)p`(y) + pk(x)f`(y/2) + fk(x/2)f`(y/2)).

Taking the sum over all k, ` and x, y and applying Lemma 6.4 completes the proof.

Proof of Lemma 6.5. Using Lemma 6.6 it suffices to prove that for all i, j ∈ N we have

χ̃n,α(i, j) = χn,α(i, j) + εn,α(i, j),

where E[εn,α(i, j)] = o(n/(log n)2). As in the proof of the previous lemma we only prove the result
for i = 0 and j = 1, and by using reversibility of the walk, we are led to consider two independent
ranges Rn and R̃n between times 0 and n.

We now define

H =
{
Rn ∩ (x+R1) = ∅, Sk = x /∈ R[0, k)

}
.
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Then we have that H = H1 ∩H2, where

H1 = {R[k − n4α, k + n4α] ∩ (x+R1) = ∅, Sk = x /∈ R[k − n4α, k)}
H2 = {(R[0, k − n4α] ∪R[k + n4α, n]) ∩ (x+R1) = ∅, x /∈ R[0, k − n4α)}.

Since P(H) = P(H1) + P(H1 ∩Hc
2), using Lemma 6.4 it suffices to prove that for all x and k

satisfying
√
n2α ≤ ‖x‖ ≤

√
n(log n)2 and nα ≤ k ≤ n− nα, we have

P(H1 ∩Hc
2) . pk(x) · log logn

(log n)3/2
+O

(
fk(x/2)/(log n)3/2

)
. (6.14)

So we now turn to prove (6.14). We first note that H1 ∩Hc
2 ⊆ F1 ∪ F2 ∪ F3, where

F1 = {R[0, k − n4α] ∩ (x+R1) 6= ∅, R[k, k + n4α] ∩ (x+R1) = ∅, Sk = x}
F2 =

{
R[k + n4α, n] ∩ (x+R1) 6= ∅, R[k − n4α, k] ∩ (x+R1) = ∅, Sk = x

}
F3 = {Sk = x ∈ R[0, k − n4α]} .

We start by proving the upper bound of (6.14) for P(F1). The probability P(F2) can be treated in
exactly the same way.

First we decorrelate the two events appearing in F1, by conditioning on Sk = x and also by
considering R1 in separate time intervals just like we did in the proof of Lemma 6.6. Let i = n10α+4.
Then subtracting x and reversing time we obtain F1 ⊆ F1(1) ∪ F1(2), where

F1(1) = {R3[n4α, k] ∩R1[1, i] 6= ∅, S3(k) = −x}
F1(2) = {R3[n4α, k] ∩R1[i,∞) 6= ∅,R4[0, n4α] ∩R1[1, i] = ∅, S3(k) = −x},

and R3 and R4 are two independent ranges. From Lemma 5.3 we get

P(F1(1)) . fk(x/2) ·max(P−x,0
(
R3[n4α, k] ∩R1[1, i] 6= ∅

)
,P
(
R3[n4α, k] ∩R1[1, i] 6= ∅

)
).

Just like in the proof of Lemma 6.6 we define the event D = {
∥∥S1(r)

∥∥ ≤ √i(log n)2, ∀r ≤ i}. Then
on the event D in order for R3 and R1[1, i] to intersect, the range R3 must hit the ball centered at
0 of radius

√
i(log n)2. By the choice of x, this now gives us

max(P−x,0
(
R3[n4α, k] ∩R1[1, i] 6= ∅

)
,P
(
R3[n4α, k] ∩R1[1, i] 6= ∅

)
) .

1

(log n)4
,

and hence

P(F1(1)) . fk(x/2) · 1

(log n)4
.

We now turn to bound P(F1(2)). Clearly P(F1(2), Dc) ≤ pk(x)/(log n)4. Now on the event D
conditioning on S1(i) we get

P(F1(2), D) ≤
∑

‖z‖≤
√
i(logn)2

P
(
R3[n4α, k] ∩R1[i,∞) 6= ∅, S3(k) = −x

∣∣ S1(i) = z
)

×P
(
R4[0, n4α] ∩R1[1, i] = ∅, S1(i) = z

)
.

From Lemma 5.3 again we obtain

P
(
R3[n4α, k] ∩R1[i,∞) 6= ∅, S3(k) = −x

∣∣ S1(i) = z
)
.

log logn

log n
· fk(x/2).
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Plugging this above we finally deduce

P(F1(2), D) ≤ log logn

log n
· fk(x/2) · 1√

log n
,

where the last estimate follows from [24, Theorem 4.4.1].

To finish the proof we only need to upper bound P(F3). By reversing time again we obtain

P(F3) ≤ P(Sk = −x, n4α < H0 < k) . fk(x/2) · (log n)2α

n
,

where we recall that H0 stands for the first hitting time of 0 and the last inequality follows from
Claim 5.6. Therefore, putting all these bounds together proves (6.14) and this now completes the
proof.

6.3 Moments of χ

In this subsection we prove the following result

Lemma 6.7. Let r ∈ N and let i1, j1, . . . , ir, jr be integers such that jm ≤ 2im−1 for all m ≤ r (and
possibly with repetition). Then for all α > 12 as n→∞ we have

(
8 log n

π2

)2r

· E

[
r∏

m=1

χn,α(im, jm)

]
∼ E

 r∏
m=1

 ∑
(k,`)∈Anim,jm

Gd(Sk, S`)

 . (6.15)

Before proving the lemma above we state a result on the convergence of discrete quantities to their
continuous counterparts. We defer the proof after we prove Lemma 6.7. For all β > 0 we define
the sets Dβ and Eβ to be the set of time indices and points in space at distance nβ and

√
n2β apart

respectively. More precisely, we define

Dβ =

{
(k1, `1, . . . , kr, `r) : (km, `m) ∈ An,βim,jm , ∀m ≤ r and

|km − km′ |, |km − `m′ |, |`m − `m′ | ≥ nβ, ∀m,m′ ≤ r with m 6= m′
}
.

(6.16)

and also, with Bβ as in (6.3),

Eβ =

{
(x1, y1, . . . , xr, yr) : (xm, ym) ∈ Bβ, ∀m ≤ r and

‖xm − xm′‖ , ‖xm − ym′‖ , ‖ym − ym′‖ ≥
√
n2β, ∀m,m′ ≤ r with m 6= m′

}
.

(6.17)

Lemma 6.8. Let r ∈ N and let i1, j1, . . . , ir, jr be integers satisfying jm ≤ 2im−1 for all m ≤ r
(and possibly with repetition). Then as n→∞ we have

1

nr
·

r∏
m=1

 ∑
(k,`)∈Anim,jm

Gd(Sk, S`)

 (d)
=⇒

r∏
m=1

∫
Aim,jm

4G(βs, βt) ds dt.
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Moreover, for all β > 2 we have

1

nr
·
∑
Dβ

1((Skm , S`m)m≤r ∈ Eβ)

r∏
m=1

Gd(Skm , S`m)
(d)

=⇒
r∏

m=1

∫
Aim,jm

4G(βs, βt) ds dt,

where in the sum above we take (k1, `1, . . . , kr, `r) ∈ Dβ. Finally in both cases we also have conver-
gence in expectation.

Proof of Lemma 6.7. For shorthand notation we write for k ≥ 0, x ∈ Zd and Λ ⊂ Zd,

Aα(k, x,Λ) = {R[k − n4α, k + n4α] ∩ (x+ Λ) = ∅, Sk = x /∈ R[k − n4α, k)}.

Now for multi-indices i = (i1, . . . , ir) and j = (j1, . . . , jr), write as above An,αi,j = An,αi1,j1× . . .×A
n,α
ir,jr

.

Let (Rm)m and (R̃m)m be the ranges of independent walks starting from 0. Then we have

E

[
r∏

m=1

χn,α(im, jm)

]
=

∑
An,αi,j , Bα

P

(
r⋂

m=1

(Aα(km, xm,Rm) ∩ Aα(`m, ym, R̃m))

)

×
r∏

m=1

Gd(xm, ym),

(6.18)

where in the sum above we take (k1, `1, . . . , kr, `r) ∈ An,αi,j and (xm, ym) ∈ Bα for all m ≤ r.

First of all it is obvious that

E

[
r∏

m=1

χn,α(im, jm)

]
≥
∑
Dα,Eα

P

(
r⋂

m=1

(Aα(km, xm,Rm) ∩ Aα(`m, ym, R̃m))

)

×
r∏

m=1

Gd(xm, ym).

(6.19)

Next we want to establish that for a suitable β > α we have

E

[
r∏

m=1

χn,α(im, jm)

]
≤
∑
Dβ ,Eβ

P

(
r⋂

m=1

(Aβ(km, xm,Rm) ∩ Aβ(`m, ym, R̃m))

)

×
r∏

m=1

Gd(xm, ym) + o(nr/(log n)2r).

(6.20)

Indeed, we can decompose (6.18) into two parts, one over the set Dβ ∩ Eβ and one over Dc
β ∪ Ecβ.

Since β > α, we notice that Aα(k, x,Λ) ⊆ Aβ(k, x,Λ) for all k, x,Λ. So we only need to show that
the sum over Dc

β ∪ Ecβ is o(nr/(log n)2r).

Forgetting about the intersection events, we can upper bound this sum by

∑
An,αi,j , Bα
Dcβ∪E

c
β

P

(
r⋂

m=1

{S(km) = xm, S(`m) = ym}

)
·

r∏
m=1

Gd(xm, ym).
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We now split this last sum into two terms, one over the set Dc
β and one over the set Ecβ. For the

first term using that for (x, y) ∈ Bα we have Gd(x, y) ≤ 1/n2α. This gives∑
An,αi,j , Bα, D

c
β

P

(
r⋂

m=1

{S(km) = xm, S(`m) = ym}

)
·

r∏
m=1

Gd(xm, ym)

.
n2r−1

(n2α)r
· nβ =

nr

(log n)β−2αr
,

(6.21)

where we used that if β > α, then An,αim,jm ⊆ A
n,β
im,jm

. We now turn to the second sum. Using again
the bound on Gd(x, y) for (x, y) ∈ Bα as above, we now get∑

An,αi,j , Bα,E
c
β

P

(
r⋂

m=1

{S(km) = xm, S(`m) = ym}

)
·

r∏
m=1

Gd(xm, ym)

≤ n2r

(n2α)r
· sup
t≥nα

P
(
‖St‖ ≤

√
n2β
)
,

(6.22)

where S stands for a simple random walk on Z4. Using now (2.4) we can upper bound the second
sum by ∑

An,αi,j , Bα,E
c
β

P

(
r⋂

m=1

{S(km) = xm, S(`m) = ym}

)
·

r∏
m=1

Gd(xm, ym) .
nr

(log n)4β−2α−2αr
.

Thus taking β > 2αr + 2α+ 2r + 1 proves (6.20).

We next show that for all β sufficiently large we have the following: for any 0 = k0 < k1 < . . . < kr
and any 0 = x0, x1, . . . , xr satisfying |ki+1 − ki| ≥ nβ, ‖xi+1 − xi‖ ≥

√
n2β and ‖xi‖ ≤

√
n(log n)2

for all i < r we have

P

(
r⋂

m=1

Aβ(km, xm,Rm)

)
=

(
π2

8
· 1

log n

)r
·

r∏
m=1

pkm−km−1(xm−1, xm) · (1 + o(1))

+O

(
1

(log n)r+
1
2

·
r∏

m=1

fkm−km−1((xm−1 − xm)/2)

)
.

(6.23)

We write j = kr−1 + n4β and define the event

D =
{∥∥Sj − Skr−1

∥∥ ≤ √n4β · (log n)3β/4
}
.

We therefore obtain

P

(
r⋂

m=1

Aβ(km, xm,Rm)

)
=

∑
z∈B(xr−1)

P

(
r⋂

m=1

Aβ(km, xm,Rm), Sj = z

)

+P

(
r⋂

m=1

Aβ(km, xm,Rm), Dc

)
,

(6.24)

where B(xr−1) = {z : ‖z − xr−1‖ ≤
√
n4β · (log n)3β/4}. For z ∈ B(xr−1) by the Markov property

we have

P

(
r⋂

m=1

Aβ(kr, xr,Rr), Sj = z

)
= P(Aβ(kr, xr,Rr) | Sj = z)P

(
r−1⋂
m=1

Aβ(km, xm,Rm), Sj = z

)
.
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Taking β satisfying β > 3 and applying Proposition 5.2 to the first term appearing on the right
hand-side above we obtain as n→∞

P(Aβ(kr, xr,Rr) | Sj = z) =
π2

8
· 1

log n
· pkr−j(z, xr) · (1 + o(1))

+O
(

1

(log n)3/2
· fkr−j((z − xr)/2)

)
.

(6.25)

Then by Claim 2.2 and (2.3) and taking β also satisfying β > 8 we get that

pkr−j(z, xr) = pkr−kr−1(xr−1, xr) · (1 + o(1))

and similarly for f . Substituting this into (6.25) gives

P(Aβ(kr, xr,Rr) | Sj = z) =
π2

8
· 1

log n
· pkr−kr−1(xr−1, xr) · (1 + o(1))

+O
(

1

(log n)3/2
· fkr−kr−1((xr − xr−1)/2)

)
.

Hence overall we obtain

P

(
r⋂

m=1

Aβ(km, xm,Rm), D

)
=

∑
z∈B(xp−1)

P

(
r−1⋂
m=1

Aβ(km, xm,Rm),Aβ(kr, xr,Rr), Sj = z

)

=
π2

8
· 1

log n
· pkr−kr−1(xr−1, xr) · (1 + o(1)) · P

(
r−1⋂
m=1

Aβ(km, xm,Rm), D

)

+O

(
P

(
r−1⋂
m=1

Aβ(km, xm,Rm), D

)
1

(log n)3/2
· fkr−kr−1((xr − xr−1)/2)

)
.

We now turn to the last probability appearing above. First we write

P

(
r−1⋂
m=1

Aβ(km, xm,Rm), D

)
= P

(
r−1⋂
m=1

Aβ(km, xm,Rm)

)
− P

(
r−1⋂
m=1

Aβ(km, xm,Rm), Dc

)
.

By the Markov property and (2.2) we have

P

(
r−1⋂
m=1

Aβ(km, xm,Rm), Dc

)
≤

r−1∏
m=1

pkm−km−1(xm−1, xm) · exp
(
−(log n)2β

)
= o(1) · P

(
r−1⋂
m=1

Aβ(km, xm,Rm)

)
.

So far we have shown that

P

(
r⋂

m=1

Aβ(km, xm,Rm), D

)
=

π2

8 log n
pkr−kr−1(xr−1, xr) · P

(
r−1⋂
m=1

A(km, xm,Rm)

)
(1 + o(1))

+O

(
P

(
r−1⋂
m=1

Aβ(km, xm,Rm)

)
1

(log n)3/2
· fkr−kr−1((xr − xr−1)/2)

)
.
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Next we treat the second term on the right hand-side of (6.24). Taking β such that 3β/2 > β + 6
we have

P

(
r⋂

m=1

A(km, xm,Rm), Dc

)
≤

r−1∏
m=1

pkm−km−1(xm−1, xm) · exp
(
−(log n)3β/2

)
≤

r−1∏
m=1

pkm−km−1(xm−1, xm) · exp(−(log n)β+6)

≤
r∏

m=1

pkm−km−1(xm−1, xm) · exp(−(log n)2) = o(1) · P

(
r⋂

m=1

A(km, xm,Rm)

)
,

where for the second inequality we used that pkr−kr−1(xr−1, xr) & exp(−(log n)β+4), since we have
taken kr − kr−1 ≥ nβ. This now proves that

P

(
r⋂

m=1

A(km, xm,Rm)

)
=
π2

8
· 1

log n
· pkr−kr−1(xr−1, xr) · P

(
r−1⋂
m=1

A(km, xm,Rm)

)
· (1 + o(1))

+O

(
P

(
r−1⋂
m=1

Aβ(km, xm,Rm)

)
1

(log n)3/2
· fkr−kr−1((xr − xr−1)/2)

)
.

Iterating this proves (6.23).

Plugging now (6.23) into (6.19) and (6.20) and taking the sum over all time indices and points in
space and invoking Lemma 6.8 finishes the proof of the lemma.

6.4 Proof of Proposition 6.1

In this section we give the proof of Proposition 6.1. We start by recalling a result from [5] and then
we prove Lemma 6.8.

Lemma 6.9. There exists a positive constant C so that for all r ≥ 1 and all i1, j1, . . . , ir, jr
(satisfying jm ≤ 2im−1 for all m ≤ r and possibly with repetition), one has

E

 r∏
m=1

∑
(k,`)∈Anim,jm

Gd(Sk, S`)

 ≤ Cnr.
Remark 6.10. Since we allow repetition of the indices, Lemma 6.9 shows that the random variables

1

nr
·

r∏
m=1

∑
(k,`)∈Anim,jm

Gd(Sk, S`)

are bounded in Lp for all p ∈ N.

Proof of Lemma 6.9. The proof of the lemma follows directly by the Cauchy-Schwarz inequality
together with [5, Lemma 3.2].

Proof of Lemma 6.8. We start by proving the first statement of the lemma. Let ε > 0 and ϕε
be a continuous function satisfying

1(‖x‖ ≥ ε) ≤ ϕε(x) ≤ 1(‖x‖ ≥ ε/2).
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Recall from (2.6) that

Gd(x) = 4G(x) +O
(

1

1 + ‖x‖4

)
.

To simplify notation we now write

X(m) =
∑

(k,`)∈Anim,jm

Gd(Sk, S`), Xε(m) =
∑

(k,`)∈Anim,jm

Gd(Sk, S`)ϕε

(
Sk − S`√

n

)
and

X̃ε(m) =
∑

(k,`)∈Anim,jm

4G(Sk, S`)ϕε

(
Sk − S`√

n

)
.

Using Lemma 6.9 it is straightforward to check that

1

nr
· E

[
r∏

m=1

Xε(m)−
r∏

m=1

X̃ε(m)

]
= O(1/n). (6.26)

Note that the function G(x)ϕε(x) is continuous and bounded, and hence by Donsker’s invariance
principle we obtain as n→∞

1

nr
·

r∏
m=1

X̃ε(m)
(d)

=⇒
r∏

m=1

∫
Aim,jm

4G(βs, βt)ϕε(βs − βt) ds dt. (6.27)

For all m ≤ r we have

X(m)−Xε(m) ≤
∑

(k,`)∈Anim,jm

Gd(Sk, S`)1(‖Sk − S`‖ ≤ ε
√
n),

and hence using Lemma 6.3 we get

E[X(m)−Xε(m)] . n · ε log

(
1

ε

)
. (6.28)

For each ε > 0 we now define

Rn(ε) =
1

nr
·

r∏
m=1

X(m)− 1

nr
·

r∏
m=1

Xε(m).

In view of (6.26) and (6.27), in order to complete the proof of the first statement, it suffices to
prove that E[Rn(ε)]→ 0 as ε→ 0 uniformly in n.

With the definitions above we can upper bound Rn(ε) by

Rn(ε) ≤ 1

nr
·

r∑
w=1

(X(w)−Xε(w)) ·
r∏

m=1
m 6=w

X(m).

We now set Z(w) to be equal to the product appearing above. Using the obvious upper bound
X(m)−Xε(m) ≤ (X(m)−Xε(m))1/2 · (X(m))1/2 and Hölder’s inequality twice gives

E[Rn(ε)] ≤ 1

nr
·

r∑
w=1

(E[X(w)−Xε(w)])1/2 · (E
[
(X(m))3

]
)1/6 · (E

[
(Z(w))3

]
)1/3.
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Lemma 6.9 and (6.28) now give that

E[Rn(ε)] ≤ C1 ·

√
ε log

(
1

ε

)
→ 0 as ε→ 0 (6.29)

and this proves the first convergence.

For the second statement we note that using Cauchy-Schwarz and similar arguments as in Lemma 6.2
one can remove the sets Dβ and Eβ and then apply the first part of the lemma.

Finally we get the convergence in expectation as a consequence of weak convergence together with
uniform integrability which follows directly from Lemma 6.9.

Proof of Proposition 6.1. By Cramer–Wold in order to deduce the weak convergence it suffices
to prove that all linear combinations of variables on the left converge weakly to the corresponding
linear combinations of variables on the right. Lemma 6.5 shows that one can replace the terms
χn(i, j) by their localised versions, χn,α(i, j). Lemmas 6.7 and 6.8 show that the moments of all
linear combinations of the χn,α(i, j) do actually converge to the corresponding moments. We only
need to ensure that the moments of the limiting object uniquely characterise the distribution. This
now follows from Proposition 4.1 using Carleman’s criterion (see Section 3.3.5 in [12]). Indeed, for
any variable X on the right of (6.1), Proposition 4.1 gives that

E[Xp] ≤ Cpp2p.

Therefore, if X and Y are two of the variables on the right, then by the triangle inequality for
the Lp-norm we get

E[(X + Y )p]1/p ≤ E[Xp]1/p + E[Y p]1/p ≤ 2C · p2.

Therefore, Carleman’s condition also holds for the sum X + Y , hence its distribution is uniquely
characterised by its moments.

7 Central limit theorem

In this section we finally give the proof of Theorem 1.2.

We start by proving an upper bound on the variance of Cap (Rn) using the same technique as Le
Gall did for the range in dimension 2.

Lemma 7.1. We have E
[
(Cap (Rn)− E[Cap (Rn)])4

]
. n4/(log n)8.

Proof. The proof follows in the same way as [28, Lemma 6.2] and [5, Lemma 3.5] . We write
Xn = Cap (Rn) and X = X − E[X] and we set for all k ≥ 1

ak = sup

{√
E
[
Xn

2
]

: 2k ≤ n < 2k+1

}
.

For k ≥ 2 we take n such that 2k ≤ n < 2k+1 and write ` = [n/2] and m = n − `. Then from
Proposition 2.3 we get

|Xn −X
(1)
` −X

(2)
m | = |χn(1, 1) + εn|.

34



Proposition 6.1 and Lemma 6.9 give that

E[χn(1, 1)] .
n

(log n)2
and E

[
(χn(1, 1))2

]
.

n2

(log n)4
.

Also from Proposition 2.3 we have that E[εn] = O(log n) and E
[
ε2n
]

= O((log n)2). The proof for
the fourth moment follows in exactly the same way as in [5, Lemma 4.2] using the bound we first
obtain on the variance.

Proof of Theorem 1.2. For any fixed p ≥ 1, Proposition 2.3 shows that

Cap (Rn) =
2p∑
j=1

Cap
(
R(p,j)
n

)
−

p∑
i=1

2i−1∑
j=1

χn(i, j) + εn.

We write X = X − E[X]. Subtracting the expectation in the equation above we obtain

Cap (Rn) =

2p∑
j=1

Cap
(
R(p,j)
n

)
−

p∑
i=1

2i−1∑
j=1

χn(i, j) + εn.

Lemma 7.1 and the independence of the ranges R(p,j)
n immediately give that

E

(log n)2

n

2p∑
j=1

Cap
(
Rp,jn

)2 . 2−p.

Since E[εn] = o(n/(log n)2) from Lemma 6.5 we get that

(log n)2

n
· εn

P−→ 0, as n→∞.

Moreover, using Proposition 6.1 we get that for a fixed p as n→∞

8(log n)2

π4 · n
·

p∑
i=1

2i−1∑
j=1

χn(i, j)
(d)

=⇒
p∑
i=1

2i−1∑
j=1

(∫
Ai,j

G(βs, βt) ds dt− E

[∫
Ai,j

G(βs, βt) ds dt

])
.

From Proposition 4.5 we also have in L2-norm:

lim
p→∞

p∑
i=1

2i−1∑
j=1

(∫
Ai,j

G(βs, βt) ds dt− E

[∫
Ai,j

G(βs, βt) ds dt

])
= γG(C1) =

1

2
γG([0, 1]2).

So first taking p large enough and then letting n→∞ finishes the proof.

Proof of Corollary 1.5. Lemma 7.1 shows that (log n)4/n2(Cap (Rn) − E[Cap (Rn)])2 is uni-
formly integrable. Hence this together with the convergence in distribution from Theorem 1.2
proves the corollary.
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8 Appendix

In this section we prove the two lemma that were used in the proof of Proposition 4.1.

Proof of Lemma 4.3. First using the explicit density of the Brownian motion we get∫ 1

0
E
[

(a+ | log ‖βs − x‖|)k

‖βs − x‖2

]
ds .

∫ 1

0

ds

s2

∫
R4

(a+ | log ‖u‖|)k

‖u‖2
e−
‖u+x‖2

2s du

.
∫
R4

(a+ | log ‖u‖|)k

‖u‖2 · ‖u+ x‖2
e−
‖u+x‖2

2 du,

using Fubini at the second line. Now we cut the space in three regions defined as follows:

U1 := {‖u‖ ≥ 2‖x‖} , U2 := {‖u+ x‖ ≥ ‖x‖/2 and ‖u‖ ≤ 2‖x‖} , U3 := {‖u+ x‖ ≤ ‖x‖/2} ,

and define

F (u, x) :=
(a+ | log ‖u‖|)k

‖u‖2 · ‖u+ x‖2
· e−

‖u+x‖2
2 .

We bound this function on the three regions as follows

F (u, x) .


(a+| log ‖u‖|)k

‖u‖4 · e−
‖u‖2

8 on U1
(a+| log ‖u‖|)k
‖u‖2·‖x‖2 · e−

‖x‖2
8 on U2

(a+1+| log ‖x‖|)k
‖x‖2·‖u+x‖2 · e−

‖u+x‖2
2 on U3.

Then we obtain with appropriate changes of variables∫
R4

F (u, x) du . I1(x) + I2(x) + I3(x),

with

I1(x) =

∫ ∞
2‖x‖

(a+ | log r|)k

r
· e−

r2

8 dr,

I2(x) = ‖x‖−2 · e−
‖x‖2

8

∫ 2‖x‖

0
r (a+ | log r|)k dr,

I3(x) =
(a+ 1 + | log ‖x‖|)k

‖x‖2

∫ ‖x‖
0

r e−r
2/2 dr.

Note that I3(x) . (a + 1 + | log ‖x‖|)k. Moreover, I1(x) and I2(x) will be bounded using the two
following claims.

Claim 8.1. For all a ≥ 0, b > 0 and k ≥ 1 we have∫ b

0
(a+ | log r|)kr dr . b2 ·

k∑
`=0

(a+ | log b|)k−` · k`,

Proof. Note

f(k) :=

∫ b

0
(a+ | log r|)kr dr.
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Using the change of variable r = exp(−u), we obatin

f(k) =

∫ ∞
− log b

(a+ |u|)ke−2u du.

Assume first that b < 1, so that − log b is nonnegative. Then an integration by parts gives

f(k) =
b2

2
(a+ | log b|)k +

k

2
f(k − 1),

leading to the desired result by induction. Now if b ≥ 1, one has

f(k) =

∫ log b

0
(a+ u)ke2u du+

∫ ∞
0

(a+ u)ke−2u du,

and an integration by parts gives similarly

f(k) . b2(a+ log b)k + kf(k − 1),

and the claim follows as well by induction.

Claim 8.2. For all a ≥ 0, b > 0, and k ≥ 0 we have∫ ∞
b

(a+ | log r|)k

r
e−r

2/8 dr .
(a+ | log b|)k+1

k + 1
+ e−b

2/8 ·
k∑
`=0

(4k)`(a+ | log b|)k−`.

Proof. Assume first that b ≥ 1, and define

g(k, b) =

∫ ∞
b

(a+ | log r|)k r e−r2/8 dr.

Note that ∫ ∞
b

(a+ | log r|)k

r
e−r

2/8 dr ≤ g(k, b).

Moreover, an integration by parts yields

g(k, b) ≤ 4(a+ log b)ke−b
2/8 + 4kg(k − 1, b),

which gives the result by induction. Now if b < 1, we have∫ ∞
b

(a+ | log r|)k

r
e−r

2/8 dr ≤
∫ 1

b

(a− log r)k

r
dr + g(k, 1)

=
(a+ | log b|)k+1

k + 1
+ g(k, 1),

and using the previous estimate for g(k, 1), this concludes the proof of the claim.

Now we can just apply these two claims with b = 2‖x‖ and use that | log 2‖x‖| ≤ 1+ | log ‖x‖|. This
gives the desired upper bounds for I1(x) and I2(x) and concludes the proof of Lemma 4.3.
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Proof of Lemma 4.4. We have∫ 1

0
E
[
(a+ | log ‖β̃t‖|)k

]
dt .

∫ 1

0

dt

t2

∫
R4

(a+ | log ‖u‖|)ke−‖u‖2/(2t) du

.
∫
R4

(a+ | log ‖u‖|)k

‖u‖2
e−‖u‖

2/2 du

.
∫ ∞
0

(a+ | log r|)k r e−r2/2 dr

.
∫ 1

0
(a+ | log r|)k r dr +

∫ ∞
1

(a+ | log r|)k r e−r2/2 dr.

Now using the same argument as in the proof of Claim 8.2 for the second integral and Claim 8.1
with b = 1 for the first one, we obtain the lemma.
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