
P.M.E.ALTHAM, November 1998.Here are some extra problems on generalized linear modelling. These problems areconstructed from extracts from recent examination questions for Part IIA of the Cam-bridge University Mathematics Tripos, which is an examination taken by third-yearmathematics undergraduates, and the Diploma in Mathematical Statistics, which wasan examination taken by �rst year graduate students in statistics, now replaced by theM.Phil. in Statistical Science.MATHEMATICAL TRIPOS1994.A1.no11.Suppose Y1; : : : ; Yn are independent observations, with Yi distributed as Poisson withmean �i, where log(�i) = �Txi; i = 1; : : : ; n;and where x1T ; : : : ; xnT are the rows of a known n�p matrixX of rank p. Write downthe log-likelihood `(�) and �nd @`@� and @2`@�@�T .Show that the matrix @2`@�@�T is negative-de�nite. How is this relevant to the problemof �nding the maximum likelihood estimator �̂ of �?1994.A2.no10.A.C. Atkinson (1986) analysed data on the record times in 1984 for 35 Scottish hillraces. The three variables recorded were x, the distance on the map (in miles), z, thetotal height gained during the route (in feet), and y, the record time (in minutes).Consider the linear modelH : E(yi) = �1 + �2xi + �3zi; i = 1; : : : ; 35with the usual assumption of independent normal errors with common unknown vari-ance �2. The following three models were �tted:(a) E(yi) = �1, giving s = 50:04; df = 34,(b) E(yi) = �1 + �2xi, giving �̂2 = 8:3305(se = 0:6194); s = 19:96; df = 33,(c) E(yi) = �1 + �2xi + �3zi, giving �̂2 = 6:2180(se = 0:6011); �̂3 = 0:0110(se =0:0021); s = 14:68; df = 32:Here, in each of the 3 cases, s2 is de�ned as (Residual sum of squares)/df.On the basis of these three �ts, which is your preferred model for the record time? Givereasons for your answer.For these data �i(xi � �x)(zi � �z) > 0. In what respect would the above analysis havebeen simpler if in fact �i(xi � �x)(zi � �z) = 0?1994.A4.no13.In 1974 the University of Chicago National Research Center asked 1305 male respon-dents, of varying educational background, whether they agreed or disagreed with thefollowing statement: 1



\Women should take care of running their homes and leave running the countryup to men."For i = 0; 1; : : : ; 20; let us denote by ti the number of respondents with i years ofeducation, by ai the number of these who agreed with the statement, and by di thenumber who disagreed. Thus ti = ai + di.Assume that ai; i = 0; : : : ; 20; are independent binomial variables with parameters(ti; pi). Write down the log-likelihood `(p0; : : : ; p20):Describe an iterative method to �t the hypothesislog(pi=(1� pi)) = �+ � i; i = 0; : : : ; 20and explain how to test the hypothesis � = 0. Give the corresponding S-Plus or GLIMcommands.In fact the result of �tting the model was as follows:�̂ = 2:098; (se = 0:2355);�̂ = �0:234; (se = 0:02019);deviance = 18:95; df = 19:How do you interpret this?Sketch the �tted values of p̂i as a function of i.1995.A1.no11.The table below comes from a study of British doctors by R. Doll and A.B. Hill (1966),and gives the number of coronary deaths for smokers, for 5 di�erent age-groups, withthe corresponding `person-years', ie total time at risk.Age 35{44 45{54 55{64 65{74 75{84person-years 52407 43248 28612 12663 5317number of deaths 32 104 206 186 102Let yi be the number of deaths from age-group i, and let ti be the correspondingnumber of person-years, for 1 � i � 5. In �tting the modelyi � Po(�iti);with log(�i) = �+ � i+ 
 i2; 1 � i � 5;we obtaindeviance = 0:297; df = 2;�̂ = �9:289(se = :3025); �̂ = 2:026(se = :1936); 
̂ = �0:1910(se = :02925).Interpret these results stating any general properties of generalized linear modelling towhich you appeal.Would you expect the model log(�i) = �+ �i; 1 � i � 52



to be a good �t?If you had the corresponding two rows of data for the non-smokers, what models wouldyou consider for the full data set?1995.A2.no10.Norton and Dunn (1985) presented the following data, based on an epidemiologicalsurvey to investigate snoring as a possible risk factor for heart disease. Those surveyedwere classi�ed according to their spouses' report of how much they snored.The individuals were classi�ed by Snoring, asNever (x = 0)Occasional (x = 2)Nearly every night (x = 4), orEvery night (x = 5).They were also classi�ed according to whether they had a heart attack, for which thecorresponding observed frequencies were24, 35, 21, 30, respectively,or did not have a heart attack, for which the corresponding observed frequencies were1355, 603, 192, 224 respectively.Thus the observed proportion of those having a heart attack was0.017,0.055, 0.099, 0.118 respectively.Using the x-values given above, Agresti (1996) obtained, with the binomial `error func-tion', the regression equationlog(p(x)=(1� p(x)) = �3:866(:166) + 0:397(:050) x(standard errors in brackets) where p(x) = P (heart attack j snoring= x). The corre-sponding deviance was 2:809; df = 2.Give a careful interpretation of these results. (A detailed mathematical exposition isnot sought for this part of the question.)1996.A1.no11.(i) The linear model yi = �Txi + �i; 1 � i � n;with �i normally and independently distributed, mean 0, unknown variance �2,may be rewritten as y = X� + �;where X is a n� p matrix, which you may assume to be of rank p. LetR(�) = (y �X�)T (y �X�):Derive an expression for �̂, the maximum likelihood estimate of �, and state with-out proof the joint distribution of (�̂; R(�̂)).3



(ii) Consider the following special case of the above modelyi = �+ �(xi � �x) + 
(zi � �z) + �i; 1 � i � n;where now �; �; 
 are unknown scalar parameters, where �i � NID(0; �2) with �2known, and where �x = n�1�xi; �z = n�1�zi:Find �̂ and var(�̂).Let �� be the maximum likelihood estimate of � under the modelH0 : yi = �+ �(xi � �x) + �i; 1 � i � n:Find �� and var(��), and show thatvar(��) � var(�̂):When is this inequality an equality? How would you test H0?You may be interested to know that the above inequality is a (very) special case of theresult stated by Altham (1994).The message of this result can loosely be stated as this: the fewer parameters you �t,the more accurate these parameter estimates will be. The result provides one reasonfor �tting models which are parsimonious in parameters, if the data permit.1996.A2.no10.The data in the table below, slightly modi�ed from Crawley (1993), is from a �eldstudy on insect parasitism. The number di of parasitized caterpillars in a total of nilepidopteran caterpillars was counted, in 6 independent random samples from each of3 di�erent habitats, labelled h = 1; 2; 3: At the time the insects were collected, anestimate xi of the corresponding insect population density was recorded.x d n h3 7 14 15 10 22 111 9 22 112 8 17 122 6 10 157 8 11 12 3 10 27 2 5 217 20 31 223 17 20 229 9 11 233 18 22 24 8 17 37 10 22 37 7 15 310 6 9 312 22 43 314 5 11 34



With the model di independent Binomial, parameters ni; pi, andlog(pi=(1� pi)) = �+ hj + � xwhere j is the level of the factor h, so that j has possible values 1; 2; 3, standard glmsoftware �nds that the deviance is 8:434(df = 14), and the parameter estimates for�; h2; h3; � are respectively�0:5255(0:2698), 0:5372(0:3207), 0:1512(0:2857), 0:03844(0:01297)(with the standard errors in brackets).Give a careful interpretation of this output, with a suitable sketch-graph.The next step in the analysis was to �t the modellog(pi=(1� pi)) = �+ � x:This caused the deviance to increase by 3:261(df = 2), so that the resulting model haddeviance 11:695(df = 16). What does this mean?1996.A4.no13.Suppose that y1; : : : ; yk are independent Poisson variables and, for 1 � i � k,E(yi) = �i;log(�i) = �0 + �Txi;where (xi) are known and (�0; �) are unknown.(a) Show that (�yi;�xiyi) is su�cient for (�0; �), and that the observed and expectedvalue of this vector coincide at (�̂0; �̂), the maximum likelihood estimate of (�0; �).(b) Show that the asymptotic covariance matrix of �̂ is the inverse of the matrix��ixixiT � (��i)�1(��ixi) (�ixiT );where �i = exp(�0 + �Txi); 1 � i � k:HINT: added May 1998You will need to invert a partitioned matrix, which is most easily done by consid-ering how to solve au1 + bTu2 = v1bu1 + Cu2 = v2for u1; u2 as functions of v1; v2.(Here a is a scalar, b is a vector, and C is a square matrix.)DIPLOMA IN MATHEMATICAL STATISTICSDiploma Paper A.1994.no10.We plan to carry out a medical study on a large number of patients, to investigate the5



possible association between a disease D and patients' covariate values x(e.g. age, sex,smoking status etc.). LetDi = 1 if the ith patient has the disease, Di = 0 otherwise,xi = the vector of covariate values for the ith patient (�xed and known),Si = 1 if the ith patient is selected for the study, Si = 0 otherwise.Assume that for i = 1; : : : ; n,log(P (Di = 1jxi)=P (Di = 0jxi)) = �+ �Txi;and P (Si = 1jDi = 1) = �1; P (Si = 1jDi = 0) = �0;where �1; �0 are known. Show thatlog(P (Di = 1jxi; Si = 1)=(P (Di = 0jxi; Si = 1)) = �� + �Txiwhere �� is to be de�ned.Hence write down the loglikelihood `(��; �) for those patients for whom Si = 1, anddiscuss brie
y the estimation of �.Diploma Paper A.1995.no10.(a) In an experiment to compare 3 brands of instant co�ee, A1; A2 and A3, a numberof student volunteers are available, each able to compare exactly 2 brands, and tosay which brand he or she prefers. The data are obtained as follows: nij studentsare given Ai and Aj, and of these rij students prefer Ai to Aj , for 1 � i < j � 3:Assuming that the trials are conducted so thatrij � independent Bi(nij ; pij); 1 � i < j � 3;discuss carefully how to �t the modelH0 : log(pij=(1� pij)) = �i � �j ; 1 � i < j � 3:Why do we need to impose a constraint on �1; �2; �3 ?(b) With data r12 = 7, n12 = 10, r23 = 6; n23 = 11, r13 = 9; n13 = 12, we �nd:deviance = :004; df = 1,�̂1 = 1:075(se = :5380)�̂2 = 0:2020(se = :5124)with the constraint �3 = 0.If we now �t the model H0 as above, with the restrictions �2 = �3 = 0, we �nd:deviance = :159; df = 2;�̂1 = 0:9808(se = :4787).What is your conclusion about the students' preferences?Diploma Paper A.1996.no9.(a) Suppose data (yij) is such that yij � independent Poisson, mean �i, for 1 � j �ni; 1 � i � k: 6



Derive an expression for the deviance used in testing the �t of the hypothesisH0 : log(�i) = �Txi; 1 � i � k(where x1; : : : ; xk are given covariates) against the alternativeH : �1; : : : ; �k any positive numbers:(b) If the full dataset (yij) is replaced by (�jyij ; 1 � i � k), how does this a�ect(i) the estimation of �, and the corresponding standard errors?(ii) the deviance for testing H0 against H1?How should you ask your glm software to make use of the information (ni)?Diploma 1996 Paper A.no10.Suppose y1; : : : ; yn are independent, withf(yij�i) = 1�i exp�(yi=�i); yi > 0:(a) Show that if log(�i) = �Txi for 1 � i � n where x1; : : : ; xn are given covariates,then the asymptotic covariance matrix of �̂, the mle of �, is free of �.(b) Discuss the estimation of � if we assume, instead of (a), that 1=�i = �Txi for1 � i � n.ReferencesAgresti, A. (1996).An Introduction to Categorical Data Analysis. New York: Wi-ley.Altham, P.M.E. (1994). Improving the precision of estimation by �tting a gener-alized linear model, and Quasi-likelihood. Glim Newsletter 23,43-45.Atkinson, A.C. (1986). Comment: Aspects of diagnostic regression analysis. Sta-tistical Science 1, 397-402.Collett, D. (1991). Modelling Binary Data. London:Chapman and Hall. (for the1994.A4.no13 data )Crawley, M.J. (1993). GLIM for Ecologists. Oxford: Blackwell Scienti�c Publica-tions.Doll, R. and Hill, A.B. (1996)Natl. Cancer Inst. Monogr. 19, 205-268.Norton, P.G. and Dunn, E.V. (1985), Brit. Med. J. 291, 630-632.
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MATHEMATICAL TRIPOS PART II Computational ProjectsStatistics : Analysis of Drink-Drive dataFor this project, it will be helpful to have attended the IIA course, Computational Statisticsand Statistical Modelling, but other candidates who are familiar with GLIM (or similarsuitable statistical software) may also attempt the project.The Independent on Sunday (2 January 1994) printed the table below under the headline\Sharp increase in road accidents over Christmas. Police condemn `hard core' of risktakers". The data are available in the �le DRINKDAT. Analyse these data in any way youthink might be appropriate, bearing in mind the likely points of interest for:(i) the typical UK driver;(ii) the Minister of Transport;(iii) the Association of Chief Police O�cers.What (if any) additional information might have been useful in analysing this data?[Suggestions for this essay:(a) good graphic displays of data;(b) are any particular regions obvious `outliers'?(c) changes from 1992 to 1993;(d) are any regressions helpful? ]
Your answer, which may be handwritten, must not exceed 10 pages in length, including anyrelevant tables, print-outs and graphs. It should be clear from your answer precisely whichtests you have used, but you do not need to describe the theory underlying these tests.Do not attempt to write a polished report; you should think of your answer as providingan organised collection of statistical analyses, graphs, tables, and comments that would beuseful to someone else who did wish to write a full report on the data.Drink{Drive Figures for England and Wales during Christmas CampaignKey to Column Headingstst: number of breath tests+ve: number of positive testsacc: number of accidents involving injury 8



tst 93 tst 92 +ve 93 +ve 92 acc 93 acc 92 Region1. 317 514 49 85 102 150 Avon and Somerset2. 965 702 54 59 57 85 Bedfordshire3. 1700 1558 53 39 89 81 Cambridgeshire4. 1124 826 154 78 96 69 Cheshire5. 236 86 41 9 1 2 City of London6. 474 621 48 52 49 33 Cleveland7. 632 757 46 33 64 29 Cumbria8. 2088 807 73 61 93 92 Derbyshire9. 1172 1263 85 119 124 135 Devon and Cornwall10. 541 626 41 62 86 41 Dorset11. 742 1015 71 67 41 35 Durham12. 661 776 35 41 27 27 Dyfed{Powys13. 2786 2754 119 105 144 171 Essex14. 367 408 35 25 61 36 Gloucester15. 7591 5126 350 297 324 299 Greater Manchester16. 906 734 55 34 38 24 Gwent17. 2314 1982 114 134 137 137 Hampshire18. 646 428 66 49 73 68 Hertfordshire19. 522 525 76 65 78 87 Humberside20. 1609 2029 99 109 166 153 Kent21. 1222 1423 104 127 141 153 Lancashire22. 1356 1086 76 54 62 59 Leicestershire23. 1034 941 55 49 58 51 Lincolnshire24. 867 566 105 130 226 230 Merseyside25. 8792 12379 461 804 729 789 Metropolitan26. 643 917 27 35 69 66 Norfolk27. 645 728 43 33 36 41 Northamptonshire28. 494 383 108 118 138 153 Northumbria29. 1599 1284 97 76 80 32 North Wales30. 730 665 52 38 112 63 North Yorks31. 448 342 67 80 131 109 Nottinghamshire32. 916 1953 98 149 119 110 South Wales33. 920 831 121 95 59 62 South Yorks34. 560 505 76 69 135 127 Sta�ordshire35. 751 638 35 68 70 59 Su�olk36. 1666 1188 98 43 136 96 Surrey37. 844 741 95 71 123 122 Sussex38. 3798 3856 137 131 139 184 Thames Valley39. 304 205 37 24 65 53 Warwickshire40. 948 1184 65 98 133 103 West Mercia41. 1500 1160 246 205 344 278 West Midlands42. 1215 1638 180 188 190 223 West Yorks43. 1436 919 78 40 113 41 Wiltshire9


