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Preface

R is available as Free Software under the terms of the Free Software Foundation’s
GNU General Public License in source code form.
R is powerful and highly developed (and very similar in syntax to S-Plus).
The originators of R are R.Gentleman and R.Ihaca from New Zealand, and the R
home page is at http://www.r-project.org/
R runs on several different platforms: I always use the Linux version.

These worksheets may be used for any educational purpose provided their
authorship (P.M.E.Altham) is acknowledged.
Most of the corresponding datasets may be found at
http://www.statslab.cam.ac.uk/~pat/R.bigdata.txt

Note that throughout these notes, which were constructed for Part IIC of the Math-
ematical Tripos in Lent 2005, we will be using R as a free, ‘look-alike’ version of
S-plus. You may find references to ‘S-plus’, which you can usually take to be refer-
ences to ‘R’.
There are subtle and important differences between the languages R and S-plus;
these differences will not be explained in the following notes, except where they are
strictly relevant to our worksheets. http://www.stats.ox.ac.uk/pub/R gives a
careful description of the differences between R and S-Plus, in ‘R’ Complements
to the text-book Modern Applied Statistics with S-plus, by W.N.Venables and
B.D.Ripley, pub Springer.
http://www.statslab.cam.ac.uk/~pat/notes.pdf gives you the corresponding
lecture notes for this course, with a fuller version of these notes at http://www.

statslab.cam.ac.uk/~pat/All.pdf My R/Splus worksheets for multivariate statis-
tics, and other examples, may be seen at http://www.statslab.cam.ac.uk/~pat/
misc.pdf A word of reassurance about the Tripos questions for this course: I would
not expect you to be able to remember a lot of R commands and R syntax. But
I do think it’s important that you are able to interpret R output for linear models
and glm’s, and that you can show that you understand the underlying theory. Of
course you may find it convenient to use R for your Computational Projects.
Since I retired at the end of September 2005, I have added extra datasets (and
graphs) from time to time, as you will see in the Table of Contents. I probably only
used the first 8-10 Chapters when I was giving this course as one of 16 lectures and
8 practical classes.
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Chapter 1

Getting started: books and 2 tiny
examples

References
For R/S-plus material
Maindonald, J. and Braun, J. (2007) Data Analysis and Graphics using R - an
Example-Based Approach. Cambridge University Press.
Venables, W.N. and Ripley, B.D.(2002) Modern Applied Statistics with S-plus. New
York: Springer-Verlag.
For statistics text books
Agresti, A.(2002) Categorical Data Analysis. New York: Wiley.
Collett, D.(1991) Modelling Binary Data. London: Chapman and Hall.
Dobson, A.J.(1990) An introduction to Generalized Linear Models. London: Chap-
man and Hall.
Pawitan, Y. (2001) In all likelihood: statistical modelling and inference using like-
lihood. Oxford Science Publications. (see also http://www.meb.ki.se/~yudpaw/

likelihood for a really helpful suite of R programs and datasets related to his
book.)
The main purpose of the small index is to give a page reference for the first occur-
rence of each of the R commands used in the worksheets. Of course, this is only
a small fraction of the total of R commands available, but it is hoped that these
worksheets can be used to get you started in R.
Note that R has an excellent help system : try, for example

?lm

You can always inspect the CONTENTS of a given function by, eg

lm

A problem with the help system for inexperienced users is the sheer volume of in-
formation it gives you, in answer to what appears to be a quite modest request, eg

?scan
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But you quickly get used to skimming through and/or ignoring much of what ‘help’
is telling you.
At the present time the help system still does not QUITE make the university
teacher redundant, largely because (apart from the obvious drawbacks such as lack-
ing the personal touch of the university teacher) the help system LOVES words, to
the general exclusion of mathematical formulae and diagrams. But the day will pre-
sumably come when the help system becomes a bit more friendly. Thank goodness
it does not yet replace a good statistical textbook, although it contains a wealth of
scholarly information.
Many many useful features of S-plus/R may NOT been prominently illustrated in
the worksheets that follow. The keen user of lm() and glm() in particular should be
aware of the following
i) use of ‘subset’ for regression on a subset of the data, possibly defined by a logical
variable (eg sex==“male”)
ii) use of ‘update’ as a quick way of modifying a regression
iii) ‘predict’ for predicting for (new) data from a fitted model
iv) poly(x,2) (for example) for setting up orthogonal polynomials
v) summary(glm.example,correlation=T)
which is useful if we want to display the parameter estimates and se’s, and also their
correlation matrix.
vi)summary(glm.example,dispersion=0)
which is useful for a glm model (eg Poisson or Binomial) where we want to ESTI-
MATE the scale parameter φ, rather than force it to be 1. (Hence this is useful for
data exhibiting overdispersion.)

Here is a tiny example of using R as a calculator to check Stirling’s formula, which
as you will know is

n! ∼
√

2πnn+1/2 exp−n .

We take logs, and use the lgamma function in R.

n <- 1:100 ; y <- lgamma(n+1)

x <- (1/2) * log(2 * pi) + (n+ .5)* log(n) - n

plot(x,y)

q()

For the record, here are 2 little examples of loops in R.

x <- .3 # starting value

> for (i in 1:4){

+ x <- x+1

+ cat("iteration = ", i,"x=",x,"\n")

+ }

x <- .4 #starting value

while (x^2 <90)

{

+ cat("x=",x,"\n")
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+ x <- x+.9

+ }

But, one of the beauties of R/S-Plus is that you very rarely need to write explicit
loops, as shown above. Because most straightforward statistical calculations can be
vectorised, we can just use a built-in function instead of a loop, eg

sum(a*x)

for Σaixi as you will see in the worksheets that follow.
Note: R/S-plus is case-sensitive.
Note: to abandon any command, press ‘Control C’ simultaneously.



Chapter 2

Ways of reading in data, tables,
text, matrices. Linear regression
and basic plotting

R and S-plus have very sophisticated reading-in methods and graphical output.
Here we simply read in some data, and follow this with linear regression and
quadratic regression, demonstrating various special features of R as we go.
Note: S-Plus, and old versions of R, allowed the symbol < − to be replaced by the
underscore sign in all the commands. Note that < − should be read as an arrow
pointing from right to left; similarly − > is understood by R as an arrow pointing
from left to right.
R and S-plus differ from other statistical languages in being ‘OBJECT-ORIENTED’.
This takes a bit of getting used to, but there are advantages in being Object-
Oriented.

Catam users:

mkdir practice

cd practice

dir

copy X:\catam\stats\bigdata bigdata

copy bigdata weld

This will make the directory ‘practice’ and put in it the data-file ‘bigdata’, which
you then copy to ‘weld’.
Now use notepad to edit ‘weld’ to be exactly the numbers needed for the first
worksheet. (Feel free to do this operation by another means, if you want to.)
To start R:
Open a Command Prompt window from the start button.
type

X:\catam\r

Statslab users:
just type

8
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R

warning: the Catam version of R is not necessarily exactly the same as the the
Statslab version.
Note that in the sequences of R commands that follow, anything following a # is a
comment only, so need not be typed by you.
Note also that within most implementations of R you can use the ARROW KEYS
to retrieve, and perhaps edit, your previous commands.

# reading data from the keyboard

x <- c(7.82,8.00,7.95) #"c" means "combine"

x

# a slightly quicker way is to use scan( try help(scan))

x <- scan()

7.82 8.00 7.95

# NB blank line shows end of data

x

# To read a character vector

x <- scan(,"")

A B C

A C B

x

demo(graphics) # for fun

But mostly, for proper data analysis, we’ll need to read data from a separate data
file. Here are 3 methods, all doing things a bit differently from one another.

# scan() is the simplest reading-in function

data1 <- scan("weld", list(x=0,y=0))

data1 # an object, with components data1$x, data1$y

names(data1)

x<- data1$x ; y <- data1$y

# these data came from The Welding Institute, Abington, near Cambridge

x;y # x=current(in amps) for weld,y= min.diam.of resulting weld

summary(x)

# catam Windows automatically sets up the R graphics window for you

# but if you lose it, just type windows()

hist(x)

X <- matrix(scan("weld"),ncol=2,byrow=T) # T means "true"

X

Here is the nicest way to read a table of data.

weldtable <- read.table("weld",header=F) # F means "false"

weldtable

x <- weldtable[,1] ; y <- weldtable[,2]
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For the present we make use only of x, y and do the linear regression of y on x,
followed by that of y on x and x2.

plot(x,y)

teeny <- lm(y~x) # the choice of name ‘teeny’ is mine!

This fits yi = α+ βxi + εi, 1 ≤ i ≤ n, with the usual assumption that εi, 1 ≤ i ≤ n
is assumed to be a random sample from N(0, σ2).

teeny # This is an "object" in R terminology.

summary(teeny)

anova(teeny)

names(teeny)

fv1 <- teeny$fitted.values

fv1

par(mfrow=c(2,1)) # to have the plots in 2 rows, 1 column

plot(x,fv1)

plot(x,y)

abline(teeny)

par(mfrow=c(1,1)) # to restore to 1 plot per screen

Y <- cbind(y,fv1) # "cbind"is "columnbind"

# Y is now a matrix with 2 columns

matplot(x,Y,type="pl") # "matplot" is matrix-plot

res <- teeny$residuals

plot(x,res)

The plot shows a marked quadratic trend. So now we fit a quadratic, ie we fit
yi = α + βxi + γxi

2 + εi, 1 ≤ i ≤ n

xx<- x*x

teeny2 <- lm(y~x +xx ) # there’s bound to be a slicker way to do this

summary(teeny2)

This shows us that the quadratic term is indeed significant.
We may want more information, so the next step is

summary(teeny2, cor=T)

This gives us the correlation matrix of the parameter estimates.

vcov(teeny2) # for comparison, the corresponding covariance matrix.

fv2 <- teeny2$fitted.values

plot(x,y)

lines(x,fv2,lty=2) # adds ‘lines’ to the current plot

Now let us work out the ‘confidence’ interval for y at a new value of x, say x = 9
thus x2 = 81. We will also find the corresponding ‘prediction’ interval. Why are
they different? What happens to the width of the prediction interval if you replace
x = 9 by a value of x further from the original data set, say x = 20, x2 = 400? (and
why is this rather a silly thing to do?)
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newdata <- data.frame(x=9, xx=81)

predict.lm(teeny2, newdata, interval="confidence")

fit lwr upr

1 5.582471 5.468468 5.696474

predict.lm(teeny2, newdata, interval="prediction")

fit lwr upr

1 5.582471 5.218793 5.94615

q() # to quit: say "yes" to ‘‘save workspace image?"

The corresponding graph is shown as Figure 2.1. You have now come out of your R
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Graph showing original points, and fitted quadratic curve

Figure 2.1: The fitted quadratic, and the original points, for the ‘weld’ data

session. Try

type .Rhistory

to see the sequence of R commands that you used.
You have also generated the file

.Rdata

Next time you go into R, you see what objects are in your current workspace, by

ls()
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Here is the data-set “weld”, with x, y as first, second column respectively.

7.82 3.4

8.00 3.5

7.95 3.3

8.07 3.9

8.08 3.9

8.01 4.1

8.33 4.6

8.34 4.3

8.32 4.5

8.64 4.9

8.61 4.9

8.57 5.1

9.01 5.5

8.97 5.5

9.05 5.6

9.23 5.9

9.24 5.8

9.24 6.1

9.61 6.3

9.60 6.4

9.61 6.2

Remember to END your R data-set with a BLANK line.
There is a substantial library of data-sets available on R, including the ‘cherry-trees’
data-set (see Examples sheet 2) and the ‘Anscombe quartet’ (see worksheet 13). Try

data()

And, lastly, how about the following datasets as examples for linear regression.
The Independent, November 28, 2003 gives the following data on UK Student fund-
ing, at 2001-2 prices (in pounds), under the headline ‘Amid the furore, one thing
is agreed: university funding is in a severe crisis’.

Funding per student Students (000’s)

1989-90 7916 567

1990-91 7209 622

1991-2 6850 695

1992-3 6340 786

1993-4 5992 876

1994-5 5829 944

1995-6 5570 989

1996-7 5204 1007

1997-8 5049 1019

1998-9 5050 1023

1999-00 5039 1041

2000-01 4984 1064
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2001-02 5017 1087

2002-03* 5022 1101

* = provisional figures

Sometimes you may want to plot one variable (here Funding per student) against an-
other (here year, from 1989 to 2002) with point size proportional to a third variable,
here Students. An example is shown in Figure 2.2. It is achieved by

year <- 1989:2002

size <- Students/600 # some trial & error here, to see what works well

plot(Funding~ year, cex=size)

1990 1992 1994 1996 1998 2000 2002

50
00

55
00

60
00

65
00

70
00

75
00

80
00

year

F
un

di
ng

funding per student: point−size proportional to the number of students

Figure 2.2: How funding per student has declined over time.

The Independent, October 11, 2004 gives the following CO2 record (data collected
by Dr Charles Keeling at Mauna Loa, an 11000 ft extinct volcano on the Big Island
of Hawaii).

Year Level (in ppm, ie parts per million by volume)

1958 315

1959 315.98

1960 316.91

1961 317.65
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1962 318.45

1963 318.99

1964 NA

1965 320.03

1966 321.37

1967 322.18

1968 323.05

1969 324.62

1970 325.68

1971 326.32

1972 327.46

1973 329.68

1974 330.25

1975 331.15

1976 332.15

1977 333.9

1978 335.5

1979 336.85

1980 338.69

1981 339.93

1982 341.13

1983 342.78

1984 344.42

1985 345.9

1986 347.15

1987 348.93

1988 351.48

1989 352.91

1990 354.19

1991 355.59

1992 356.37

1993 357.04

1994 358.88

1995 360.88

1996 362.64

1997 363.76

1998 366.63

1999 368.31

2000 369.48

2001 371.02

2002 373.1

2003 375.64

‘as the graph shows, all of these (sharp peaks)-except the final one- can be explained
by the fact that they occurred in the same year as El Nino... The sinister aspect of
the most recent peak is that it does not coincide with an El Nino......’. For a graph
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of the increase, see Figure 2.3.
The Independent, July 4, 2008 has the following headline
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The Mauna Loa carbon dioxide series

Figure 2.3: Global warming? The Mauna Loa carbon dioxide series

‘Inflation worries prompt ECB to hike rates’ (the ECB is the European Central
Bank). This is accompanied by a graph showing the GDP annual growth, as a
percentage, together with Inflation, also as a percentage, for each of 15 ‘European
single currency member states’. These are given in the Table below.

GDPgrowth Inflation

Ireland 3.8 3.3

UK 2.3 3.0

Bel 2.1 4.1

Neth 3.4 1.7

Lux 3.4 4.3

Ger 2.6 2.6

Slovenia 4.6 6.2

Austria 2.9 3.4

Portugal 2.0 2.5

Spain 2.7 4.2

France 2.2 3.4

Malta 3.7 4.1

Italy 0.2 3.6

Greece 3.6 4.4
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Cyprus 4.3 4.3

Note: the GDPgrowth figures are for the annual growth to the end of the first quarter
of 2008, except for Ireland, Luxembourg, Slovenia, Portugal, Malta and Cyprus, in
which case they are for the annual growth to the end of the fourth quarter of 2007.
The inflation figures are for April 2008. Here is a suggestion for plotting a graph,
shown here as Figure 2.4.

ED <- read.table("Europes.dilemma.data", header=T) ; attach(ED)

country = row.names(ED)

attach(ED)

plot(GDPgrowth, Inflation, type="n")

text(GDPgrowth, Inflation,country)

points(GDPgrowth, Inflation, cex = 4, pch = 5)

# cex controls the SIZE of the plotting character

# pch determines the CHOICE of the plotting character, here diamonds

1 2 3 4
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GDPgrowth
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n
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Bel
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Lux

Ger
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Greece
Cyprus

Figure 2.4: Annual Inflation against Annual GDP growth for 15 Eurozone countries,
July 2008

The Independent, June 13, 2005, says ‘So who really pays and who really benefits?
A guide through the war of words over the EU rebate and the Common Agricultural
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Policy’ and
‘The annual income of a European dairy cow exceeds that of half the world’s human
population’ to quote Andreas Whittam Smith.
The EU member countries are
Luxembourg, Belgium, Denmark, Netherlands, Ireland, Sweden, Finland, France,
Austria, Germany, Italy, Spain, UK, Greece, Portugal, Cyprus, Slovenia, Malta,
Czech Republic, Hungary, Estonia, Slovakia, Lithuania, Poland, Latvia.
In the same order of countries, we have
the per capita contribution to the EU, in £
466 362 358 314 301 289 273 266 256 249 228 187 186 154 128 110 88 83 54 54 45
41 35 32 28
and, the total contribution, in £m
218 3734 1933 5120 1205 2604 1420 15941 2098 20477 13208 8077 11133 1689 1326
84 176 33 554 548 58 223 125 1239 64
and, ‘how the UK’s rebate is paid, in £m
20 259 177 56 108 34 135 1478 27 302 1224 719 -5097 151 121 7 16 3 50 47 5 20 11
116 6
and, Receipts from Common Agricultural Policy, in £m
29 686 818 934 1314 580 586 6996 754 3930 3606 4336 2612 1847 572 NA NA NA
NA NA NA NA NA NA NA
It’s easiest to read the data set via read.table() from the table below

per_cap_cont total_cont howUKrebate_pd Rec_from_CAP

Luxembourg 466 218 20 29

Belgium 362 3734 259 686

Denmark 358 1933 177 818

Netherlands 314 5120 56 934

Ireland 301 1205 108 1314

Sweden 289 2604 34 580

Finland 273 1420 135 586

France 266 15941 1478 6996

Austria 256 2098 27 754

Germany 249 20477 302 3930

Italy 228 13208 1224 3606

Spain 187 8077 719 4336

UK 186 11133 -5097 2612

Greece 154 1689 151 1847

Portugal 128 1326 121 57

Cyprus 110 84 7 NA

Slovenia 88 176 16 NA

Malta 83 33 3 NA

Czech_Republic 54 554 50 NA

Hungary 54 548 47 NA

Estonia 45 58 5 NA

Slovakia 41 223 20 NA

Lithuania 35 125 11 NA

Poland 32 1239 116 NA
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Latvia 28 64 6 NA



Chapter 3

A Fun example showing you some
plotting and regression facilities

Here we use a data-set from Venables and Ripley to show you some plotting and
regression facilities.
These include some ‘diagnostic plots’ to check whether the residuals could have come
from an N(0, σ2) distribution: the theory behind these ‘qqplots’ will be explained
later in the course.
NB: we use a ‘built-in’ dataset from the Venables and Ripley library(MASS).

library(MASS)

data(mammals)

attach(mammals) # to ‘attach’ the column headings

species <- row.names(mammals) ; species

x <- body ; y <- brain

plot(x,y)

identify(x,y,species) # find man, & the Asian elephant

# click middle button to quit

plot(log(x),log(y))

identify(log(x),log(y),species) # again, click middle button to quit

species.lm <- lm(y~x) # linear regression, y "on" x

summary(species.lm)

par(mfrow=c(2,2)) # set up 2 columns & 2 rows for plots

plot(x,y) ; abline(species.lm) # plot line on scatter plot

r <- species.lm$residuals

f <- species.lm$fitted.values # to save typing

qqnorm(r) ; qqline(r)

This is an eyeball check on whether the residuals are NID(0, σ2): they pretty obvi-
ously are NOT: can you see why?

lx<- log(x) ; ly <- log(y)

species.llm <- lm(ly~lx) ; summary(species.llm)

plot(lx,ly) ; abline(species.llm)

rl <- species.llm$residuals ;fl <- species.llm$fitted.values

qqnorm(rl) ; qqline(rl) # a better straight line plot

19
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Figure 3.1: A pairs plot of bodyweight=x, brainweight=y, and their logs

plot(f,r) ; hist(r)

plot(fl,rl); hist(rl) # further diagnostic checks

# Which of the 2 regressions do you think is appropriate ?

mam.mat <- cbind(x,y,lx,ly) # columnbind to form matrix

cor(mam.mat) # correlation matrix

round(cor(mam.mat),3) # easier to read

par(mfrow=c(1,1)) # back to 1 graph per plot

pairs(mam.mat)

Suppose we want a hard copy of this final graph. Here’s how to proceed.

postscript("file.ps", height=4)

This will send the graph to the postscript file called ‘file.ps’. It will contain the
PostScript code for a figure 4 inches high, perhaps for inclusion by you in a later
document. Warning: if ‘file.ps’ already exists in your files, it will be overwritten.

pairs(mam.mat) # will now put the graph into file.ps

dev.off() # will turn off the ‘current device’, so that

plot(x,y) # will now appear on the screen

q()

unix users:
ls
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should show you that you have created file.ps
ghostview file.ps
enables you to look at this file on the screen
lp file.ps
enables you to print out the corresponding graph.

catam users:
You can also see file.ps via ghostview
Please await instructions in the practical class if you want to obtain a hard copy

of this graph, via Postscript printer (But you may be able to work out this printing-
out step for yourself. Use title(main=”Posh Spice”) for example, to put your name
on the graph before you click on ‘print’.) R-graphs can also be put into a Word
document.
Here is the data-set ‘mammals’, from Weisberg (1985, pp144-5). It is in the Venables
and Ripley (1994) library of data-sets.

body brain

Arctic fox 3.385 44.50

Owl monkey 0.480 15.50

Mountain beaver 1.350 8.10

Cow 465.000 423.00

Grey wolf 36.330 119.50

Goat 27.660 115.00

Roe deer 14.830 98.20

Guinea pig 1.040 5.50

Verbet 4.190 58.00

Chinchilla 0.425 6.40

Ground squirrel 0.101 4.00

Arctic ground squirrel 0.920 5.70

African giant pouched rat 1.000 6.60

Lesser short-tailed shrew 0.005 0.14

Star-nosed mole 0.060 1.00

Nine-banded armadillo 3.500 10.80

Tree hyrax 2.000 12.30

N.A. opossum 1.700 6.30

Asian elephant 2547.000 4603.00

Big brown bat 0.023 0.30

Donkey 187.100 419.00

Horse 521.000 655.00

European hedgehog 0.785 3.50

Patas monkey 10.000 115.00

Cat 3.300 25.60

Galago 0.200 5.00

Genet 1.410 17.50

Giraffe 529.000 680.00

Gorilla 207.000 406.00

Grey seal 85.000 325.00

Rock hyrax-a 0.750 12.30
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Human 62.000 1320.00

African elephant 6654.000 5712.00

Water opossum 3.500 3.90

Rhesus monkey 6.800 179.00

Kangaroo 35.000 56.00

Yellow-bellied marmot 4.050 17.00

Golden hamster 0.120 1.00

Mouse 0.023 0.40

Little brown bat 0.010 0.25

Slow loris 1.400 12.50

Okapi 250.000 490.00

Rabbit 2.500 12.10

Sheep 55.500 175.00

Jaguar 100.000 157.00

Chimpanzee 52.160 440.00

Baboon 10.550 179.50

Desert hedgehog 0.550 2.40

Giant armadillo 60.000 81.00

Rock hyrax-b 3.600 21.00

Raccoon 4.288 39.20

Rat 0.280 1.90

E. American mole 0.075 1.20

Mole rat 0.122 3.00

Musk shrew 0.048 0.33

Pig 192.000 180.00

Echidna 3.000 25.00

Brazilian tapir 160.000 169.00

Tenrec 0.900 2.60

Phalanger 1.620 11.40

Tree shrew 0.104 2.50

Red fox 4.235 50.40

Here is the data-set ‘Japanese set the pace for Europe’s car makers’, from The Inde-
pendent, August 18, 1999. The 3 columns of numbers are Vehicles produced in 1998,
and the Productivity, in terms of vehicle per employee, in 1997, 1998 respectively.
Can you construct any helpful graphs?

veh1998 prod97 prod98

Nissan(UK) 288838 98 105

Volkswagen(Spain) 311136 70 76

GM(Germany) 174807 77 76

Fiat(Italy) 383000 70 73

Toyota(UK) 172342 58 72

SEAT(Spain) 498463 69 69

Renault(France) 385118 61 68

GM(Spain) 445750 67 67

Renault(Spain) 213590 59 64

Honda(UK) 112313 62 64
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Ford(UK) 250351 62 61

Fiat(2Italy) 416000 54 61

Ford(Germany) 290444 59 59

Ford(Spain) 296173 57 58

Vauxhall(UK) 154846 39 43

Skoda(CzechR) 287529 33 35

Rover(UK) 281855 33 30

An interesting modern example of multiple regression, complete with the full dataset,
is given in
‘Distance from Africa, not climate, explains within-population phenotypic diversity
in humans’
by Betti, Balloux, Amos, Hanihara and Manica, Proc. R.Soc. B (2009) 276, 809–
814.

Finally, here is a classic dataset for you to play with. I think I originally took this
dataset from the 2001 book by Brian Everitt “A handbook of Statistical Analyses
using S PLUS”.
Sulphur dioxide is one of the major air pollutants. A data-set presented by Sokal
and Rohlf (1981) was collected on 41 US cities in 1969-71, corresponding to the
following variables:
so2 = Sulphur dioxide content in micrograms per cubic metre
temp = average annual temperature in degrees Fahrenheit
manuf = number of manufacturing enterprises employing 20 or more workers
pop = population size (1970 census) in thousands
wind = Average annual wind speed in miles per hour
precip = Average annual precipitation (ie rainfall) in inches
days= Average annual number of days with precipitation per year.

region so2 temp manuf pop wind precip days

"Phoenix" 10 70.3 213 582 6.0 7.05 36

"Little Rock" 13 61.0 91 132 8.2 48.52 100

"San Francisco" 12 56.7 453 716 8.7 20.66 67

"Denver" 17 51.9 454 515 9.0 12.95 86

"Hartford" 56 49.1 412 158 9.0 43.37 127

"Wilmington" 36 54.0 80 80 9.0 40.25 114

"Washington" 29 57.3 434 757 9.3 38.89 111

"Jackson" 14 68.4 136 529 8.8 54.47 116

"Miami" 10 75.5 207 335 9.0 59.80 128

"Atlanta" 24 61.5 368 497 9.1 48.34 115

"Chicago" 110 50.6 3344 3369 10.4 34.44 122

"Indiana" 28 52.3 361 746 9.7 38.74 121

"Des Moines" 17 49.0 104 201 11.2 30.85 103

"Wichita" 8 56.6 125 277 12.7 30.58 82

"Louisvlle" 30 55.6 291 593 8.3 43.11 123
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"New Orleans" 9 68.3 204 361 8.4 56.77 113

"Baltimore" 47 55.0 625 905 9.6 41.31 111

"Detroit" 35 49.9 1064 1513 10.1 30.96 129

"Minnesota" 29 43.5 699 744 10.6 25.94 137

"Kansas" 14 54.5 381 507 10.0 37.00 99

"St. Louis" 56 55.9 775 622 9.5 35.89 105

"Omaha" 14 51.5 181 347 10.9 30.18 98

"Albuquerque" 11 56.8 46 244 8.9 7.77 58

"Albany" 46 47.6 44 116 8.8 33.36 135

"Buffalo" 11 47.1 391 463 12.4 36.11 166

"Cincinnati" 23 54.0 462 453 7.1 39.04 132

"Cleveland" 65 49.7 1007 751 10.9 34.99 155

"Columbia" 26 51.5 266 540 8.6 37.01 134

"Philadelphia" 69 54.6 1692 1950 9.6 39.93 115

"Pittsburgh" 61 50.4 347 520 9.4 36.22 147

"Providence" 94 50.0 343 179 10.6 42.75 125

"Memphis" 10 61.6 337 624 9.2 49.10 105

"Nashville" 18 59.4 275 448 7.9 46.00 119

"Dallas" 9 66.2 641 844 10.9 35.94 78

"Houston" 10 68.9 721 1233 10.8 48.19 103

"Salt Lake City" 28 51.0 137 176 8.7 15.17 89

"Norfolk" 31 59.3 96 308 10.6 44.68 116

"Richmond" 26 57.8 197 299 7.6 42.59 115

"Seattle" 29 51.1 379 531 9.4 38.79 164

"Charleston" 31 55.2 35 71 6.5 40.75 148

"Milwaukee" 16 45.7 569 717 11.8 29.07 123



Chapter 4

A one-way anova, and a qqnorm
plot

This chapter shows you how to construct a one-way analysis of variance and how to
do a qqnorm-plot to assess normality of the residuals.
Here is the data in the file ‘potash’: nb, you may need to do some work to get the
datafile in place before you go into R.

7.62 8.00 7.93

8.14 8.15 7.87

7.76 7.73 7.74

7.17 7.57 7.80

7.46 7.68 7.21

The origin of these data is lost in the mists of time; they show the strength of bun-
dles of cotton, for cotton grown under 5 different ‘treatments’, the treatments in
question being amounts of potash, a fertiliser. The design of this simple agricultural
experiment gives 3 ‘replicates’ for each treatment level, making a total of 15 obser-
vations in all. We model the dependence of the strength on the level of potash.
This is what you should do.

y <- scan("potash") ; y

Now we read in the experimental design.

x <- scan() # a slicker way is to use the "rep" function.

36 36 36

54 54 54

72 72 72

108 108 108

144 144 144 #here x is treatment(in lbs per acre) & y is strength

# blank line to show the end of the data

tapply(y,x,mean) # gives mean(y) for each level of x

plot(x,y)

regr <- lm(y~x) ; summary(regr)

This fits yij = a+ bxij + εij, with i = 1, . . . , 5, j = 1, . . . , 3

25
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potash <- factor(x) ; potash

plot(potash,y) # This results in a ‘boxplot’

teeny <- lm(y~potash)

This fits yij = µ+ θi + εij with θ1 = 0 (the default setting in R)

anova(teeny)

names(teeny)

coefficients(teeny) # can you understand these ?

help(qqnorm)

qqnorm(resid(teeny))

qqline(resid(teeny))

plot(fitted(teeny),resid(teeny))

plot(teeny,ask=T) # for more of the diagnostic plots

The original data, and the fitted regression line, are given in Figure 4.1. Figure 4.2
gives boxplot for this dataset.
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Strength of cotton bundles (y) against amount of potash fertiliser (x)

Figure 4.1: Strengths of cotton bundles against level of potash

Brief explanation of some of the diagnostic plots for the general linear
model
With

Y = Xβ + ε

and ε ∼ N(0, σ2I), we see that β̂ = (XTX)−1XTY, and Ŷ = HY and ε̂ = Y − Ŷ =
(I −H)ε, where H is the usual ‘hat’ matrix.
From this we can see that ε̂, Ŷ , the residuals and fitted values, are independent, so
a plot of ε̂ against Ŷ should show no particular trend.
If we do see a trend in the plot of ε̂ against Ŷ , for example if the residuals appear
to be ‘fanning out’ as Ŷ increases, then this may be a warning that the variance
of Yi is actually a function of E(Yi), and so the assumption var(Yi) = σ2 for all i
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Figure 4.2: Boxplot for cotton bundles dataset

may fail: we may be able to remedy this by replacing Yi by log Yi, or some other
transformation of Y , in the original linear model.
Further, ε̂ should be N(0, (I −H)σ2).
In order to check whether this is plausible, we find Fn(u) say, the sample distribution
function of the residuals. We would like to see whether

Fn(u) ' Φ(u/σ)

for some σ (where Φ is as usual, the distribution function of N(0, 1)). This is hard
to assess visually, so instead we try to see if

Φ−1Fn(u) ' u/σ.

This is what lies behind the qqplot. We are just doing a quick check of the linearity
of the function Φ−1Fn(u).
It’s fun to generate a random sample of size 100 from the t-distribution with 5 df,
and find its qqnorm, qqline plots, to assess the systematic departure from a normal
distribution. To do this, try

y <- rt(100,5) ; hist(y) ; qqnorm(y); qqline(y)



Chapter 5

A 2-way anova, how to set up
factor levels, and boxplots

Here we carry out a two-way analysis of variance, first illustrating the R function
gl() to set up the factor levels in a balanced design. The data are given below, and
are in the file ‘IrishIt’.
Under the headline
“ Irish and Italians are the ‘sexists of Europe’” The Independent, October 8, 1992,
gave the following table.

The percentage having equal confidence in both sexes for various occupations

86 85 82 86 Denmark

75 83 75 79 Netherlands

77 70 70 68 France

61 70 66 75 UK

67 66 64 67 Belgium

56 65 69 67 Spain

52 67 65 63 Portugal

57 55 59 64 W. Germany

47 58 60 62 Luxembourg

52 56 61 58 Greece

54 56 55 59 Italy

43 51 50 61 Ireland

Here the columns are the occupations bus/train driver, surgeon, barrister, MP.
Can you see that the French are out of line in column 1 ?
You will need to remove the text from the data before you can read it via scan().

p <- scan("IrishIt") ; p

occ <- scan(," ") # now read in row & column labels

bus/train surgeon barrister MP

# remember blank line

country <- scan(, " ")

Den Neth Fra UK Bel Spa

Port W.Ger Lux Gre It Irl

28
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# remember blank line

OCC <- gl(4,1,48,labels=occ) # gl() is the ‘generate level’ command

COUNTRY <- gl(12,4,48,labels= country)

OCC ; COUNTRY

OCC <- factor(OCC) ; COUNTRY<- factor(COUNTRY) # factor declaration(redundant)

Now we try several different models. Study the output carefully and comment on
the differences and similarities.

ex2 <- lm(p~COUNTRY+OCC) ; anova(ex2)

This fits pij = µ + αi + βj + εij for i = 1, . . . , 12 and j = 1, . . . , 4 and the usual
assumption about the distribution of (εij).

ex2 ; summary(ex2)

names(ex2)

ex2$coefficients

lex2 <- lm(p~OCC +COUNTRY) ; anova(lex2)

lex3 <- lm(p~ OCC) ; lex3 ; summary(lex3)

lex4 <- lm(p~ COUNTRY); lex4 ; summary(lex4)

lex5 <- lm(p~ COUNTRY + OCC); lex5; anova(lex5)

summary(lex5,cor=T) # cor=T gives the matrix

# of correlation coefficients of parameter estimates

tapply(p,OCC,mean)

tapply(p,COUNTRY,mean)

The default parametrisation for factor effects in R is different from the (rather
awkward) default parametrisation used in S-Plus. If our model is

E(Yij) = µ+ αi + βj

then R takes α1 = 0, β1 = 0, so that effectively each of the 2nd, 3rd, ... etc factor
level is being compared with the 1st such.
Now we’ll demonstrate some nice graphics, starting with a multiple-comparisons test
of the differences between the 4 occupations (hence 4× 3/2 pairwise comparisons).
The corresponding multiple-comparisons plot is given as Figure 5.1.

first.aov = aov(p~ COUNTRY + OCC) ; summary(first.aov)

TukeyHSD(first.aov, "OCC")

plot(TukeyHSD(first.aov, "OCC"))

boxplot(split(p,OCC)) # in fact same effect as plot(OCC,p)

boxplot(split(p,COUNTRY))

res <- ex2$residuals ; fv<- ex2$fitted.values

plot(fv,res)

hist(resid(ex2))

qqnorm(resid(ex2)) # should be approx straight line if errors normal

ls() # opportunity to tidy up here,eg by

rm(ex2)
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Figure 5.1: Multiple comparisons between occupations.

Here is another dataset with the same layout.
The Independent, 16 June 1999, under the headline ‘Tourists get hidden costs warn-
ings’ gave the following table of prices in pounds, called ‘How the resorts compared’.

Algarve 8.00 0.50 3.50 3.00 4.00 100.00

CostaDelSol 6.95 1.30 4.10 12.30 4.10 130.85

Majorca 10.25 1.45 5.35 6.15 3.30 122.20

Tenerife 12.30 1.25 4.90 3.70 2.90 130.85

Florida 15.60 1.90 5.05 5.00 2.50 114.00

Tunisia 10.90 1.40 5.45 1.90 2.75 218.10

Cyprus 11.60 1.20 5.95 3.00 3.60 149.45

Turkey 6.50 1.05 6.50 4.90 2.85 263.00

Corfu 5.20 1.05 3.75 4.20 2.50 137.60

Sorrento 7.70 1.40 6.30 8.75 4.75 215.40

Malta 11.20 0.70 4.55 8.00 4.80 87.85

Rhodes 6.30 1.05 5.20 3.15 2.70 261.30

Sicily 13.25 1.75 4.20 7.00 3.85 174.40

Madeira 10.25 0.70 5.10 6.85 6.85 153.70

Here the column headings are, respectively,
Three-course meal, Bottle of Beer, Suntan Lotion, Taxi (5km), Film (24 exp), Car
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Hire (per week).
Fit the model

log(price) ~ place + item

and interpret the results. Note that this model is more appropriate than

price ~ place + item

can you see why? Which is the most expensive resort? How are your conclusions
altered if you remove the final column (ie car-hire) in the Table?
Finally, for the racing enthusiasts:
for the Cheltenham Gold Cup, March 18, 2004, I computed the following table of
probabilities from the published Bookmakers’ Odds:
thus, eg .6364 corresponds to odds of 4-7 (.6364 = 7/11).
In the event, BestMate was the winner, for the 3rd year in succession! (Note added
November 3, 2005: sadly BestMate has just died.)

Corals WmHills Ladbrokes Stanleys Tote

BestMate .6364 .6364 .6364 .6000 .6000

TheRealBandit .125 .1111 .0909 .1111 .1111

KeenLeader .0909 .0909 .0833 .0909 .0769

IrishHussar .0667 .0909 .0909 .0833 .0833

BeefOrSalmon .0909 .0769 .0909 .0769 .0667

FirstGold .0833 .0769 .0909 .0769 .0769

HarbourPilot .0588 .0667 .0588 .0588 .0588

TruckersTavern .0476 .0588 .0667 .0588 .0588

SirRembrandt .0385 .0294 .0294 .0294 .0244

AlexB’quet .0149 .0099 .0099 .0149 .0149

Suggestion:

x <- read.table("BMData", header=T)

y <- as.vector(t(x))

horse <- row.names(x)

Horse <- gl(10, 5, length=50, labels=horse)

bookie <- scan(,"")

Corals WmHills Ladbrokes Stanleys Tote

Bookie <- gl(5,1, length=50, labels=bookie)

first.lm <- lm(y ~ Horse + Bookie)

summary(first.lm); anova(first.lm)

What happens if we remove the BestMate row of the data-matrix?



Chapter 6

A 2-way layout with missing data,
ie an unbalanced design

This shows an example of an unbalanced two-way design.
These data are taken from The Independent on Sunday for October 6,1991. They
show the prices of certain best-selling books in 5 countries in pounds sterling. The
columns correspond to UK, Germany, France, US, Austria respectively. The new
feature of this data-set is that there are some MISSING values (missing for reasons
unknown). Thus in the 10 by 5 table below, we use
NA to represent ‘not available’ for these missing entries.
We then use ‘na.action...’ to omit the missing data in our fitting, so that we will
have an UNbalanced design. You will see that this fact has profound consequences:
certain sets of parameters are NON-orthogonal as a result. Here is the data from

bookpr

14.99 12.68 9.00 11.00 15.95 S.Hawking,"A brief history of time"

14.95 17.53 13.60 13.35 15.95 U.Eco,"Foucault’s Pendulum"

12.95 14.01 11.60 11.60 13.60 J.Le Carre,"The Russia House"

14.95 12.00 8.45 NA NA J.Archer,"Kane & Abel"

12.95 15.90 15.10 NA 16.00 S.Rushdie,"The Satanic Verses"

12.95 13.40 12.10 11.00 13.60 J.Barnes"History of the world in ..."

17.95 30.01 NA 14.50 22.80 R.Ellman,"Oscar Wilde"

13.99 NA NA 12.50 13.60 J.Updike,"Rabbit at Rest"

9.95 10.50 NA 9.85 NA P.Suskind,"Perfume"

7.95 9.85 5.65 6.95 NA M.Duras,"The Lover"

‘Do books cost more abroad?’ was the question raised by The Independent on
Sunday.

p <- scan("bookpr") ; p

cou <- scan(,"")

UK Ger Fra US Austria

# blank line

country <- gl(5,1,50,labels=cou)

author <- gl(10,5,50)

32
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Figure 6.1: The ‘design plot’ for the countries, authors data

plot.design(p~ country + author) # for a useful graphical summary

lmunb <- lm(p~ country + author,na.action=na.omit) ; summary(lmunb)

lmunb1<- lm(p~ country,na.action=na.omit) ; summary(lmunb1)

Observe that your least squares estimates for the ‘country’ parameters change from
lmunb to lmunb1.

resid <- lmunb$residuals

resid

The results of ‘plot.design’ are given as Figure 6.1.
Note that resid is a vector with less than 50 elements. Thus,

plot(country,resid)

would give us an error message. To deal with this particular difficulty

plot(country[!is.na(p)],resid) # Now do your ‘unbalanced’ anova

unbaov <- anova(lm(p~ country + author,na.action=na.omit)) ; unbaov

# Try lm(p~author +country,...)

# Try anova(lm(p~author + country,...))

# Try anova(lm(p~author,...))

Discuss carefully the consequences of non-orthogonality of the parameter sets coun-
try,author for this problem.
Was our model above on the correct scale? We try a log-transform.
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lp <- log(p)

lmunblp <- lm(lp~ country+author,na.action=na.omit) ; summary(lmunblp)

qqnorm(resid(lmunb))

qqnorm(resid(lmunblp)) # which is best ?

q()

Problems involving MONEY should be attacked with multiplicative rather than
additive models : discuss this provocative remark.
Here is another data-set with the same structure. Under the headline ‘Afloat on a
sea of alcohol, the booze cruisers bid last farewell to duty-free’ The Independent of
28 June, 1999, gives the Table below.
‘Booze and Fags: the relative cost’

200 Benson & Hedges

special filter cigarettes 16.95 16.99 35.99 20.00 NA

1 litre Smirnoff vodka 9.99 10.74 10.39 11.00 10.25

1 litre Gordon’s gin 10.25 8.29 10.69 11.35 9.99

5 X 50 gm Golden Virginia 13.95 13.99 38.15 9.65 NA

rolling tobacco

24 X 440 cans Stella Artois 11.95 20.80 23.96 9.25 9.67

24 X 440 cans Guinness 15.75 22.95 22.74 11.90 15.83

Here the column headings (ie place of sale) are P&O Stena (on board ship), BAA
(airport duty free), Tesco (UK, high street), Eastenders (Calais, cash & carry), and
Wine & Beer Co (Calais, cash & carry).
And finally, just in case you want yet more data of this structure, ‘Britons paying
over the odds for designer goods’ from The Independent, 27 April, 2001, gives the
following table of prices in pounds sterling.

UK Sweden France Germany US

U2CD 13.56 12.45 10.60 9.66 10.59

SPS2 299.99 312.43 272.99 266.17 226.76

Cl 24.45 28.84 24.48 24.35 14.66

Ca 305.36 346.83 316.43 312.83 248.62

Le 46.16 47.63 42.11 46.06 27.01

Do 58.00 54.08 47.22 46.20 32.22

TheMatrixDVD 19.26 15.61 17.93 15.29 15.75

Za 836.74 704.29 527.45 755.77 NA

Ti 111.00 104.12 89.43 93.36 75.42

Ikea 395.00 276.26 272.99 299.99 454.21

Key to row names,
U2CD, SPS2= Sony PlayStation 2, Cl= Clinique Moisturing lotion, Ca= Call-
away golf club, Le= Levi’s 501 (Red Tab), Do= Dockers “K1” khakis, TheMa-
trixDVD, Za= Zanussi ZF4Y refrigerator, Ti= Timberland women’s boots, Ikea=
Ikea “Nikkala” sofa.
(I’m not sure I would ever buy any of these, except Cl, in any country, but you
might!)



Chapter 7

Logistic regression for the
binomial distribution

Here is our first use of a distribution other than the normal. We do a very simple
example with binomial logistic regression.
The dataset comes from ‘Modelling Binary Data’, by D.Collett(1991). The com-
pressive strength of an alloy fastener used in aircraft construction is studied. Ten
pressure loads, increasing in units of 200psi from 2500 psi to 4300 psi, were used.
Here
n= number of fasteners tested at each load
r= number of these which FAIL.
We assume that ri is Binomial(ni, πi) for i = 1, . . . , 10 and that these 10 random
variables are independent. We model the dependence of πi on Loadi, using graphs
where appropriate.
The model assumed below is

log(πi/(1− πi)) = a+ b× Loadi.

[This is the LOGIT link in the glm, here the default link.] Note that we do the
regression here with p = r/n as the ‘y-variable’ , and n as ‘weights’. See

help(glm)

for general syntax.
The corresponding data, given at the end of this sheet, is in the file called
alloyf
So, first set up the file ‘alloyf’.

data6 <- read.table("alloyf",header=T)

attach(data6) # BEWARE, this will not over-write variables already present.

p <- r/n

plot(Load,p)

ex6 <- glm(p~ Load,weights=n,family=binomial) #‘weights’ for sample sizes

Observe, we could put the above sequence of commands into a separate file, called,
eg “littleprog”
which we could then access, and execute, from within R, via the command

35
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source("littleprog")

data6 ; names(data6); summary(data6)

plot(Load,p,type="l") # note, l for ‘line’

ex6 ; summary(ex6)

names(ex6)

plot(ex6,ask=T) # for diagnostic plots

Now we’ll see how to vary the link function. Previously we were using the default
link, ie the logit(this is canonical for the binomial distribution)

ex6.l <- glm(p~Load,family=binomial(link=logit),weights=n)

ex6.p <- glm(p~Load,family=binomial(link=probit),weights=n)

ex6.cll <- glm(p~Load,binomial(link=cloglog),weights=n)

summary(ex6.l)

summary(ex6.p) # the probit link

summary(ex6.cll) # the complementary loglog link

As you will see, all these three models fit very well (ex6.cll being slightly less good).
The AIC is the Akaike information criterion; it is defined here as
AIC = −2×maximized log likelihood +2× number of parameters fitted.
(The log-likelihood is of course defined only up to a constant depending on the data,
so the same will be true of the AIC.) In all of the linear models (irrespective of the
particular link function used) the number of parameters fitted is of course 2. In
comparing different models, we look for the one with the smallest AIC.
Observe that for the fitted parameter estimates, the ratio a/b is about the same for
the 3 link functions: this is a special case of a general phenomenon.
Which link function gives the best fit, ie the smallest deviance ? In practice the
logit and probit will fit almost equally well.
We conclude by plotting a graph to show the fitted probability of failure under the
logistic model: the 2 vertical lines are drawn to show the actual range of our data
for Load. (Within this range, the link function is pretty well linear, as it happens.)

x <- 15:55 ; alpha = ex6.l$coefficients[1]; beta= ex6.l$coefficients[2]

y <- alpha + beta*x; Y= 1/(1+ exp(-y))

plot(x, Y, type="l",xlab="Load",ylab="Fitted Probability of failure")

abline(v=25); abline(v=43)

points(Load,p) # to put the original data-points on the graph

title("Fitting a logistic model")

The corresponding graph is shown in Figure 7.1. Here is the dataset “alloyf”. (Warn-
ing: ‘load’ is a function in R, so we call the first column ‘Load’ rather than ‘load’.)

Load n r

25 50 10

27 70 17

29 100 30

31 60 21
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Figure 7.1: An example of a logistic curve



Chapter 8

The space shuttle temperature
data: a cautionary tale

This is an example on logistic regression and safety in space.
Swan and Rigby (GLIM Newsletter no 24,1995) discuss the data below, using bino-
mial logistic regression. To quote from Swan and Rigby
‘In 1986 the NASA space shuttle Challenger exploded shortly after it was launched.
After an investigation it was concluded that this had occurred as a result of an ‘O’
ring failure. ‘O’ rings are toroidal seals and in the shuttles six are used to prevent
hot gases escaping and coming into contact with fuel supply lines.
Data had been collected from 23 previous shuttle flights on the ambient temperature
at the launch and the number of ‘O’ rings, out of the six, that were damaged during
the launch. NASA staff analysed the data to assess whether the risk of ‘O’ ring
failure damage was related to temperature, but it is reported that they excluded
the zero responses (ie, none of the rings damaged) because they believed them to be
uninformative. The resulting analysis led them to believe that the risk of damage
was independent of the ambient temperature at the launch. The temperatures for
the 23 previous launches ranged from 53 to 81 degreees Fahrenheit while the Chal-
lenger launch temperature was 31 degrees Fahrenheit (ie, -0.6 degrees Centigrade).’
Calculate pfail = nfail/six, where

six <- rep(6,times=23),

for the data below, so that pfail is the proportion that fail at each of the 23 previous
shuttle flights. Let temp be the corresponding temperature.
Comment on the results of

glm(pfail~ temp,binomial,weights=six)

and plot suitable graphs to illustrate your results.
Are any points particularly ‘influential’ in the logistic regression ?
How is your model affected if you omit all points for which nfail = 0 ?
Suggestion:

glm(pfail~ temp,binomial,weights=six, subset=(nfail>0))

#note that here we are picking out a subset by using the ‘logical condition’

#(nfail>0). Alternatively, for this example we could have used the condition
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# subset=(nfail!=0).

# ‘!=’ means ‘not equal to’ and is the negation of ‘==’

?"&" # for full information on the logical symbols

Do you have any comments on the design of this experiment?
The data (read this by read.table(“...”,header=T)) follow.

nfail temp

2 53

1 57

1 58

1 63

0 66

0 67

0 67

0 67

0 68

0 69

0 70

0 70

1 70

1 70

0 72

0 73

0 75

2 75

0 76

0 76

0 78

0 79

0 81

first.glm = glm(pfail~ temp, binomial, weights=six)

fv = first.glm$fitted.values

plot(temp, fv, type="l", xlim=c(30,85), ylim=c(0,1), xlab="temperature",

ylab="probability of failure")

points(temp, pfail)

title("The space shuttle failure data, with the fitted curve")

The corresponding logistic graph is shown in Figure 8.1. I took the temperature
values from 30 degrees to 85 degrees (the x-axis) to emphasize the fact that we have
no data in the range 30 degrees to 50 degrees.

Note added June 2012.
A very interesting use of a complex logistic regression on a large dataset is given by
Westhoff, Koepsell and Littell, Brit Med Journal, 2012, ‘Effects of experience and
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Figure 8.1: The logistic graph for the space shuttle data

commercialisation on survival in Himalayan mountaineering: retrospective cohort
study’, which you can see at http://www.bmj.com/content/344/bmj.e3782. This
uses the ‘Himalayan Database’ compiled by Elizabeth Hawley and Richard Salisbury,
and uses logistic modelling of the odds of death against survival.

http://www.bmj.com/content/344/bmj.e3782


Chapter 9

Binomial and Poisson regression

Firstly we give an example where both Binomial and Poisson regressions are appro-
priate: this is for the Missing Persons dataset.
Some rather gruesome data published on March 8, 1994 in The Independent under
the headline
“ Thousands of people who disappear without trace ”
are analysed below,

s<- scan()

33 63 157

38 108 159

# nb, blank line

r<- scan()

3271 7256 5065

2486 8877 3520

# nb, blank line

Here,
r = number reported missing during the year ending March 1993, and
s = number still missing by the end of that year. These figures are from the
Metropolitan police.

sex <- scan(,"")

m m m f f f

age <- c(1,2,3,1,2,3)

# sex =m,f for males,females

# age=1,2,3 for 13 years & under, 14-18 years, 19 years & over.

sex <- factor(sex) ; age <- factor(age)

bin.add <- glm(s/r ~ sex+age,family=binomial,weights=r)

summary(bin.add)

round(bin.add$fitted.values,3) # to ease interpretation

What is this telling us ?
The Binomial with large n, small p, is nearly the Poisson with mean (np). So we
also try Poisson regression, using the appropriate “offset”.
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Figure 9.1: The interaction graph for age and sex

l <- log(r)

Poisson.add <- glm(s~sex + age,family=poisson, offset=l)

summary(Poisson.add)

Describe and interpret these results, explaining the similarities.
Finally, we can show in Figure 9.1 a helpful plot.

Age = gl(3,1,length=6, labels=c("13&under", "14-18","19&over"))

interaction.plot(Age,sex,s/r, type="l")

Nest we use regression on a dataset relating to survival of extremely premature
babies.
The data in Table 9.1 below is taken from the BMJ article ‘Survival of extremely
premature babies in a geographically defined population: prospective cohort study of
1994-9 compared with 2000-5’ by Field, Dorling, Manktelow and Draper, BMJ2008;
336; 1221-1223.
As you will recall, the ‘normal’ length of gestation is 40 weeks. Table 9.1 shows r,
the numbers of babies surviving to discharge from the hospital, out of n, the number
admitted to neonatal intensive care, for babies born at gestational age of 23, 24 and
25 completed weeks respectively, firstly for the epoch 1994-9, and secondly for the
epoch 2000-5. You will see from the raw data that happily most of the survival rates
have improved from the first epoch to the second. For example, of babies born at
gestational age 24 weeks, in the first epoch 24% survived to discharge, but in the
second epoch 41% survived to discharge. Here is an extract from my R analysis of
these data for you to check and to interpret.

> first.glm <- glm(r/n~ Epoch+GestationalAge,binomial,weights=n)

> summary(first.glm)
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Gestational Age, in completed weeks 23 23 24 24 25 25
r n r n r n

Epoch= 1994-9 15 81 40 165 119 229
Epoch= 2000-5 12 65 82 198 142 225

Table 9.1: Survival of extremely premature babies

..........

Deviance Residuals:

1 2 3 4 5 6

0.8862 -0.8741 0.2657 -0.8856 0.7172 -0.2786

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.7422 0.2265 -7.692 1.45e-14

Epoch2000-5 0.5320 0.1388 3.834 0.000126

GestationalAge24 0.7595 0.2420 3.139 0.001695

GestationalAge25 1.7857 0.2348 7.604 2.88e-14

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 109.1191 on 5 degrees of freedom

Residual deviance: 2.9963 on 2 degrees of freedom

AIC: 42.133

Number of Fisher Scoring iterations: 4

Although the above analysis shows a remarkably good fit to the model

log(pij/(1− pij)) = µ+ αi + βj, i = 1, 2, j = 1, 2, 3

(using an obvious notation) we have so far taken no account of another possibly
‘explanatory’ variable, given in the BMJ paper. This is the mean number of days of
care, per baby admitted, and this mean noticeably increases from Epoch 1 to Epoch
2. What happens if you include the data from Table 9.2 into your analysis?

Gestational Age, in completed weeks 23 24 25
mean days mean days mean days

Epoch= 1994-9 22.9 45.0 52.6
Epoch= 2000-5 34.5 58.5 82.1

Table 9.2: Mean number of days of care, per admitted baby

Finally, we analyse a dataset from the UK team in the 2007 International Mathe-
matical Olympiad.
There were 6 team members (whom I present anonymously as UK1, ..., UK6) and
6 questions, and the possible marks for each question ranged from 0 to 7. Here is
the dataset
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person q1 q2 q3 q4 q5 q6

UK1 7 0 0 7 0 0

UK2 7 2 0 7 0 0

UK3 0 0 0 7 0 0

UK4 7 7 2 7 7 1

UK5 4 1 0 7 0 1

UK6 7 0 0 7 0 0

Setting up all the variables in the appropriate way, try

n <- rep(7, times=36)

first.glm <- glm(r/n ~ person + question, binomial, weights=n)

How is your analysis affected by the removal of question 4?
I took this dataset from the UK Mathematics Trust Yearbook, 2006-2007.



Chapter 10

Analysis of a 2-way contingency
table

Here we present an analysis of a 4× 2 contingency table and show 3 different ways
of getting the same result.
You can check from the log-likelihood function WHY these give the same result.
The data given in Table 10.1 were obtained by Prof I.M.Goodyer, as part of a study
on 11-year-old children, to investigate the relationship between ‘deviant behaviour’
(no/yes) and several other variables. The results for the variable ‘emotionality’ are
shown below (emo=1 meaning low emotionality,... emo=4 meaning high emotional-
ity). Here are my suggestions for the analysis.

behaviour no yes
emo=1 51 3
emo=2 69 11
emo=3 28 22
emo=4 7 13

Table 10.1: Is there a link between emotionality and bad behaviour?

a <- c(51,69,28,7) ; b <- c(3,11,22,13)

one <- c(1,1,1,1)

indepB <- glm(cbind(a,b)~ one ,binomial) # nb a ONE

summary(indepB)

x <- cbind(a,b)

chisq.test(x)

y <- c(a,b)

RR <- gl(4,1, length=8) # or RR <- c(1,2,3,4,1,2,3,4)

CC <- gl(2,4, length=8) # or CC <- c(1,1,1,1,2,2,2,2)

RR <- factor(RR) ; CC <- factor(CC) # is this necessary?

indepP <- glm(y~ RR + CC,poisson)

summary(indepP)

q()

All three tests are telling you the same thing: namely, behaviour is NOT independent
of the level of emotionality, and of course you can just see by looking at the data
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that this is the case.
Other useful functions for contingency tables are

xtabs(), mosaicplot(), fisher.test()

The last of these 3 functions relates to Fisher’s ‘exact’ test, and makes use of the
hypergeometric distribution. It is most often applied to 2 × 2 tables, but R has a
version for an r × s table too.
An example added after the Sheffield floods in June 2007
The Sheffield flood of March 1864 was a disaster not easily forgotten, and an excel-
lent description may be seen at http://www2.shu.ac.uk/sfca including the whole
book ‘A complete history of the great flood at Sheffield on March 11 and 12, 1864’
by Samuel Harrison, and also details of the resulting insurance claims. (It is salu-
tary to note that there was a total of 6987 claims, for a total of £458, 552, of which
£273, 988 was paid out. This included £123 11s 2d paid to my great great grand-
father, who was a Saw Manufacturer on Kelham Island.) You may like to consider
the contingency table given as Table 10.2, which shows Sheffield properties affected
by the flood. The row names are respectively abbreviations of the following

Totally Destroyed Partially Destroyed Flooded Only
Manufactories 12 25 80

Mills 4 17 22
Workshops 17 11 135

Shops 3 15 451
Dwellings 39 376 4096

Malthouses 2 22 162
Other 53 11 71

Table 10.2: Damage to property in the Sheffield flood of 1864

Manufactories, tilts etc
Rolling, grinding, corn and other mills
Workshops, warehouses, store rooms etc,
Drapers’, grocers’ and other sale shops
Dwelling houses
Malt houses, breweries, public and beer houses
Other buildings.

Note added June 2006.
Julian Faraway’s new book ‘Extending the Linear Model with R: generalized Linear,
Mixed Effects and Nonparametric Regression Models’ (2006) contains the dataset

cmob

on Social class mobility from 1971 to 1981 in the UK.
This gives us the 6× 6 contingency table describing Social class mobility from 1971
to 1981 for 42425 men from the United Kingdom census. The subjects were aged

http://www2.shu.ac.uk/sfca
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45-64.
Key to data frame
y= Frequency of observation
class71= social class in 1971; this is a factor with levels ‘I’, professionals, ‘II’ semi-
professionals, ‘IIIN’ skilled non-manual, ‘IIIM’ skilled manual, ‘IV’ semi-skilled, ‘V’
unskilled
class81= social class in 1981; also a factor, same levels as for 1971.
The source for these data was D. Blane and S. Harding and M. Rosato (1999) “Does
social mobility affect the size of the socioeconomic mortality differential?: Evidence
from the Office for National Statistics Longitudinal Study” JRSS-A, 162 59-70.
Here is the dataframe ‘cmob’.

y class71 class81

1 1759 I I

2 553 I II

3 141 I IIIN

4 130 I IIIM

5 22 I IV

6 2 I V

7 541 II I

8 6901 II II

9 861 II IIIN

10 824 II IIIM

11 367 II IV

12 60 II V

13 248 IIIN I

14 1238 IIIN II

15 2562 IIIN IIIN

16 346 IIIN IIIM

17 308 IIIN IV

18 56 IIIN V

19 293 IIIM I

20 1409 IIIM II

21 527 IIIM IIIN

22 12054 IIIM IIIM

23 1678 IIIM IV

24 586 IIIM V

25 132 IV I

26 419 IV II

27 461 IV IIIN

28 1779 IV IIIM

29 3565 IV IV

30 461 IV V

31 37 V I

32 53 V II

33 88 V IIIN

34 582 V IIIM
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35 569 V IV

36 813 V V

And here are some suggestions for the analysis. First construct the 6 by 6 contin-
gency table

(x = xtabs(y ~ class71 + class81, data=cmob))

p = prop.table(x,1)

round(p,2) # to show the transition matrix, 1971- 1981

(p2 = p %*% p)

# this shows what happens after 2 jumps in the Markov chain.

p3 = p %*% p2 # and so on

Using repeated matrix multiplication, find the equilibrium probabilities of this as-
sumed Markov chain.



Chapter 11

Poisson regression: some examples

This exercise shows you use of the Poisson ‘family’ or distribution function for
loglinear modelling.
Also it shows you use of the ‘sink()’ directive in R.
As usual, typing the commands below is a trivial exercise: what YOU must do is to
make sure you understand the purpose of the commands, and that you can interpret
the output.

First. The total number of reported new cases per month of AIDS in the UK up to
November 1985 are listed below(data from A.Sykes 1986).
We model the way in which y, the number of cases depends on i, the month number.

y <- scan()

0 0 3 0 1 1 1 2 2 4 2 8 0 3 4 5 2 2 2 5

4 3 15 12 7 14 6 10 14 8 19 10 7 20 10 19

# nb, blank line

i<- 1:36

plot(i,y)

aids.reg <- glm(y~i,family=poisson) # NB IT HAS TO BE lower case p,

# even though Poisson was a famous French mathematician.

aids.reg # The default link is in use here, ie the log-link

summary(aids.reg) # thus model is log E(y(i))=a + b*i

fv <- aids.reg$fitted.values

points(i,fv,pch="*") # to add to existing plot

lines(i,fv) # to add curve to existing plot

sink("temp") # to store all results from now on

# in the file called "temp". The use of

# sink(), will then switch the output back to the screen.

aids.reg # no output to screen here

summary(aids.reg) # no output to screen here

sink() # to return output to screen

names(aids.reg)
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Table 11.1: vCJD data
1994 1995 1996 1997 1998 1999 2000

3,5 5,5 4,7 7,7 8,9 20,9 12,11

Table 11.2: GM tree releases
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

1 1 0 2 2 2 1 1 6 3 5

q() # to QUIT R

type temp # to read results of "sink"

(The deviance, 2Σyi log(yi/ei), in the above example is large in comparison with the
expected value of χ2

34, but since we have so many cells with ei < 5, the approximation
to the χ2

34 distribution will be poor. We could improve matters here, say by pooling
adjacent cells to give larger values of ei for the combined cells, then recomputing
the deviance, and reducing the degrees of freedom of χ2 accordingly.)
Table 11.1 gives the Confirmed and probable vCJD patients reported to the end of
December 2001, sorted into males (the first number given in each pair) and females
(the second number of the pair), according to their Year of onset of the illness.
Can we use a Poisson model for these data?
Here is another data-set of similar structure for you to investigate (once again, a

gloomy subject I’m afraid).
The Independent, November 10, 1999, published an article headed
“GM trees pose risk of ‘superweed’ calamity”.
This article gave a table, headed ‘Released into the environment’, that showed the
following figures for GM tree species released into the environment through field
trials. This is summarised in Table 11.2. Thus, for example, in 1988 there was just
one GM species (European aspen) released into the environment, and in 1998 five
new GM species were released. (In total, 24 different GM tree species were released.
These figures are taken from ‘at least 116 GM tree trials in 17 countries, involving
24 species’.) You could try a Poisson regression for 1, 1, 0, ...., 5.

Table 11.3 is yet another example of newspaper data for which we might try Poisson
regression. On October 18, 1995, ‘The Independent’ gave the following Table 11.3
of the numbers of ministerial resignations because of one or more of the following:
Sex scandal, Financial scandal, Failure, Political principle, or Public criticism, which
we abbreviate to Sex, Fin, Fai, Pol, Pub, respectively as the rows of Table 11.4. The
years start in 1945, with a Labour government, and 7 Resignations.

Is there any difference between Labour and Conservative in the rate of resigna-
tions?
To answer this question, we will need to include log(t) as an offset in the Poisson
regression, where t is the length of time of that Government, which we only know
from these data to the nearest year.
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Table 11.3: Ministerial resignations, and type of Government.

Date 45-51 51-55 55-57 57-63 63-64 64-70 70-74 74-76 76-79 79-90 90-95
Gov’t lab con con con con lab con lab lab con con
Res’s 7 1 2 7 1 5 6 5 4 14 11

Table 11.4: Breakdown of resignations data
Sex 0 0 0 2 1 0 2 0 0 1 4
Fin 1 0 0 0 0 0 2 0 0 0 3
Fai 2 1 0 0 0 0 0 0 0 3 0
Pol 3 0 2 4 0 5 2 5 4 7 3
Pub 1 0 0 1 0 0 0 0 0 3 1

The Independent also gave the breakdown of the totals in Table 11.3, which of course
results in a very sparse table. This is Table 11.4. The 11 columns correspond to the
same sequence of 45− 51, 51− 55, . . . , 90− 95 as before.
(The resignation which precipitated the newspaper article in October 1995 may in

fact have been counted under two of the above headings.)
Extra data added November 3, 2005, following the resignation of David
Blunkett
Abstracting the new data from today’s Independent ‘Those that have fallen: minis-
terial exits 1997-2005’
I decided not to attempt to give the ‘reasons’ for resignation (too controversial).
D.Foster May 1997
R.Davies Oct 1998
P.Mandelson Dec 1998
P.Mandelson Jan 2001
S.Byers May 2002
E.Morris Oct 2002
R.Cook March 2003
C.Short May 2003
A.Milburn June 2003
B.Hughes April 2004
D.Blunkett Dec 2004
D.Blunkett Nov 2005.
I still lack data for the period Oct 1995- April 1997, but here is an R program for
you to try

Term Gov Res years

45-51 lab 7 6

51-55 con 1 4

55-57 con 2 2

57-63 con 7 6

63-64 con 1 1

64-70 lab 5 6
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70-74 con 6 4

74-76 lab 5 2

76-79 lab 4 3

79-90 con 14 11

90-95 con 11 5

97-05 lab 12 8

Having put this dataset in as the file “Resignations” given above, here’s how we will
analyse it. Note that this program also enables us to plot, in Figure 11.1
Res against log(years)
using different coloured points for the 2 levels of the factor Gov (blue for conservative,
and red for labour, unsurprisingingly).

Resignations <- read.table("Resignations", header=T)

attach(Resignations)

plot(Res ~ log(years), pch=19, col=c(4,2)[Gov])

# Use palette() to find out which colour corresponds

# to which number

title("Ministerial Resignations against log(years)")

legend("topleft", legend= c("conservative", "labour"), col=c(4,2), pch=19)

# for onscreen location of legend box, you can replace

# "topleft" by locator(1)

# and use the mouse for positioning

first.glm <- glm(Res ~ Gov + log(years), poisson); summary(first.glm)

next.glm<- glm(Res ~ Gov + offset(log(years)), poisson); summary(next.glm)

last.glm <- glm(Res ~log(years),poisson); summary(last.glm)

l <- (0:25)/10

fv <- exp(0.3168 + 0.9654*l)# to plot fitted curve under last.glm

lines(l,fv)

And here’s another dataset for Poisson regression. This is taken from the British
Medical Journal, 2001;322:p460-463. The authors J.Kaye et al wrote ‘Mumps,
measles, and rubella vaccine and the incidence of autism recorded by general prac-
titioners: a time trend analysis’ and produced the following table, for which the
column headings are
Year of diagnosis, Number of cases, Number of person-years at risk, Estimated in-
cidence per 10,000 person-years, median age (in years) of cases.

Diag Cases Pyears Inc Age

1988 7 255771 0.3 6.0

1989 8 276644 0.3 5.6

1990 16 295901 0.5 5.0

1991 14 309682 0.5 4.4

1992 20 316457 0.6 4.0

1993 35 316802 1.1 5.8

1994 29 318305 0.9 4.6
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Figure 11.1: Ministerial resignations

1995 46 303544 1.5 4.3

1996 36 260644 1.4 4.7

1997 47 216826 2.2 4.3

1998 34 161664 2.1 5.4

1999 13 60502 2.1 5.9

These data are obtained from UK general practices.

Accidents for traffic into Cambridge, 1978-1981.
How does the number of accidents depend on traffic volume, Road and Time of day?
We have data on the number of accidents y in this 3-year period, for Trumpington
Rd, Mill Road, respectively, at 3 different times of day, 7-9.30 am,9.30am-3pm,
3-6.30 pm, respectively, with v as the corresponding estimate of traffic density.
Naturally we expect the accident rate to depend on the traffic density, but we want
to know whether Mill Rd is more dangerous than Trumpington Rd (it probably still
is, but Trumpington Rd now has a cycle way) and whether one time of day is more
dangerous than another. Our model is yij ∼ Po(µij) with log(µij) = α + βi + γj +
λlog(vij) for i = 1, 2 corresponding to Trumpington Rd, Mill Rd, respectively, and
j = 1, 2, 3 corresponding to 7-9.30 am, 9.30am-3pm, 3-6.30 pm respectively. (As
usual, β1 = 0 and γ1 = 0.)

y <- scan()

11 9 4 4 20 4
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v <- scan()

2206 3276 1999 1399 2276 1417

rd <- c(1,1,1,2,2,2)#rd=1 for Trumpington Rd,rd=2 for Mill Rd

ToD <- c(1,2,3,1,2,3)#ToD =1,2,3 for 7-9.30 am,9.30am-3pm,3-6.30 pm resp’ly

#but more elegantly,

rd <- gl(2,3, length=6, labels=c("TrumpingtonRd","MillRd"))

ToD <- gl(3,1,length=6, labels=c("7-9.30am", "9.30am-3pm","3-6.30pm"))

plot.design(y/v ~ rd + ToD) # for quick eye-ball check

accidents<- glm(y~RD +ToD + log(v),family=poisson)

summary(accidents)

The resulting ‘design plot’ is given in Figure 11.2. The residual deviance of 1.88 on 1
df shows that the model fits well. We can see that Mill Rd is indeed more dangerous
than Trumpington Rd, and the 9.30am-3pm time of day is less dangerous than the
other two, which are about the same as each other.

drop.road <- update(accidents,.~. -RD) ; summary(drop.road)

drop.ToD <- update(accidents,.~.-ToD) ;summary(drop.ToD)

new <- c(1,2,1, 1,2,1);NEW <- factor(new)

# or, more elegantly, as follows

NEW <- ToD; levels(NEW) <- c(1,2,1)

acc.new <- glm(y~RD+NEW+lv,poisson); summary(acc.new)

Can you see the point of the factor “NEW”?
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Predicting the Beijing Olympics medals for Team GB, August 2008
The Independent, 6 August 2008, presents the dataset shown in Table 11.5 on
‘British medal hauls at the past 10 Olympics’.

First of all we could look at this dataset as a 10 × 3 contingency table, to see if

Gold Silver Bronze
Athens 2004 9 9 12
Sydney 2000 11 10 7
Atlanta 1996 1 8 6
Barcelona 1992 5 3 12
Seoul 1988 5 10 9
Los Angeles 1984 5 11 21
Moscow 1980 5 7 9
Montreal 1976 3 5 5
Munich 1972 4 5 9
Mexico City 1968 5 5 3

Table 11.5: British Olympics medals from 1968 to 2004

the distribution of Total medals into Gold, Silver and Bronze remains approximately
homogeneous over these 10 sets of Games. (The sports enthusiasts will already know
that the total number of Events, and the total number of competing countries both
change considerably from 1968 to 2008.) However, if you just set up the table above
as a suitable matrix, you will find that

chisq.test(x)

results in a chisq statistic of 19.8 on 18 df. Hence in any given year, we expect the
total number of medals to fall into the categories Gold, Silver, Bronze respectively
with probabilities 0.242, 0.333, 0.425 respectively.
Can we predict the total number of medals for Team GB in 2008?
Here is my suggestion.

Total <- Gold + Silver + Bronze ; Total

Year <- 10:1; first.glm = glm(Total~Year, poisson);summary(first.glm)

But this has residual deviance of 18.4 on 8 df, so the model fails to fit. Looking at it
a bit harder, we can see the reason why: the Los Angeles 1984 games gives a large
residual, and a surprisingly large Total of 31 medals. We can justify omitting this
datapoint from our model, as 1984 was a ‘strange’ year in this context: almost all
the Eastern Bloc countries boycotted these particular games. Thus our next model
is

next.glm <- glm(Total[-6] ~ Year[-6], poisson)

Very satisfactorily, this brings the residual deviance right down: it is now 6.8 on 7
df.
Emboldened by this success, we will now predict the Team GB Total for 2008.
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> library(MASS)

> new.data <- data.frame(Year= 11)

> predict.glm(next.glm,newdata= new.data, type="response",se.fit=T)

$fit

1

29.15959

$se.fit

1

4.122133

> 29.15959- 2*4.122133 ; 29.15959 + 2*4.122133

[1] 20.91532

[1] 37.40386

So the predicted Total number of medals is 29.2, for which the confidence band is
about (20.9, 37.4), which I trust is wide enough for me to be proved correct in due
course
August 25, 2008: Team GB has a Total of 47 medals, consisting of 19
Gold, 13 Silver and 15 Bronze. So the Team GB performance was much
better than our past records led us to expect.

Note added March 2008: fitting a non-linear quasi-Poisson model to ac-
tuarial data
We may want to move outside the rather restricted framework of the Generalized
Linear Model, and now R users may avail themselves of the powerful and flexible
Generalized Nonlinear Model package, written by David Firth and Heather Turner
of Warwick University.
For example, actuaries use the Lee-Carter model to describe the dependence of mor-
tality on age and calendar year. Suppose we have data on the deaths Day, at age
a which we will assume in our example takes values 20, 21, . . . , 99, 100 and during
calendar year y. We will assume y takes values 1947, 1948, . . . , 2003. Let eay rep-
resent the ‘exposure’ corresponding to Day (for example this might be the number
of person-years at risk in that particular category). Assume further that Day has
expectation µay, and variance φµay, for some unknown µay, φ. We model the de-
pendence of µay on the age and the year. A Poisson model would have φ = 1, but
it makes sense to allow φ to be different from 1 (because we expect over-dispersion
relative to the Poisson, in which case φ > 1). The Lee-Carter model states that

log(µay/eay) = αa + (exp βa)γy

for a = 20, 21, . . . , 99, 100 and y = 1947, 1948, . . . , 2003. (We have written the model
in this form since it makes sense to have the multiplier exp βa > 0 always.)
For parameter identifiability, we will take

α20 = 0, β20 = 0, γ1947 = 0.

Then, assuming we have read the data into R, and set up Age and Year as factors,
the commands needed to fit the Lee-Carter model are
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library(gnm)

first.gnm = gnm(Deaths ~ Age + Mult(Exp(Age),Year), constrain=c(82,163),

family="quasipoisson", offset=log(Exposure))

summary(first.gnm)

The ‘constrain=c(82,163)’ looks odd, but you’ll find it’s simply a matter of counting
the number of parameters in the model. You can omit ‘constrain=c(82,163)’, and
you will fitting an equivalent model, but I found the output harder to interpret as
we no longer have the β20 = 0, γ1947 = 0 constraint.
Helpful plots are obtained, for example, by

library(relimp) ; library(qvcalc)

AgeContrasts = getContrasts(first.gnm, 82:162)

plot(AgeContrasts)



Chapter 12

Fisher’s exact test, 3-way
contingency tables, and Simpson’s
paradox

Here we use the Poisson distribution for log-linear modelling of a two-way contin-
gency table, and compare the results with the corresponding binomial formulation.
We construct a fictitious 3-way table to illustrate Simpson’s paradox.
The Daily Telegraph (28/10/88) under the headline ‘Executives seen as DrinkDrive
threat’ presented the following data from breath-test operations at Royal Ascot and
at Henley Regatta (these being UK sporting functions renowned for alcohol intake
as well as racehorses and rowing respectively).
Are you more likely to be arrested, if tested, at R.A. than at H.R.?
You see below that a total of (24 + 2210) persons were breathalysed at R.A., and
similarly a total of (5 + 680) were tested at H.R. Of these, 24 were arrested at
R.A., and 5 at H.R. Hence the proportions arrested at R.A., H.R. respectively are
0.0107, 0.0073. We wish to test whether these are significantly different. In other
words, we wish to test whether the breath-test result (arrested or not arrested) is
independent of the location (R.A. or H.R.).

r <- scan()

24 2210 # Royal Ascot

5 680 # Henley Regatta

Row <- c(1,1,2,2) ; Col <- c(1,2,1,2);ROW <- factor(Row);COL <- factor(Col)

# Col= 1 for ARRESTED,Col= 2 for NOT arrested

saturated <- glm(r~ ROW*COL,family=poisson)# for a perfect fit

independence <- glm(r~ ROW+COL,family=poisson)

summary(saturated)

This shows us that the ROW.COL term can be dropped: refer .39/.49 to N(0, 1).

summary(independence)

This shows us that the independence model fits well: refer the residual deviance of
0.67733 to χ2 with 1 df.
Here is another way of answering the same question.

58
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a <- c(24,2210) ; b<- c(5,680) ; tot <- a+b; p <- a/tot

Row <- c(1,2) ; ROW<- factor(Row)

indep <- glm(p~ 1 ,family=binomial,weights=tot)

and you will see that this last model also has residual deviance of 0.67733 with 1 df.
Recall that two independent Poisson random variables conditioned on their sum
gives a binomial.
Telling the same story are

chisq.test(rbind(a,b)) # for an asymptotically equivalent result.

fisher.test(rbind(a,b)) # for Fisher’s ‘Exact’ test

Now a little piece of fantasy, with a serious educational purpose (of course).
It can be very misleading to “collapse” a 3-way table, say Ascot/Henley × Ar-
rest/NonArrest × Men/Women over one of the dimensions, say Men/Women. For
example (pure invention) suppose the above 2× 2 table was in fact

24=23,1 2210=2,2208

5 =3,2 680=340,340

the first number of each pair being the number of men, the second being the number
of women. We analyse this 3-way table, again using a loglinear model, and the
Poisson distribution.

r <- scan()

23 2 1 2208

3 340 2 340

Row <- c(1,1,1,1,2,2,2,2);Col <- c(1,2,1,2,1,2,1,2)

gender <- c(1,1,2,2,1,1,2,2)

ROW<- factor(Row) ; COL <- factor(Col) ; GENDER<- factor(gender)

sat <- glm(r~ROW*COL*GENDER ,poisson) ; summary(sat)

Of course we have invented an example with a strong 3-way interaction. This means
that the relation between any two of the factors, say rows and columns, depends on
the level of the third factor, here the Gender. You should consider the following two
questions.
How does the arrest rate for men vary between Ascot and Henley?
How does the arrest rate for women vary between Ascot and Henley?
This is an example of ‘Yule’s paradox’. (An historical note: G.U.Yule was a Fellow
of St John’s college, Cambridge at the start of the last century.) It must be admitted
that most people outside Cambridge call it Simpson’s paradox (Simpson wrote about
‘his’ paradox in 1951, whereas Yule had written about it about 50 years earlier.)
Here is another example of a 3-way table, with data collected by M.Raza (2003) on
50 recent famous movies. We look at the interdependence of the following 3 factors:
whether or not the movie gets a BAFTA award (1 if successful, 0 otherwise)
whether or not the movie gets a Golden Globe (1 if successful, 0 otherwise)
whether or not the movie gets an Academy Award (1 if successful, 0 otherwise).
This gives us Table12.1.
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bafta=0 aa=0 aa=1
gg=0 y=18 y=3
gg=1 y=1 y=4

bafta= 1 aa = 0 aa = 1
gg=0 y=6 y=2
gg=1 y=2 y=14

Table 12.1: Bafta, Academy and Golden Globe Awards for 50 famous films

Thus, for example, there were 14 films that won a BAFTA, an Academy Award
and a Golden Globe, and 18 that won none of these.
By use of

y <- scan()

18 3 1 4 6 2 2 14

# blank line

bafta <- gl(2,4), length=8, labels=c(0,1))

gg <- gl(2,2, length=8,labels=c(0,1)); aa <- gl(2,1,length=8,labels=c(0,1))

glm(y ~ bafta+ gg + aa, poisson)

show that these 3 binary variables are non-independent (refer 37.73 to χ2
4). Find

out what happens if you try

glm(y ~ (bafta+ aa)*gg, poisson)

xtabs(y ~gg + aa + bafta) # for presenting a 3-way table

This results in

, , bafta = 0

aa

gg 0 1

0 18 3

1 1 4

, , bafta = 1

aa

gg 0 1

0 6 2

1 2 14

Now try

ftable(xtabs(y ~gg + aa + bafta)) # ftable means ‘flat table’

New for May 2010: Crime and temperature
Under the headline “Police feel the heat as crime rises along with temperature” The
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Independent of May 26, 2010, gives the following data on ‘Calls to Greater Manch-
ester Police: what a difference 12 degC makes’:
For the weekend of May 21-23, when the Manchester temperature had a high
of 27 degC, the number of calls to the GMP on Friday, Saturday, Sunday were
3702, 4193, 3825 respectively. The corresponding figure for the weekend of May 14-
17, when the Manchester temperature had a high of 15 degC, were 3200, 3414, 3484
respectively. Try the following program, and interpret the results.

n <- c(3702,3200,4193,3414,3825,3484)

Heat <- gl(2,1, length=6, labels = c("hot", "cool"))

Day <- gl(3,2, length=6, labels = c("Fri", "Sat","Sun"))

first.glm <- glm( n ~ Heat + Day, poisson)

summary(first.glm)

summary(glm(n ~ Heat + Day, family =quasipoisson))



Chapter 13

Defining a function in R, to plot
the contours of a log-likelihood
function

Here we plot the contours for the Poisson regression log-likelihood surface corre-
sponding to the ‘Aids’ dataset used in Worksheet 10.

You will see how to define and use a function in R.

y <- scan("aids") # same data as before.

i <- 1:36 ; ii<- i-mean(i) # to make the surface a better shape

aids.reg <- glm(y~ii,poisson)

summary(aids.reg, cor=T)

Our model is yi ∼ Po(µi), independent, with log(µi) = a + b ∗ ii. We see that our
maximum likelihood estimates are â = 1.51 + / − .09 and b̂ = .08 + / − .008. We
now compute the loglikelihood function, in terms of the parameters a, b.

loglik <- function(a,b){

loglik <- - sum(exp(a+b*ii)) + a*t1 +b*t2

loglik

}

Here t1 and t2 are the sufficient statistics, thus

t1 <- sum(y) ; t2 <- sum(ii*y)

We plot the loglikelihood surface for 1.3 ≤ a ≤ 1.7 and .05 ≤ b ≤ .09.

a <- 0:20 ; a <- a*(.02) + 1.3

b <- 0:20 ; b <- b*(.002) + 0.05

zz <- 1: (21*21) ; z <- matrix(zz,21,21) # to set up z as a matrix

for (x in 1:21){

for (y in 1:21){

z[x,y] <- loglik(a[x],b[y])

}

}

z[1,] # to see the first row of the matrix
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Figure 13.1: The contours of the log-likelihood function

contour(a,b,z, xlab="a", ylab="b")

points(1.51, 0.08) # to put the mle on the graph

The elliptical contours are shown in Figure 13.1. Note that the elliptical contours
show the negative correlation between the estimates of a and b.

image(a,b,z, col=terrain.colors(30))

persp(a,b,z,theta = 30, phi = 30, expand = 0.5, col = "lightblue")

also give nice plots, as shown in Figures 13.2, 13.3 respectively.
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Figure 13.2: An image plot of the log-likelihood function
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Figure 13.3: A perspective plot of the log-likelihood function (in Cambridge blue)



Chapter 14

Regression diagnostics continued,
and the hat matrix

Here we give further details of regression diagnostics, and discuss leverage and the
hat matrix.
First here is a very small simulation, to show you a point of high leverage.

set.seed(1.05) # to get same picture every time

x1 <- rnorm(10) ; y1 <- rnorm(10)

x <- c(x1,25) ; y <- c(y1,6)

plot(x,y)

big.lm <- lm(y~x) ; summary(big.lm) ; abline(big.lm, lty =1)

little.lm <- lm(y1~ x1) ; summary(little.lm) ; abline(little.lm, lty=2)

legend("topleft", lty = c(1, 2),

legend = c("all points", "all but the point of high leverage"))

postscript("ws12.ps")

plot(x,y)

abline(big.lm, lty =1)

abline(little.lm, lty=2)

legend("topleft", lty = c(1, 2),

legend = c("all points", "all but the point of high leverage"))

dev.off()

rm(x1,y1)# we use these as column headings in the next example

The corresponding graph is Figure 14.1. So you see that (x1, y1) is a sort of ‘cloud’
of points, generated from the normal distribution, mean 0, variance 1, and so that
there is no relation between y1 and x1. We should see that the resulting linear
regression shows a rather low R2.
But when you augment this ‘data’ set by the ‘special’ point (25, 6), the fit of the
straight line is apparently much better, with R2 much nearer to 1. Of course the
graph shows you that the new fitted line is almost a perfect fit at this (25, 6).

Table 14.1 shows a classic “data” set, cunningly constructed by the late F.J.Anscombe.
Read this data-set by
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Figure 14.1: An example of a single point of high leverage

x1 y1 x2 y2 x3 y3 x4 y4
10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

Table 14.1: Anscombe’s cunning quartet

data(anscombe) # as it is already an R dataset

attach(anscombe) # to put the column headings on

par(mfrow=c(2,2))

plot(y1~x1, xlim=c(3,20), ylim=c(3,15))

abline(lm(y1~x1))

plot(y2~x2, xlim=c(3,20), ylim=c(3,15))

abline(lm(y2~x2))

plot(y3~x3, xlim=c(3,20), ylim=c(3,15))

abline(lm(y3~x3))

plot(y4~x4,xlim=c(3,20), ylim=c(3,15))

abline(lm(y4~x4))
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Figure 14.2: Four identical regression lines: which one do you trust?

summary(lm(y1 ~x1)) # .... and so on

The resulting 4 graphs are given as Figure 14.2.

We will now look at the Hat matrix, H. This will involve using R for some linear
algebra.
Reminder, in the general linear model

Yi = βTxi + εi, 1 ≤ i ≤ n

equivalently
Y = Xβ + ε,

where X is an n× p matrix, assumed to be of rank p, the Least Squares Estimator
β̂ of β is β̂ = (XTX)−1XTY , and so the fitted values Ŷ may be written

Ŷ = Xβ = HY,

thus defining the matrix H as H = X(XTX)−1XT . (You may check that H = HT ,
and HH = H, further tr(H) = p.) Note that

Ŷi = ΣhijYj :

this shows you the special role of (hii), the diagonal elements of H, called the
leverages. You could now try some influence or leverage plots: for example
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X <- cbind(1,x1) # to construct the design matrix in lm(y1~x1)

H <- X %*% solve(t(X) %*% X) %*% t(X) # to construct the Hat matrix

# %*% is the symbol for matrix multiplication

# t() is the matrix transpose function

h <- diag(H) # to construct the vector of the diagonal els. of H

mean(h) # must be (2/11), by general theory

index <- 1:11

plot(index,h) # for a plot of the leverages

hlarge <- (2*2)/11

abline(h=hlarge) # so that we can pick out points with large leverages

?hat

See E.R.Tufte, “The Visual Display of Quantitative Information”.



Chapter 15

Football arrests, Poisson and the
negative binomial regressions

This dataset comes from the National Criminal Intelligence Service, and represent
Football- related arrest figures for 2000/2001, classified by ‘Team Supported’, for
each of the four UK divisions. We use this dataset as an illustration of over-
dispersion relative to the Poisson distribution, and how to fit an appropriate model.
Premiership, 1stDivision, 2ndDivision, 3rdDivision are the 4 columns of total arrests
below, which you can read via

read.table(" ", header=T)

54 38 16 3

60 38 6 15

80 61 52 25

17 44 33 40

74 83 0 17

35 7 5 5

28 11 6 18

108 17 13 26

18 27 93 15

119 19 13 9

69 26 7 12

78 14 19 59

148 51 13 3

150 31 47 20

105 41 13 10

191 29 25 0

15 90 13 11

166 83 49 9

54 14 72 5

54 12 41 12

NA 20 10 20

NA 24 27 10

NA 11 24 1

NA 25 4 6
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Here’s a suggestion about how to proceed. Let us consider initially only the numbers
from the first column: call these y1, · · · , yn, say, where n = 20. First, we might try
the model:
y1, · · · , yn is a random sample from the Poisson distribution, mean µ. Of course this
is very quick to fit, via

summary(glm(y~1, poisson))

and what is perhaps hardly surprising, we find it fits VERY badly (deviance= 644.56,
df = 19). The spread of the frequencies is much greater than we would expect from
a Poisson distribution with mean 81.15 (= ȳ).
So, let’s try something new. We will derive the negative binomial as a generalisation
of the Poisson: this is often appropriate for ‘accident’ type data. Following the
derivation given in Venables and Ripley’s book, we assume
Y |E = e is Poisson with mean µe
and θE is a gamma random variable, with parameter θ (ie θ is its shape parameter).
Hence E has mean 1, variance 1/θ, and
Y has mean µ, and variance µ+ µ2/θ.
You may then check that the frequency function of Y is

fY (y;µ, θ) =
Γ(θ + y)µyθθ

Γ(θ)y!(µ+ θ)θ+y
for y = 0, 1, . . . .

As θ tends to ∞, this becomes an ordinary Poisson again. For finite θ, it is the
negative binomial, with parameters µ, θ. Show that the resulting log-likelihood for
the data above may be written as L(µ, θ), which is

Σ[logΓ(θ + yi) + yilog(µ) + θlog(θ)− logΓ(θ)− (θ + yi)log(µ+ θ)− logΓ(yi + 1)].

Now find the derivative of this with respect to µ, and hence show that

µ̂ = ȳ.

Finding the mle of θ is more tricky: we cannot find a closed form expression for
it. Here are 2 possible ways to find it numerically: both of them will teach you
something:
i) Use an ‘off-the-shelf’ function, thus

library(MASS)

glm.nb(y~1) # fitting the negative binomial, using a V&R function

This gives θ̂ = 2.328(se = 0.717), and deviance= 21.354(19df).
To show you how different this negative binomial is from the Poisson with the same
mean, namely 81.15, I have plotted the two frequency functions on the same graph,
as shown in Figure 15.1. This is achieved by

x = 0:300

y1 = dpois(x,81.15)

y2 = dnbinom(x, size=2.33, mu=81.15)
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Figure 15.1: Comparing the Poisson and the negative binomial

matplot(x, cbind(y1,y2), type="l", ylab = "frequency function")

legend("topright", lty=c(1,2),

legend=c("Poisson with mean 81.15",

"negative binomial with mean 81.15, size=2.33"))

ii) Set up the function −L(µ, θ) in R, (see below) and minimise this 2-parameter
function in R, finding also the matrix of 2nd derivatives at the same time, in order
that you can then invert this to derive the asymptotic covariance matrix of the mle’s,
(µ̂, θ̂).

loglik <- function(p){

#actually this is minus log-lik, since nlm() MINIMISES

th <- p[1] ; mu <- p[2]

-(sum(lgamma(th+y)+y*log(mu/(mu+th))

+th*log(th/(mu+th))-lgamma(th)-lgamma(y+1)))

}

nlm(loglik,p=c(2,80), hessian=T)

When I repeated these calculations for the other 3 divisions, I found that my
estimates of θ for each of the 4 divisions were, respectively

2.328(0.717), 2.525(0.745), 1.275(0.371), 1.51(0.48)

and I have to say that I am unable to interpret the fact that θ is around 2: perhaps
YOU can offer an explanation for this? (Unfortunately total match attendance
figures, which must surely be relevant, seem to be unavailable.) One thing you will
notice is that while the Poisson distribution with mean 81.15 looks very symmetric
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(and Gaussian), the negative binomial with parameters 81.15, 2.33 is highly skew,
with a long tail to the right.
Go back to your expression for ∂L/∂µ: of course we know that this has expected
value equal to zero. Take the derivative of this expression with respect to θ, and
then take the expectation. Hence show that, asymptotically, µ̂, θ̂ are uncorrelated.
Yudi Pawitan points out that although the deviance for the negative binomial cannot
be interpreted as a goodness of fit test (the chi-sq distribution theory does not apply)
we can do an ‘eyeball’ test of the goodness of fit as follows

yran <- rnbinom(20,mu=81.15, size=2.32)

# to generate a sample from this distribution

qqplot(y,yran) ; abline(0,1)

Note that for θ unknown, the negative binomial does NOT lie within the glm frame-
work. But consider the following special case. Suppose θ is known, and y1, . . . , yn are
independent negative binomial, with parameters µ1, . . . , µn and common parameter
θ. Consider the following link function

µi/(µi + θ) = exp βTxi

for given covariates x1, . . . , xn. Show that this gives a glm with the canonical link,
and obtain the equations for β̂.

Finally, here’s a recent set of data on soccer arrests, for the 4 divisions in England
and Wales. Under the headline ‘High-tech hooligans lure youths to football ‘firms”,
The Times, on August 19, 2003, gives the following data for the 2002-2003 season.
The column headings are
totarr = total arrests, and viol= arrests for violent disorder.

Premiership

totarr viol

ManchesterUtd 186 13

Sunderland 185 6

NewcastleUtd 139 2

BirminghamCity 138 27

Liverpool 133 8

Chelsea 122 5

Everton 119 3

ManchesterCity 110 6

LeedsUtd 104 5

AstonVilla 101 23

T’hamHotspur 88 9

Middlesborough 67 0

W,Brom.Albion 63 2

W.HamUtd 57 3

Arsenal 53 2

BlackburnRovers 51 0

BoltonWanderers 45 1
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Southampton 40 3

Fulham 19 0

CharltonAthletic 17 1

Division One

totarr viol

NottinghamForest 141 6

Burnley 121 7

SheffieldUtd 106 27

SheffieldWed 104 18

LeicesterCity 80 14

DerbyCo 72 6

StokeCity 69 4

Portsmouth 52 5

NorwichCity 43 5

Brighton&HoveAlb 35 6

CrystalPalace 35 2

PrstonNorthEnd 30 1

BradfordCity 28 3

CoventryCity 28 0

IpswichTown 28 1

RotherhamUtd 28 0

Reading 19 2

GrimsbyTown 18 0

Millwall 18 2

Gillingham 9 0

Division Two

totarr viol

CardiffCity 149 11

PlymouthArgyle 91 3

BristolCity 70 6

Barnsley 59 24

QPR 53 5

HuddersfieldTown 52 17

SwindonTown 51 2

PortVale 46 3

LutonTown 42 13

WiganAthletic 41 3

MansfieldTown 32 2

OldhamAthletic 23 2

NorthamptonTown 21 5

TranmereRovers 15 0

Brentford 13 1

Chesterfield 10 0

Blackpool 9 0

PeterboroughUtd 9 0
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CheltenhamTown 8 1

ColchesterUtd 8 0

NottsCounty 8 0

CreweAlexandra 7 0

StockportCounty 6 1

WycombeWanderers 3 1

Division Three

totarr viol

LincolnCity 52 17

CarlisleUtd 42 9

SwanseaCity 32 2

ScunthorpeUtd 29 1

HartlepoolUtd 25 0

Wrexham 24 1

ShrewsburyTn 21 1

BristolRovers 18 3

CambridgeUtd 16 0

BostonUtd 15 3

Bournemouth 15 1

Darlington 14 0

ExeterCity 13 0

YorkCity 13 2

HullCity 12 0

OxfordUtd 10 0

Rochdale 10 0

Bury 8 2

LeytonOrient 7 1

SouthendUtd 7 0

Rushden&Diamonds 1 0

KidderminsterH’s 0 0

Macclesfield 0 0

TorquayUtd 0 0

Note that you can very quickly fit negative binomials, in R, thus

library(MASS)

fitdistr(totarr,"Negative Binomial")

You might like to consider how the parameters θ change between the 4 divisions,
and to see whether you can offer any interpretation.



Chapter 16

An interesting data set on
Election turnout and poll leads

What happens when we model the data given by Prof Pippa Norris (Harvard Uni-
versity) in the Financial Times of April 20, 2005?
See ‘Stirring up apathy?’
Here is her dataset, with my analysis in R.

>PN.data

Year UKTurnout Poll_Lead

1 1945 72.8 6.0

2 1950 83.9 0.6

3 1951 82.6 4.5

4 1955 76.8 3.7

5 1959 78.7 2.8

6 1964 77.1 1.9

7 1966 75.8 10.4

8 1970 72.0 3.1

9 1974 78.8 3.6

10 1974 72.8 8.9

11 1979 76.0 5.3

12 1983 72.7 19.8

13 1987 75.3 8.0

14 1992 77.7 0.4

15 1997 71.4 16.0

16 2001 59.4 14.2

The linear regression of UKTurnout on Poll Lead has rather a poor fit, as shown
below

> summary(lm(UKTurnout ~ Poll_Lead))

Call:

lm(formula = UKTurnout ~ Poll_Lead)
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 79.4492 1.7617 45.098 < 2e-16 ***

Poll_Lead -0.6171 0.2006 -3.076 0.00822 **

Residual standard error: 4.434 on 14 degrees of freedom

Multiple R-Squared: 0.4032, Adjusted R-squared: 0.3606

F-statistic: 9.46 on 1 and 14 DF, p-value: 0.00822

but the dependence on Poll Lead is clearly significantly negative.

par(mfrow=c(2,1))

scatter.smooth(Year, UKTurnout)

# scatter.smooth() is used here without

# proper explanation, but you can see what it does.

scatter.smooth(Year, Poll_Lead)

This will plot two helpful graphs, as shown in Fig 16.1.
Many statisticians would prefer to work with a transform of UKTurnout and Poll
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Figure 16.1: Scatter plots for UK election turnouts, and for Poll Leads

Lead, rather than the original variables, since each of UKTurnout and Poll Lead is
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constrained to be between 0 and 100. In this context it is natural to use the logit
transform, and so we define the transformed variables x and y below, and repeat
the linear regression, also including ‘Year’ as one of the independent variables. This
greatly improves the fit, and shows that each of the terms x, Year in the regression
equation is significant, with a negative coefficient.

>y <- log(UKTurnout/(100-UKTurnout))

>x <- log(Poll_Lead/(100-Poll_Lead))

>first.lm <- lm(y ~ x + Year)

Call:

lm(formula = y ~ x + Year)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.963014 6.282647 2.541 0.0246 *

x -0.120186 0.047713 -2.519 0.0257 *

Year -0.007708 0.003161 -2.439 0.0298 *

Residual standard error: 0.199 on 13 degrees of freedom

Multiple R-Squared: 0.5891,Adjusted R-squared: 0.5259

F-statistic: 9.32 on 2 and 13 DF, p-value: 0.003083

library(lattice)

?cloud # to find out about a 3-d scatter plot

We see that both x and Year have coefficients that are negative and significant.
But, study of standard regression ‘diagnostics’ shows that the 2001 row is highly
‘influential’ in the regression, so we repeat the linear model omitting that point: the
results are then less dramatic.

>summary(lm(y ~ x + Year, subset = (Year != 2001)))

Call:

lm(formula = y ~ x + Year, subset = (Year != 2001))

Residuals:

Min 1Q Median 3Q Max

-0.27468 -0.07640 0.03179 0.06444 0.29538

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.153553 5.597677 1.814 0.0948 .

x -0.103097 0.039732 -2.595 0.0235 *

Year -0.004719 0.002826 -1.670 0.1208

Residual standard error: 0.1636 on 12 degrees of freedom

Multiple R-Squared: 0.5084,Adjusted R-squared: 0.4265

F-statistic: 6.205 on 2 and 12 DF, p-value: 0.01412
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These analyses are a bit simple minded, since they make the the standard assump-
tion that residuals are independent and identically normal: I have done a quick
check for serial correlation, and it appears to be non-significant.
You could repeat this analysis including an extra row for 2005, for which UK-
Turnout=61.3 % and Poll Lead =6 % (??)



Chapter 17

glm() with the gamma distribution

I first constructed this for the Part IIC course ‘Statistical Modelling’ in 2005.

We follow the notation of McCullagh and Nelder (1970), who define the density
function of the gamma distribution with mean µ and shape parameter ν as

f(y|µ, ν) =
1

Γ(ν)
(νy/µ)νe−νy/µ

1

y

for y > 0.
You may check that this gives

E(Y ) = µ, var(Y ) = (µ2)/ν,

and the density is of standard glm form with φ = 1/ν, and canonical link η = 1/µ.
We simulate from two gamma distributions below, and use the glm fitting procedure,
with canonical link (ie the inverse). See if you can work out what’s going on.

library(MASS)

x <- (0:1000)/10

Y1 <- dgamma(x, shape=5, rate=0.1) # so true mean is 50

Y2 <- dgamma(x, shape=5, rate= 1) # so true mean is 5

matplot(x, cbind(Y1,Y2), type = "l", xlab="x",

ylab= "probability density function")

legend("topright", lty=c(1,2),

legend=c("first gamma density", "second gamma density"))

Figure 17.1 shows us these two densities. Now we will generate 2 random sam-
ples, of sizes 100, 50 respectively, from these two densities, and use glm() to fit the
appropriate model.

y1 = rgamma(100, shape=5, rate=0.1)

y2 = rgamma(50, shape=5, rate= 1.0)

In this notation, µ =shape/rate, and ν = shape. (So shape = 1 will give us a
negative exponential distribution.)

79
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Figure 17.1: Two very different gamma densities

par(mfrow=c(2,1))

truehist(y1) ; truehist(y2) # graphs not shown here

summary(y1); summary(y2)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.817 30.770 43.770 48.360 59.730 114.300

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.173 3.000 4.716 4.694 6.083 10.410

x =c(rep("a", times=100), rep("b", times=50))

is.factor(x) ; x = factor(x)

y = c(y1,y2)

plot(x,y) # graphs not shown here

first.glm = glm(y~x, Gamma) # nb, do not use "gamma"

summary(first.glm)

Call:

glm(formula = y ~ x, family = Gamma)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.21730 -0.33643 -0.09652 0.25573 1.10905

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0209790 0.0009124 22.99 <2e-16 ***

xb 0.1720752 0.0119088 14.45 <2e-16 ***

---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for Gamma family taken to be 0.1891440)

Null deviance: 144.609 on 149 degrees of freedom

Residual deviance: 28.430 on 148 degrees of freedom

AIC: 1095.8

dev = residuals(first.glm, type="deviance")

summary(dev) ; sum(dev^2)

This fits 1/µi = α for the first 100 observations, and 1/µi = α+β for the remaining
50 observations. What is 1/α̂?
What is 1/(α̂ + β̂)?
Note that the estimate given for ν is the reciprocal of the dispersion parameter φ,
and this dispersion parameter is estimated by

X2/(n− p)

where n is the number of observations, and p is the number of parameters in the
linear model (here p = 2) and

X2 = Σ[(yi − µ̂i)/µ̂i]2

Thus we find for this example that ν̂ = 5.287. This is actually a ‘moments’ estimator
rather than the mle: as an exercise you can write down the equation for the max-
imum likelihood extimator. You will find that this gives an equation involving the
function Γ′(ν)/Γ(ν) (the digamma function), and there is no closed-form solution to
this equation.
I must admit, I had difficulty working out where the AIC came from. It is, I believe,
minus twice the maximised log-likelihood +2×3, since we were fitting 3 parameters.
Try

> nu <- 5.287 # your simulation may mean you have a different estimator here

> fv <- first.glm$fitted.value

> term= -lgamma(nu) + nu*log(nu * y/fv) - (nu*y/fv) - log(y)

> sum(term)

-544.9114

and I trust you will see what I mean.

Reference
P.McCullagh and J.A.Nelder Generalized Linear Models Chapman and Hall (1990).



Chapter 18

Crime and unemployment: a
case-control study

This represents work done with the criminologist Prof D.P.Farrington. The rele-
vant ‘matched-pairs’ dataset is reproduced below. I first analysed it in the GLIM
Newsletter in 1987: the GLIM commands are easily translated into equivalent R
commands.
As part of a study on unemployment and crime, Farrington et al use the following
data on 36 boys:

Boy YearsinEmploy OffE YearsinUnemploy OffU

1 1.21 3 0.68 1

2 1.47 0 1.28 1

3 1.02 0 0.89 8

4 2.97 2 0.36 0

5 3.37 2 0.30 0

6 2.65 8 0.60 0

7 3.16 1 0.67 1

8 3.07 1 0.27 0

9 2.51 2 0.40 0

10 1.58 2 1.08 0

11 2.21 1 1.37 4

12 2.45 1 0.47 0

13 1.52 2 0.64 2

14 2.64 1 0.70 0

15 2.46 2 0.57 0

16 1.54 1 0.85 0

17 2.83 1 0.37 0

18 1.50 2 1.25 0

19 2.37 1 0.55 0

20 2.25 0 0.75 1

21 2.84 1 0.75 0

22 1.66 4 0.61 1

23 2.39 2 0.44 1

24 2.42 3 0.78 0

82
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25 1.17 0 2.50 2

26 3.15 2 0.43 0

27 1.75 1 0.25 0

28 0.83 1 0.88 3

29 2.22 0 0.28 1

30 1.25 4 0.96 2

31 1.31 2 0.69 1

32 2.91 2 0.67 0

33 2.67 1 0.67 0

34 3.28 4 0.45 0

35 3.00 1 0.34 0

36 2.14 0 0.46 1

We explain this dataset, using almost the same notation as in the 1987 paper. Let
n1i, n2i be the numbers of offences committed by the ith boy in Employment, Un-
employment respectively, in times t1i, t2i years. We assume n1i, n2i are independent
Poisson, with

logE(n1i) = logλi + αlogt1i

logE(n2i) = logθ + logλi + αlogt2i

for i = 1, . . . , 36. Here λi corresponds to the inherent ‘criminality’ of the ith boy, and
θ to the extra (or reduced) propensity to commit offences while in Unemployment
rather than Employment.
An important feature of this data set is that each boy is his own ‘control’: we must
use the information on the pairing of n1i, n2i in our analysis.
We want to test the hypothesis θ = 1 against the alternative θ > 1, with λ1, . . . , λ36
and α as nuisance parameters. (As usual, we take log(λ1) = 0.) If the underlying
offence process were exactly Poisson with constant rate over time, then we would
have α = 1. We can use glm() with a Poisson distribution and the log link to
estimate the parameters in this model, as follows

>crimedata <- read.table("Fdata", header=T)

>attach(crimedata)

>N <- c(OffE,OffU) ; T <- c(YearsinEmploy,YearsinUnemploy)

>emp <- gl(2,36, length=72, labels= c("employed", "unemployed"))

>boy <- gl(36,1, length=72)

>first.glm <- glm(N ~ boy + emp + log(T), poisson)

>summary(first.glm)

Call:

glm(formula = N ~ boy + emp + log(T), family = poisson)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.35751 -0.58849 -0.02662 0.20096 2.03317

Coefficients:
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Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.428032 0.525967 0.814 0.4158

boy2 -2.199690 1.140865 -1.928 0.0538 .

boy3 0.557188 0.617856 0.902 0.3672

boy4 -1.806815 0.933781 -1.935 0.0530 .

........... we omit some parameter estimates

boy34 -1.310124 0.805664 -1.626 0.1039

boy35 -2.513290 1.173218 -2.142 0.0322 *

boy36 -1.973349 1.134956 -1.739 0.0821 .

empunemployed 0.884298 0.409491 2.160 0.0308 *

log(T) 1.860515 0.433602 4.291 1.78e-05 ***

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 126.872 on 71 degrees of freedom

Residual deviance: 45.918 on 34 degrees of freedom

AIC: 232.42

Number of Fisher Scoring iterations: 7

Hence logθ̂ = 0.884298 with se= 0.409491: this is significant. Being out of a job
appears to increase the crime-rate for the boys by a factor of about 2.42.
The fit of the model (compare 45.918 with χ2 on 34 df) is not all that good, but
very many of the fitted values for N are very small, < 1 in fact.
Now change the model so that we condition on OffE + OffU, for each boy.

>Tot <- OffE + OffU

>Timeratio <- YearsinUnemploy/YearsinEmploy

>next.glm <- glm(OffU/Tot ~ log(Timeratio), binomial, weights=Tot)

>summary(next.glm)

You can prove that the results must be equivalent to those for the Poisson.

>next.glm <- glm(OffU/Tot ~ log(Timeratio), binomial, weights = Tot)

>summary(next.glm)

Call:

glm(formula = OffU/Tot ~ log(Timeratio), family = binomial, weights = Tot)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.0024 -0.7038 -0.4057 0.6437 2.6130

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.8843 0.4095 2.160 0.0308 *

log(Timeratio) 1.8605 0.4336 4.291 1.78e-05 ***

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 72.778 on 35 degrees of freedom

Residual deviance: 45.918 on 34 degrees of freedom

AIC: 65.754

Number of Fisher Scoring iterations: 5
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Here the intercept corresponds to log(θ), having an estimate identical to that ob-
tained in the Poisson regression.
You could consider
i) how to allow for the over-dispersion
ii) is there a way of doing an exact test of H0 : log(θ) = 0?
iii) how to allow for the fact that we could not expect n1i, n2i to be truly Poisson:
these 36 boys have been selected from the total of nearly 400 boys in the study as
those who have committed at least 1 offence while in Employment or in Unemploy-
ment, and have had at least .25 years in each of Employment and Unemployment.
References
1. Altham, P.M.E. and Farrington, D.P. ‘A Matched Pairs problem with discrete
data: a comparison of offending rates under employment and unemployment’ GLIM
Newsletter, 14, pp. 11-14, 1987.
2. Farrington, D.P. et al ‘Unemployment, School Leaving and Crime’ British Journal
of Criminology 26, pp. 335-356, 1986.



Chapter 19

Maximising a multi-parameter
log-likelihood: an example from
genomics

Here we are essentially estimating the parameters in a model of quasi-independence
in a square contingency table. Mary-Rose Wilkinson of Trinity College wrote her
dissertation for the MPhil in Statistical Science, University of Cambridge, 2005 on
‘Analysing the Frequencies of Loop Lengths of Genomic G-Quadruplex Structures’
in which she analysed data (particularly square contingency tables) kindly provided
by Dr Julian Huppert of the Sanger Centre.
Here is an extract from her dissertation.
‘In this project I analyse data collected by Dr Julian Huppert on the loop lengths
of putative G-quadruplex structures identified in the human genome. This analysis
shows that there are statistical structures present in the data which indicate that at
least some proportion of these putative G-quadruplex structures actually do form
G-quadruplex structures under certain physiological conditions.’
DNA is a long polymer made up of a series of units called nucleotides. Each nu-
cleotide consists of a sugar, a phosphate group and an organic molecule (a heterocy-
cle) called a base which is one of adenine (A), cytosine (C), guanine (G) or thymine
(T). It is well known that the usual structure of DNA is the double-helix (like a spi-
ral staircase, with the sugar-phosphate backbone forming the ‘railing’ and the bases
of the nucleotides being the ‘steps’). However, sequences of bases of certain patterns
can form other structures, and one structure which can be formed by guanine rich
sequences is the G-quadruplex.
The G-quadruplex structure has a core of stacked tetrads linked by three loops.
These loops are sequences of between one and seven bases, and the combination of
lengths of the three loops affects the stability and shape of the G-quadruplex. These
loops are the focus of this dissertation.
Dr Huppert developed a ‘quadruplex folding rule’ which says that sequences of bases
of a particular form will form a G-quadruplex structure under certain physiologi-
cal conditions. Dr Huppert also developed an algorithm called ‘Quadparser’ which
he used to search the whole of the human genome for sequences which satisfy this
rule. Although Dr Huppert had identified that sequences of this form could form G-
quadruplexes, it was not known how many of them actually do form G-quadruplex
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structures physiologically in the genome.
For each putative G-quadruplex structure identified by Quadparser, the three lengths
of the loops that would be formed if the sequence formed a G-quadruplex physiolog-
ically were recorded. As these loops are of between one and seven bases in length,
this gave a 7 × 7 × 7 contingency table, each dimension of the contingency table
giving the length of one of the loops.
The aim of this project was to analyse the contingency table, investigating whether
there were statistical structures present. Presence of statistical structures would
indicate that the sequences identified show evidence of evolutionary selection, and
hence that they may actually form G-quadruplexes physiologically in the genome.’
The three loop-lengths are very definitely non-independent: there is a predominance
of frequencies in the diagonal cells.
‘Further analysis of the three-way contingency table did not initially lead in a partic-
ular direction for further work, so I collapsed the table by summing over the lengths
of loop two to give a 7× 7 contingency table showing the lengths of loops one and
three. It was natural to consider loops one and three together as they have a similar
position in the G-quadruplex structure.
This two-way contingency table had three interesting features. Firstly it was almost
exactly symmetric, secondly there were a large number of counts where one or both
of loops one or three were only one base long, and thirdly, there were a large number
of counts on the diagonal, where the lengths of the two loops are the same. As the
first row and column of this table had such a dominating effect I excluded them
from the next section of the analysis, and fitted a quasi-independence model to the
remaining 6× 6 table, which would model the excess of counts on the diagonal and
the symmetry.’ The quasi-independence model is a probability mixture model, given
by

pij =

{
αθi + (1− α)β2

i for i = j;

(1− α)βiβj for i 6= j

where all parameters α, (θi), (βi) are between 0 and 1, and Σθi = 1 = Σβi.
Here the parameter of interest is the probability α, and we wish to estimate α and in
addition to give Dr Huppert an idea of how precise this estimate is: in other words
we seek α̂, the mle, together with its standard error.
In her project, Mary-Rose uses 3 distinct methods to tackle this problem:
i) approximating α to Cohen’s Kappa statistic,
ii) by numerically maximising the profile log-likelihood, and
iii) by Markov Chain Monte Carlo.
The three estimates that were obtained agree very closely, the latter two methods
agreeing to give α̂ = 0.098 to three decimal places, with a very tight confidence
interval of (0.096, 0.010).
She also modified her programs to run on the 7 x 7 contingency table, to include
the counts where one or both of the loops were just one base long; this gave slightly
higher estimates. Those obtained through the profile log-likelihood and Markov
Chain Monte Carlo methods were both 0.129 with confidence interval (0.128, 0.131).
The 7 × 7 table of frequencies (which is obtained by summing over the Loop 2
positions) is given below:
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Loop 1
1 2 3 4 5 6 7

1 94210 28196 18861 18049 17700 12899 11441
2 28158 23102 11062 10564 8283 7732 8045
3 19051 11033 16463 8229 6565 6453 6627

Loop 3 4 18007 10485 8513 11766 6676 6068 5737
5 17829 8389 6518 6672 9044 5231 4624
6 12981 7915 6530 5973 5217 6177 4325
7 11371 7603 6594 5670 4549 4326 6095

Table 19.1: The data given in a 7× 7 contingency table.

Dividing the frequencies by their total gives the following table of probabilities:
The table is almost exactly symmetric. You may easily check that a standard glm()

Loop 1
1 2 3 4 5 6 7

1 0.159 0.047 0.032 0.030 0.030 0.022 0.019
2 0.047 0.039 0.019 0.018 0.014 0.013 0.014
3 0.032 0.019 0.028 0.014 0.011 0.011 0.011

Loop 3 4 0.030 0.018 0.014 0.020 0.011 0.010 0.010
5 0.030 0.014 0.011 0.011 0.015 0.009 0.008
6 0.022 0.013 0.011 0.010 0.009 0.010 0.007
7 0.019 0.013 0.011 0.010 0.008 0.007 0.010

Table 19.2: Table of empirical probabilities for the number of bases in loops one and
three.

test on the frequencies for fitting the null hypothesis of symmetry gives the residual
deviance as 24.907 on 21 degrees of freedom.
But the first row and column of the table have a dominating effect (the probability
of having at least one of the loops having one base is 0.519), so we now look at the
6 × 6 contingency table obtained by excluding the first row and column. (Appar-
ently, reducing the dataset in this way makes sense scientifically: the dominating
effect of the first row and column may be due to increased stability for shorter loop
lengths or may be also partly due to the shortest possible loop assumption made by
Quadparser.)
There are large counts on the diagonal (possibly due to the fact that a quadruplex
structure has better stability when loops one and three are of similar length). Thus
a simple model of independence of the numbers of bases in loops one and three
totally fails to fit.
Therefore we next fit a quasi-independence model, which includes the symmetry:

pij =

{
αθi + (1− α)β2

i for i = j;

(1− α)βiβj for i 6= j

where pij is the probability of classification in the ith row and jth column of the
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table, that is the probability of having i bases on loop three and j bases on loop
one.
This is a probability mixture model: with probability α the row and column classi-
fications must be the same, and with probability (1−α) the row and column classes
are independent, but each with the same distribution.
We are interested in estimating the probability α, as we believe that selective pres-
sures may favour the first and third loops being of similar length.
Estimation of α
Mary-Rose estimated α using three different methods: by approximating α to Co-
hen’s Kappa statistic, by numerically maximising the profile log-likelihood for α and
by using Markov Chain Monte Carlo techniques.
i) Estimation of α through Cohen’s Kappa (see Agresti, 2002, p453, ex 10.39.)
Make the simplifying assumption (which turns out to be not quite true, as it hap-
pens) that

θi = βi

for each i. Then we have

pij =

{
αθi + (1− α)θ2i for i = j;

(1− α)θiθj for i 6= j

so
pi+ = p+i = αθi + (1− α)θi

∑
j

θj

which simplifies to give θi = pi+ = p+i. Also∑
i

pii = . . . = α + (1− α)
∑
i

pi+p+i

giving α = (Po − Pe)/(1− Pe) where Po =
∑
pii and Pe =

∑
pi+p+i.

(Po − Pe)/(1 − Pe) is Cohen’s Kappa. This was introduced by Cohen in 1960 to
measure the agreement between ratings by two observers. Note that Po is the prob-
ability the two observers agree and that Pe is the probability of agreement if the two
observers’ ratings are statistically independent, so Po − Pe is the excess of observer
agreement over that expected purely by chance. Dividing this numerator by (1−Pe)
means that Kappa equals 0 when the agreement equals that expected by chance and
equals 1 when there is perfect agreement. The stronger the agreement, the higher
the value.
For multinomial sampling, the sample estimate of Kappa is approximately normal,
with variance given by

σ̂2(κ̂) =
1

n

(
Po(1− Po)
(1− Pe)2

+
2(1− Po)

(
2PoPe −

∑
p̂ii(p̂i+ + p̂+i

)
(1− Pe)3

+
(1− Po)2

(∑∑
p̂ij(p̂j+ + p̂+i)

2 − 4P 2
e

)
(1− Pe)4

)
Mary-Rose found by using this method of calculating Cohen’s Kappa , α̂ = 0.0947
(to 4 d.p.) with standard error 0.0010 (to 4 d.p.).
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Estimation of α through Classical Likelihood Theory
The above method makes the assumption βi = θi ∀i, which may not be correct. So
we now consider other methods of estimating α which do not require this assump-
tion. One method is to work with the profile log-likelihood.
The likelihood up to a constant is

∏
i,j

p
nij

ij =
∏
i

(
αθi + (1− α)β2

i

)nii
∏
i 6=j

(
(1− α)βiβj

)nij

=
∏
i

(
αθi + (1− α)β2

i

(1− α)β2
i

)nii∏
i,j

(
(1− α)βiβj

)nij

where nij is the number of counts in the (i, j) cell.
This gives the log-likelihood as

l(α, θ, β) =
∑
i

niilog

(
αθi + (1− α)β2

i

(1− α)β2
i

)
+
∑
i,j

nijlog
(
(1− α)βiβj

)
=

∑
i

niilog

(
αθi + (1− α)β2

i

(1− α)β2
i

)
+
∑
i

(n+i + ni+)logβi + nlog(1− α)

where ni+ =
∑

j nij, n+i =
∑

j nji and n = n++.
Mary-Rose maximised this log-likelihood with respect to θ and β for specified values
of α between 0.045 and 0.145 subject to

∑
θi,
∑
βi = 1 and θi, βi ≥ 0, using the

R-function constrOptim. Thus she obtained lp(α), the profile log-likelihood for α,
for 0 < α < 1. She chose the range of α to be 0.045 to 0.145 because of the estimate
0.0947 obtained for α from Cohen’s Kappa.
The maximum of the profile log-likelihood is at α̂ = 0.0979 (to 4 d.p.) with a
confidence interval of (0.0960, 0.0998) obtained from the asymptotic chi-squared
distribution on one degree of freedom of the Wilk’s Statistic. (We require the region
{α : lp(α) ≥ lp(α̂)− 1

2
χ2
0.95,1} where χ2

0.95,1 is the 0.95 point of the χ2
1 distribution.)

This estimate agrees fairly closely with the estimate obtained using Cohen’s Kappa:
subtracting twice the Cohen’s Kappa standard error estimate from the Cohen’s
Kappa estimate gives 0.0967 (to 4 d.p.), which lies just inside the confidence interval
obtained for α above. Also, the standard error is 0.00095, which agrees very closely
with the estimate obtained using Cohen’s Kappa, which was 0.00098.
Modifying her Program slightly to run for the 7 by 7 table so as to use the data
from the first row and column gives an estimate of α̂ = 0.1291 (to 4 d.p.) with
a confidence interval of (0.1276, 0.1307), higher than the estimate obtained before
when using the 6 by 6 table.
The corresponding calculations for Cohen’s Kappa give α̂ = 0.1093 (to 4 d.p.) with
standard error 0.0007 (to 4 d.p.). The estimate is higher due to the comparatively
very large number of counts in cell (1,1).

The second two methods of the three considered agree to give α̂ = 0.098 (to 3
d.p.) for the 6 × 6 table, with 95% confidence interval (0.096, 0.100) (to 3 d.p.).
The estimates obtained through Cohen’s Kappa do not agree so closely, but for this
calculation we assumed βi = θi ∀i, which is only approximately true.
While the methods used by Mary-Rose were interesting and certainly helped our
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Method 6 by 6 data 7 by 7 data
Cohen’s Kappa 0.0947 (0.0937,0.0957) 0.1093 (0.1086, 0.1100)

Profile log-likelihood 0.0979 (0.0960, 0.0998) 0.1291 (0.1276, 0.1307)
MCMC 0.0978 (0.0959, 0.0998) 0.1291 (0.1276, 0.1306)

Table 19.3: Estimates obtained for α.

understanding, a more straightforward method, shown below, is simply to maximise
the log-likelihood function, and then to pick out var(α̂) from the appropriate term
in the inverse of minus the matrix of second derivatives.
The worksheet that follows shows firstly the 6×6 table of frequencies, followed by a
rather simple method for estimating α, the parameter of interest, by straightforward
maximisation of the log-likelihood function, using

optim().

Here is the datafile “RJdata”.

23102 11062 10564 8283 7732 8045

11033 16463 8229 6565 6453 6627

10485 8513 11766 6676 6068 5737

8389 6518 6672 9044 5231 4624

7915 6530 5973 5217 6177 4325

7603 6594 5670 4549 4326 6095

And here is the corresponding R program. It is designed to make use of the elegant
matrix functions available in R.

original = scan("RJdata")

k=6 # here we fit the model for a 6 by 6 table

original = matrix(original, nrow=k, byrow=T)

one = rep(1, times=k)

one = matrix(one, nrow=k, byrow=T)

rn = original %*% one ; cn = t(original)%*% one

# Thus we have computed the row-sums and the column-sums

D = diag(original)

N = sum(original)

od = N -sum(D)#sum of off-diagonal terms

j = k-1# we fit (2*j + 1) parameters

th= rep(.1, times=k) ; beta = rep(.1, times=k)

# this sets up th & beta as vectors of the right length

# Now set up f as minus log-likelihood

f = function(x){

th[1:j] = x[1:j] ; th[k] = 1-sum(x[1:j])

beta[1:j] = x[k: (2*j)] ; beta[k] = 1- sum(x[k:(2*j)])

a=x[2*j +1]

-sum(D*log(a*th+(1-a)* beta^2))-sum((rn + cn-2*D)*log(beta))-od*log(1-a)

}
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x = rep(.1,times=2*j+1)

f(x) # as a trial

x0 = rep(0.1, times=2*j +1) # starting value

first.opt = optim(x0, f, method="BFGS", hessian=T)

# we get a lot of error messages, but the method seems to be working ok

first.eigen = eigen(first.opt$hessian)

first.eigen$values # to check that hessian matrix is positive definite

x= first.opt$par

a = x[2*k -1] # this is our est of alpha

# I got alpha=0.09787283.

V = solve(first.opt$hessian)# to invert the Hessian matrix

se= sqrt(V[2*k -1,2*k -1]) # this is our se of the est of alpha

# I got se = 0.000999305.

# Now we compute the expected frequencies

th[1:j] = x[1:j] ; th[k] = 1-sum(x[1:j])

beta[1:j] = x[k: (2*j)] ; beta[k] = 1- sum(x[k:(2*j)])

Beta = matrix(beta,nrow=k, byrow=T)

p = a*diag(th) + (1-a)* Beta %*% t(Beta)

sum(p) # to check these sum to 1

expected = p*N # fitted frequencies

dis = (original- expected)^2

(dis/expected) # to see contribution to chisq statistic

Chisq = sum(dis/expected) # here with 35-11=24 df

(i) You could experiment with other Optimization functions: see for example Ven-
ables and Ripley (2002) Chapter 16.
(ii) You could also readily adapt the program given above to estimate the mixing
probability α when we don’t assume that the table is symmetric, so that the model
now becomes

pij =

{
αθi + (1− α)βiγi for i = j;

(1− α)βiγj for i 6= j

where all parameters α, (θi), (βi), (γi) are between 0 and 1, and Σθi = 1 = Σβi = Σγi.
(iii) It should be possible, without much extra effort, to implement a version of the
program given here in Splus. (You will need to replace

optim()

by

nlminb()

for example.) However, I had problems, so far unsolved, in getting the definition of
the function

f()

to work in Splus.



Chapter 20

Miscellaneous datasets gathered in
2006

In this chapter three examples are discussed: cannabis use and psychosis, the ‘Harry
Potter’ effect, and life is a risky business if you are in a TV soap opera.

i) The BMJ, December 1, 2004, published ‘Prospective cohort study of cannabis,
predisposition for psychosis, and Psychotic symptoms in young people’ by C.Henquet
and others. This included the following table of data (slghtly simplified here).

cannabis use Number with Number without

at baseline psychosis outcome psychosis outcome

p.no none 294 1642

p.no some 59 216

p.yes none 47 133

p.yes some 23 22

____________________________________________________________

Here the first 2 rows of the table, ‘p.no’, correspond to those with no predisposition
for psychosis at baseline, and the second 2 rows of the table, ‘p.yes’, correspond
to those with predisposition for psychosis at baseline. Thus for example, there
were 23 + 22 persons who had both cannabis use at baseline, and predisposition for
psychosis at baseline: of these 45, a total of 23 had a psychosis outcome. Note that
of those without a predisposition for psychosis, 15% of those with no cannabis use
had a psychosis outcome, compared with 21% of those with cannabis use. For those
with a predisposition for psychosis, the difference was much more striking: 26% of
those with no cannabis use had a psychosis outcome, compared with 51% of those
with cannabis use. This suggests that there is a 3-way interaction between the
rows, columns and layers of the given 2× 2× 2 table, and we show how to test this
formally, in the following R analysis.

> cannabis <- read.table("cannabis", header=T); cannabis

cannabis.use with without predisposition

none 294 1642 no

93
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some 59 216 no

none 47 133 yes

some 23 22 yes

> attach(cannabis) ; tot <- with + without

> summary(glm(with/tot~cannabis.use*predisposition,binomial,weights=tot))

> interaction.plot(predisposition,cannabis.use, with/tot)

> title("Proportion with a psychosis outcome")

You can see that there is a significant interaction between cannabis.use and the
baseline predisposition for psychosis in terms of their effect on whether or not the
young person develops psychotic symptoms: refer .66230/.37857 = 1.749 to N(0, 1).
It’s usually much easier to interpret an interaction by a graph: see the interaction
plot Figure 20.1 given here.
What we have done above is to test the null hypothesis of no 3-way interaction in the
original 2×2×2 table. We can of course do this test in a much more straightforward
way, which will be exactly equivalent, by considering log crossratios, as follows.
The first table is

cannabis use Number with Number without

at baseline psychosis outcome psychosis outcome

p.no none 294 1642

p.no some 59 216

The log-crossratio for this table is say m1 = log(294 ∗ 216)/(1642 ∗ 59), with cor-
responding estimated variance say v1 = (1/294) + (1/1642) + (1/59) + (1/216).
Likewise, the second table is

cannabis use Number with Number without

at baseline psychosis outcome psychosis outcome

p.yes none 47 133

p.yes some 23 22

and the corresponding log-crossratio is say m2 = log(47 ∗ 22)/(133 ∗ 23), with esti-
mated variance say v2 = (1/47) + (1/133) + (1/23) + (1/22).
We assume the 2 tables are independent, and thus compute (m1−m2)/(v1 + v2)

1/2.
You will find this is 1.749, as above.

ii) ‘Harry Potter casts a spell on accident-prone children’ was published by Gwilym,
Howard, Davies and Willett in the BMJ on 23 December 2005. The data given
below show the numbers of children aged 7-15 with musculoskeletal injuries who at-
tended the emergency department of the John Radcliffe Hospital Oxford as weekend
admissions (ie between 8am Saturday and 8am Monday) over the summer months
of a 3-year period.
The launch dates of the two most recent Harry Potter books- The Order of the
Phoenix and The Half-Blood Prince were Saturday 21 June 2003 and Saturday 16
July 2005: these weekends are marked * in the 26 rows of data given below. (NB I
had to read the data from the graph given on p1506 so my numbers may very slightly
disagree with those actually used by Gwilym and his colleagues in the significance
test they carried out.) Here is the dataset I used, which you may read via
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Figure 20.1: Cannabis use and predisposition to psychosis

read.table(" ", header=T)

Date Year N

7-8June 2003 62

15-15June 2003 78

21-22June 2003 36 *

28-29June 2003 62

5-6July 2003 77

12-13July 2003 70

19-20July 2003 60

26-27July 2003 51

5-6June 2004 80

12-13June 2004 82

19-20June 2004 70

26-30June 2004 78

3-4July 2004 81

10-11July 2004 59

17-18July 2004 64

24-25July 2004 61

4-5June 2005 50

11-12June 2005 81

18-19June 2005 61

25-26June 2005 66

2-3July 2005 75

9-10July 2005 77

16-17July 2005 37 *
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23-24July 2005 43

30-31July 2005 67

6-7August 2005 60

The graph of the number of injuries against the weekend number is shown in Figure
20.2. Note that there appears to be a seasonal pattern to the number of injuries.

1 2 3 4 5 6 7 8

40
50

60
70

80

Weekend

N

Harry Potter casts a spell on accident−prone children?

Figure 20.2: Harry Potter and the John Radcliffe hospital

For this reason we will use only the first 24 observations of the total of 26.

Year = Year[1:24] ; N= N[1:24] ; year<- factor(Year)

weekend <- gl(8,1, length=24) ; Weekend<- as.numeric(weekend)

plot(Weekend,N )

points(3,36, pch=4) ; points(7,37, pch=4)

# to mark the ‘Harry Potter’ weekends as special points on the graph

first.glm <- glm(N~ weekend + year, poisson)

# this has deviance 26.7 on 14 df, with large residuals for the HP weekends

i <- 1:24 # so we see what happens if we omit those two special points

next.glm <- glm(N~ weekend + year, poisson, subset=(i!=3)&(i!= 23))

# this has deviance 11.7 on 12 df, & you can see that

last.glm <- glm(N~ weekend, poisson, subset=(i!=3)&(i!= 23))

# should fit well: indeed,it has deviance 15.7 on 14 df.

iii) ‘Death rates of characters in soap operas on British television: is a government
health warning required?’ BMJ Dec 20, 1997, by Crayford, Hooper (a former Cam-
bridge Diploma student) and Evans, gave Table 3, of which an extract is printed
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below. These authors studied mortality in 4 well-known UK soap operas, Corona-
tion Street, Eastenders, Brookside and Emmerdale (for which my brother was once
Producer) from 1985 (the start of Eastenders, the newest of the 4 operas) to mid-
1997. The Table shows
the name of the soap opera
the total number of deaths
the total number of deaths from ‘external causes’, eg murder, car crash, etc
Epmf, the expected proportional mortality fraction from ‘external causes’ in an
age-matched population (ie age-matched for the particular soap opera)

soap totaldeaths extdeaths Epmf

CorSt 14 6 .17

EastE 17 11 .22

Brooks 26 20 .28

Emmerd 28 17 .24

The authors comment that ‘characters in soap operas lead very dangerous lives’,
and ‘their lives are more dangerous even than those of Formula One racing drivers
or bomb disposal experts’.
Consider the following analysis in R. What is it telling you? Figure 20.3 shows you
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Figure 20.3: Warning: acting in a soap opera could damage your health

the plot of the observed proportion of ‘external causes’ deaths, against Epmf, the
expected proportion.

soap.data <- read.table("soap.data", header=T)

attach(soap.data)

p<- extdeaths/totaldeaths
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plot(Epmf,p,type="n",xlim=c(0,1),ylim=c(0,1),xlab="Expected proportion",

+ ylab="Observed proportion")

text(Epmf, p, labels=soap)

abline(0,1)

title("Proportions dying from ‘external causes’ in soap operas")

first.glm <- glm(extdeaths/totaldeaths ~ 1, binomial, weights=totaldeaths)

summary(first.glm)

cbind(extdeaths/totaldeaths, Epmf)

x <- log(Epmf/(1-Epmf))

next.glm<- glm(extdeaths/totaldeaths ~ x, binomial, weights=totaldeaths)

You will see that the coefficient of x in the second glm is 2.173(se = 1.079).
If you check the original article on http://bmj/bmjjournals.com, you can see a pho-
tograph from Brookside, captioned ‘Gladys meets her controversial end with the help
of her family’.



Chapter 21

An application of the
Bradley-Terry model to the Corus
chess tournament, and to World
Cup football

Firstly I present the results from a Corus chess tournament, and analyse this dataset
using the Bradley-Terry model.
The Times, February 1, 2006, gave the results of ‘The top group at the Corus
tournament at Wijk aan Zee in Holland’. The Times presented the results as the
off-diagonal elements of a 14 × 14 matrix, with 1, 1/2, 0 corresponding to a Win,
Draw or Loss, respectively. In fact the key part of the data consists of just the
14× 13/2 elements of the matrix which are above the diagonal, but here I choose to
read in these as 91 rows of data, indicating which players, P1, ..., P14 beat, drew or
lost against which other player. Thus, for example, the first row of the data matrix
given below shows that when P1 played P2, the result was a Draw; the third row of
the data matrix shows that when P1 played P4, the result was a Win for P1.
Scoring 1, 1/2, 0 for a Win, Draw or Loss respectively, the total scores for the 14
players were P1 (Anand)= 9, P2 (Topalev)= 9, P3 (Adams, the British player)=
7.5, P4 (Ivanchuk)=7.5, P5 (Gelfand)= 7, P6 (Karjakin)= 7, P7 (Tiviakov)= 6.5,
P8 (Leko) = 6.5, P9 (Aronian)= 6.5,
P10 (VanWely) = 6, P11 (Bacrot)= 5.5, P12 (Mamedyarov)= 4.5, P13 (Kam-
sky)=4.5, P14 (Sokolov)=4.
The dataset is given below: can you think of a more economical way to read it in,
getting R to do the work of setting up the patterned ‘design’ variables P1, ..., P14?

W Dr L P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

0 1 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0

99
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0 1 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 -1 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -1

0 0 1 0 1 -1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1

1 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 -1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1

0 1 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1

0 1 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 -1 0
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1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1

0 1 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1

0 1 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0 -1 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1

0 1 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1 0 -1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1

0 0 1 0 0 0 0 0 0 0 0 1 -1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0

1 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1

0 1 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 -1 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1

0 1 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 -1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1

Suggestion for analysis.
Let Wij = 1 if Player i beats Player j, let Wij = 0 otherwise.
Let Drij = 1 if Player i draws with Player j, let Drij = 0 otherwise.
Define Yij = 2 ∗Wij +Drij: thus 0 ≤ Yij ≤ 2.
Assume Yij are independent binomial, with Yij ∼ Bi(2, pij). (This will be an over-
simplification, but as we will see, it actually works quite well.) We fit the model
log(pij/(1 − pij)) = αi − αj, for 1 ≤ i < j ≤ 14, with the parameter α14 = 0 for
identifiability. (Thus each of the first 13 players is being compared with Player 14.)

Y = 2*W + Dr ; tot = rep(2, times=91)



P.M.E.Altham, University of Cambridge 102

first.glm = glm(Y/tot ~ P1 + P2 + P3 + P4 + P5 + P6 + P7 + P8 +

+ P9 + P10 + P11 + P12 + P13 + P14 - 1, family = binomial, weights=tot)

summary(first.glm)

.....................

Deviance Residuals:

Min 1Q Median 3Q Max

-2.5465 -0.4442 -0.1074 1.1513 1.6651

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

P1 1.5676 0.5967 2.627 0.0086 **

P2 1.5676 0.5967 2.627 0.0086 **

P3 1.0861 0.5757 1.886 0.0592 .

P4 1.0861 0.5757 1.886 0.0592 .

P5 0.9342 0.5723 1.632 0.1026

P6 0.9342 0.5723 1.632 0.1026

P7 0.7838 0.5704 1.374 0.1694

P8 0.7838 0.5704 1.374 0.1694

P9 0.7838 0.5704 1.374 0.1694

P10 0.6334 0.5699 1.111 0.2664

P11 0.4815 0.5709 0.843 0.3990

P12 0.1668 0.5781 0.288 0.7730

P13 0.1668 0.5781 0.288 0.7730

P14 NA NA NA NA

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 110.904 on 91 degrees of freedom

Residual deviance: 92.739 on 78 degrees of freedom

AIC: 189.44

Number of Fisher Scoring iterations: 4

Exercise: show that cor(α̂1, α̂2) = 0.52.
Note that the dataset shows that P1 actually lost to P13: this corresponds to a
deviance residual which is large and negative (−2.5465). According to our model,
this is an unexpected result.
You could consider a more sophisticated model, which does not assume probabilities
p2, 2pq, q2 for the outcomes W,Dr, L of any given match. For example, try

polr()

from the MASS library. This is then a ‘proportional odds’ model, for the ‘response
variable’ Y . It gets harder then to interpret the results!
Although in this case, we see that α̂1, α̂2, . . . , α̂14 = 0 are almost exactly a linear
function of the original ‘scores’ 9, 9, 7.5, . . . , 4, for a different dataset this may not be
the case. Consider the (somewhat crazy, but not impossible) data set given below,
for a ‘tournament’ between 4 players, with Y = 2W +Dr, as before.

Y P1 P2 P3 P4
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[1,] 2 1 -1 0 0

[2,] 0 1 0 -1 0

[3,] 1 1 0 0 -1

[4,] 0 0 1 -1 0

[5,] 0 0 1 0 -1

[6,] 0 0 0 1 -1

Hence although P1 beats P2, he loses to P3, draws with P4, and P2 loses to both
P3 and P4, and P3 loses to P4.

On June 21, 2006, I found a dataset of similar format from the world of football.
Of course I could not resist trying out the same technique as above for the results
of the World Cup, Group B. Here is the dataset.
Key to column headings W=win, Dr = Draw, L= Lose, P1=England, P2= Sweden,
P3= Trinidad and Tobago, P4= Paraguay.

W Dr L P1 P2 P3 P4

1 0 1 0 1 -1 0 0

2 1 0 0 1 0 -1 0

3 1 0 0 1 0 0 -1

4 0 1 0 0 1 -1 0

5 1 0 0 0 1 0 -1

6 0 0 1 0 0 1 -1

> Y = 2*W + Dr ; tot = rep(2, times=6)

> first.glm = glm(Y/tot ~ P1 + P2 + P3 - 1,family =binomial,weights=tot)

> summary(first.glm)

Call:

glm(formula = Y/tot ~ P1 + P2 + P3 - 1, family=binomial,weights=tot)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

P1 2.0426 1.4166 1.442 0.149

P2 1.3169 1.2675 1.039 0.299

P3 -0.7257 1.2522 -0.580 0.562

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 11.090 on 6 degrees of freedom

Residual deviance: 5.318 on 3 degrees of freedom

AIC: 14.091

Number of Fisher Scoring iterations: 5

and now, to take account of the overdispersion.

>summary(first.glm, dispersion=5.318/3)

Call:

glm(formula = Y/tot ~ P1 + P2 + P3 - 1, family = binomial, weights = tot)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

P1 2.0426 1.8861 1.083 0.279
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P2 1.3169 1.6875 0.780 0.435

P3 -0.7257 1.6672 -0.435 0.663

(Dispersion parameter for binomial family taken to be 1.772667)

Null deviance: 11.090 on 6 degrees of freedom

Residual deviance: 5.318 on 3 degrees of freedom

AIC: 14.091

Number of Fisher Scoring iterations: 5

On this scale, the final ‘scores’ for the 4 teams are
2.0426, 1.3169,−0.7257, 0 which (you check) are very closely correlated with the final
Points for the 4 teams of 7, 5, 1, 3 respectively.
I was quite surprised how well the above worked, considering that we have only 6
independent observations from which to estimate 3 parameters, and of course the
model is very simple.
Football pundits among you can construct more sophisticated models, eg making
use of the actual match scores (2− 2, 2− 0, 1− 0, 0− 0, 1− 0, 0− 2).
Footnote: If the last row of the dataset had been

6 1 0 0 0 0 1 -1

ie if in fact Trinidad and Tobago had beaten Paraguay, you can check that the 3
parameter estimates have HUGE se’s: presumably the log-likehood function is in
some way degenerate, and is no longer a nice convex function.

New for 2008: the Group A results (taken from The Independent, June 16, 2008)

# P1= Switzerland, P2 = Portugal, P3 = Turkey, P4 = CzechR

goal totgoal P1 P2 P3 P4

2 2 1 -1 0 0

1 3 1 0 -1 0

0 1 1 0 0 -1

2 2 0 1 -1 0

3 4 0 1 0 -1

3 5 0 0 1 -1

Here I have rather boldly (since I’m pretty ignorant about football) changed the for-
mat. Thus the first row of the data indicates that in the match between Switzerland
and Portugal, there were a total of 2 goals, of which 2 were scored by Switzerland.
You might like to try

first.glm <-glm(goal/totgoal~P1+P2+P3-1,binomial,weights=totgoal)

You will find that this doesn’t work very well, perhaps because the first row of the
data was a rather surprising result. The model would fit much better if the first row
had been

0 2 1 -1 0 0
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Speaking of the World Cup, The Independent, June 28, 2006, gives the following
dataset for which you might try Poisson regression:
‘Hall of shame: Red cards at World Cups’

Year Venue Number

1930 Uruguay 1

1934 Italy 1

1938 France 4

1950 Brazil 0

1954 Switzerland 3

1958 Sweden 3

1962 Chile 6

1966 England 5

1970 Mexico 0

1974 W.Germany 5

1978 Argentina 3

1982 Spain 5

1986 Mexico 8

1990 Italy 16

1994 USA 15

1998 France 22

2002 Korea/Japan 17

2006 Germany* 25

* does not include the figures for the WHOLE set of matches



Chapter 22

Brief introduction to Survival
Data Analysis

“What is the median lifetime of a President of the Royal Statistical Society?”
This chapter gives you a very small-scale introduction to the important topic of
Survival Data Analysis.
‘Long live the president’ is the title of the Editor’s comment in the June 2007
Newsletter of the Royal Statistical Society. Here is the dataset giving the lifetime,
in years, of all 34 Presidents of the Royal Statistical Society. This is a nice little
example of ‘censored’ data: the ‘status’ variable listed below takes the value 1 for
an observed death (eg the first person listed was known to die at age 94 years) but
status is 0 if the actual lifetime is unknown. For example the last person listed is
only known to have lifetime 55 years or more (in other words, happily this person is
still alive). In this case the observation is said to be ‘censored’ (strictly speaking, it
was a right-censored observation). Actuaries work out ways of constructing ‘survival
curves’ from such data, and here we will use the appropriate R-library to do the
work for us. The ‘proper’ mathematical explanation is not given here. Suffice it to
say that we are working out the survival curve, say Ŝ(t), which is the estimator of

S(t) = Pr(T > t)

where T is the lifetime. Our estimator Ŝ(t) is known as the Kaplan-Meier estimate.
Remarkably, it is a ‘distribution-free’ or ‘non-parametric’ estimator. The formula
for the estimate of the variance of Ŝ(t) was derived by M.Greenwood in 1926. Using
this formula enables us to plot confidence bands for the unknown S(t).
Here is the dataset on the lifetimes of the 34 RSS Presidents: happily many of them
are still alive.

years status

94 1

94 1

93 1

92 1

92 1

91 1

90 0
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90 0

87 1

85 0

85 1

84 1

84 0

83 0

83 0

83 0

83 1

79 0

79 1

77 1

77 1

77 1

76 1

76 0

74 0

73 0

71 0

68 0

64 0

62 0

61 0

57 0

57 0

55 0

> library(survival) # to let the expert do the work for us!

> Surv(years, status) # this creates a ‘survival object

# + indicates a censored observation (ie that person is still alive)

[1] 94 94 93 92 92 91 90+ 90+ 87 85+ 85 84 84+

[14] 83+ 83+ 83+ 83 79+ 79

[20] 77 77 77 76 76+ 74+ 73+ 71+ 68+ 64+ 62+ 61+ 57+ 57+ 55+

> fit<- survfit(Surv(years, status)~1) #this does the Kaplan-Meier estimation

> fit

Call: survfit(formula = Surv(years, status) ~ 1)

n events median 0.95LCL 0.95UCL

34 15 91 85 Inf

So we see that for the 34 Presidents, there were 15 known deaths, and the estimate
of the median lifetime is 91 years.
Now we get detailed information on our survivor function. Note that this is com-
puted in terms of the ordered observed death times. The first of these is 76 years,
at which 24 individuals were known to be ‘at risk’, and exactly 1 died, leaving
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us with 23/24 = 0.958 as the estimate of S(76), and (using an obvious notation)√
p(1− p)/n as the corresponding se.

At the next observed death time, 77 years, we have 22 people at risk, and 3 deaths,
leaving S(77) as (23/24)× (19/22) = 0.828.
(Can you see why we are computing the product of 2 probabilities?)
The corresponding estimated survivor function, and its confidence bands, are given
in Figure 22.1.

> summary(fit)

Call: survfit(formula = Surv(years, status) ~ 1)

time n.risk n.event survival std.err lower 95% CI upper 95% CI

76 24 1 0.958 0.0408 0.882 1.000

77 22 3 0.828 0.0785 0.687 0.997

79 19 1 0.784 0.0856 0.633 0.971

83 17 1 0.738 0.0921 0.578 0.943

84 13 1 0.681 0.1010 0.509 0.911

85 11 1 0.619 0.1092 0.438 0.875

87 9 1 0.550 0.1167 0.363 0.834

91 6 1 0.459 0.1284 0.265 0.794

92 5 2 0.275 0.1266 0.112 0.678

93 3 1 0.183 0.1129 0.055 0.613

94 2 2 0.000 NA NA NA

> plot(fit,xlim=c(50,100),xlab="years",ylab="survival probability")

> abline(.5, 0) # to find the median
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Figure 22.1: Survival curve for RSS presidents



Chapter 23

The London 2012 Olympics Men’s
200 metres, and reading data off
the web

(I added this chapter in November 2012.) Nowadays one can just read in data
straight from the web into R, thanks to the special XML package for ‘scraping’ data
off the web.
Furthermore, the function ‘install.packages’ enables us to download an R package
direct from the web (you choose your nearest mirror site, when asked)
The program below predicts the Olympic Gold Medallist’s time in August 2012 as
19.27 secs. In the event, Usain Bolt had a time of 19.32 secs.
See if you can work out what the program below is doing. (Don’t worry too much
about the details of library(drc), which is a general purpose ‘dose-response- -model
fitting program.)

install.packages("XML")

install.packages("drc")

library(XML)

library(drc)

url<-

"http://www.databasesports.com/olympics/sport/sportevent.htm?sp=ATH&enum=120"

data <- readHTMLTable(readLines(url), which=3, header=TRUE)

golddata <- subset(data, Medal %in% "GOLD")

golddata$Year <- as.numeric(as.character(golddata$Year))

golddata$Result <- as.numeric(as.character(golddata$Result))

tail(golddata,10)

logistic <- drm(Result~Year, data=subset(golddata, Year>=1900), fct = L.4())

log.linear <- lm(log(Result)~Year, data=subset(golddata, Year>=1900))

years <- seq(1896,2012, 4)

predictions <- exp(predict(log.linear, newdata=data.frame(Year=years)))

pdf("Olympics2012.pdf") # to send the graph to a named file

plot(logistic, xlim=c(1896,2012),

ylim=range(golddata$Result) + c(-0.5, 0.5),

xlab="Year", main="Olympic 200 metre",

ylab="Winning time for the 200m men’s final (s)")

110



P.M.E.Altham, University of Cambridge 111

points(golddata$Year, golddata$Result)

lines(years, predictions, col="red")

points(2012, predictions[length(years)], pch=19, col="red")

text(2012 - 0.5, predictions[length(years)] - 0.5,

round(predictions[length(years)],2))

dev.off()

The corresponding graph is shown as Figure 23.1.
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Figure 23.1: Predicting the Gold Medallist’s time in the mens’ 200m: London
Olympics

Source: Rui Barradas contribution to R help, August 9, 2012 ‘Olympics: 200m
Men’s finals’ (I corrected the titles of the axes of the graph)
Note added May 2014: instead of the 2 commands
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install.packages("XML")

library(XML)

it is less cumbersome to use

suppressPackageStartupMessages(library(XML))
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for, 6
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function, 62
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glm.nb, 70
gnm, 56

hat, 65
hessian, 91
hist, 9

identify, 19
image, 62
Index, 111
influence, 65
install.packages, 110
is.na, 32

labels, 32
lattice, 74
legend, 52
levels, 54
lgamma, 6
library(MASS), 70
lines, 9, 52
lm, 9
logical symbols, eg &, 39
ls, 11

matplot, 9
matrix, 9, 62
mfrow, 10

NA, 32
na.action, 32
names, 9, 36
nlm(), 70

offset, 41, 52
optim, 91

pairs, 19
par, 9
pdf, 110
persp, 62
pi, 6

plot, 9
plot,cex, 13
plot,pch, 52
plot.design, 32
points, 16
poisson, 41
postscript, 19
predict.lm, 10
prop.table, 48

qqline, 19
qqnorm, 19
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tapply, 25, 28
text, 16
title, 52
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while, 6
windows, 9

xtabs, 48, 60
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