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Chapter 1: Introduction

There are already several excellent books on this topic. For example McCullagh and
Nelder(1989) have written a classic research monograph, and Aitkin et al. (1989) have
an invaluable introduction to GLIM. Dobson (1990) has written a very full and clear
introduction, which is not linked to any one particular software package. Agresti (1996)
in a very clearly written text with many interesting data-sets, introduces Generalized
Linear Modelling with particular reference to categorical data analysis.

These notes are designed as a SHORT course for mathematically able students, typically
third-year undergraduates at a UK university, studying for a degree in mathematics
or mathematics with statistics. The text is designed to cover a total of about 20
student contact hours, of which 10 hours would be lectures, 6 hours would be computer
practicals, and the remaining 4 are classes or small-group tutorials doing the problem
sheets, for which the solutions are available at the end of the book. It is assumed that
the students have already had an introductory course on statistics.

The computer practicals serve to introduce the students to (S-plus or) R, and both
the practical sessions and the 4 problem sheets are designed to challenge the students
and deepen their understanding of the material of the course. These notes do not
have a separate section on R and its properties. The author’s experience of computer
practicals with students is that they learn to use R or S-plus quite fast by the ‘plunge-
in’ method (as if being taught to swim). Of course this is now aided by the very full
on-line help system available in R and S-plus.

R.W.M.Wedderburn, who took the Diploma in Mathematical Statistics in 1968-9, hav-
ing graduated from Trinity Hall, was with J.A.Nelder, the originator of Generalized
Linear Modelling. Nelder and Wedderburn published the first paper on the topic in
1972, while working as statisticians at the AFRC Rothamsted Institute of Arable Crops
Research (as it is now called). Robert Wedderburn died tragically young, aged only 28.
But his original ideas were extensively developed, both in terms of mathematical the-
ory (particularly by McCullagh and Nelder) and computational methods, so that now
every major statistical package, eg SAS, Genstat, R, S-plus, Glim4 has a generalized
linear modelling (glm) component.

Chapter 2: The asymptotic likelihood theory needed for glm

Set-up and notation. Take x1, . . . , xn a r.s. (random sample) from the pdf (probability
density function) f(x|θ). Define

exp[Ln(θ)] =
n
∏

1

f(xi|θ)

as the likelihood function of θ, given the data x. Then

Ln(θ) =

n
∑

1

log f(xi|θ),

is the loglikelihood function.
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Note: {log f(Xi|θ)} form a set of i.i.d. (independent and identically distributed) random
variables. (The capital letter Xi denotes a random variable.)

The two key results of this chapter

Preamble. Suppose θ̂n maximises Ln(θ), i.e. θ̂n is the m.l.e. (maximum likelihood

estimator) of θ. How good is θ̂n as an estimator of the unknown parameter(s) θ as the
sample size n→ ∞? Clearly we hope that, in some sense,

θ̂n → θ as n→ ∞ .

Write x = (x1, ..., xn). Then we know that for an unbiased estimator t(x) (and θ scalar)

var(t(X)) ≥ 1
/

E

(−∂2

∂θ2
Ln(θ)

)

≡ vCRLB(θ).

This is the Cramèr Rao lower bound (CRLB) for the variance of an unbiased estimator
of θ (and there is a corresponding matrix inequality if t, θ are vectors).

Result 1. For θ real,

θ̂n
approx∼ N

(

θ, vCRLB(θ)
)

for n large.

The vector version of this result, which is of great practical use, is:

For θ a k-dimensional parameter,

θ̂n
approx∼ Nk

(

θ,Σn(θ)
)

for large n,

that is, θ̂n, which is a random vector, by virtue of its dependence on X1, . . . , Xn, is
asymptotically k-variate normal, with mean vector = θ, which is the true parameter
value of course, and covariance matrix Σn(θ), where Σn(θ) is given by

(

Σn(θ)
)−1

has as its (i, j)th element

E

( −∂2

∂θi∂θj
Ln(θ)

)

.

Thus you can see, at least for the scalar version, that the asymptotic variance of θ̂n is
indeed the CRLB.

Notes:
(0) Hence any component of θ̂n, e.g. (θ̂n)1 is asymptotic Normal.
(1) We have omitted any mention of the necessary regularity conditions. This omis-

sion is appropriate for the robust ‘coal-face’ approach of this course. However,
we will stress here that k must be fixed (and finite).

(2) Σn(θ), since it depends on θ, is generally unknown. However, to use this result,
for example in constructing a confidence interval for a component of θ, we may
replace

Σn(θ) by Σn(θ̂),
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i.e. replace

E

( −∂2

∂θi∂θj
Ln(θ)

)

by its value at θ = θ̂. In fact, we can often replace it by

−∂2

∂θi∂θj
Ln(θ) evaluated at θ = θ̂.

In some cases it may turn out that two of these three quantities, or even all
three quantities, are the same thing.

Result 2. Suppose we wish to test

H0 : θ ∈ ω

H1 : θ ∈ Ωagainst

where ω ⊂ Ω, and ω is of lower dimension than Ω. Now the Neyman-Pearson lemma
tells us that the most powerful size α test of

H0 : θ = θ0 against H1 : θ = θ1

is of the form : reject H0 in favour of H1 if

exp(Ln(θ1))/exp(Ln(θ0)) > a constant

where the constant is chosen to arrange that

P (rejectH0 | H0true) = α.

Leading on from the ideas of the Neyman–Pearson lemma, it is natural to consider as
test statistic the ratio of maximised likelihoods, defined as

Rn ≡ max expLn(θ)
θ ∈ Ω

/

max expLn(θ)
θ ∈ ω

where we reject θ ∈ ω if and only if the above ratio is too large. But how large is ‘too
large’?

We want, if possible, to control the SIZE of the test, say to arrange that

P (reject ω | θ) ≤ α

for all θ ∈ ω, where we might choose α = .05 (for a 5% significance test). We may be
able to find the exact distribution of the ratio Rn, for any θ ∈ ω, and hence achieve
this. But in general this is an impossible task, so in practice we need to appeal to

Result 2: Wilks’ Theorem. For large n, if ω true,

2 logRn
approx∼ χ2

p where p = dim(Ω) − dim(ω).
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i.e. 2 logRn is approximately distributed as chi-squared, with p degrees of freedom (df).
Hence, for a test of ω having approximate size α, we reject ω if 2 logRn > c, where c
is found from tables as

Pr(U > c) = α, where U ∼ χ2
p.

The maximum likelihood estimator (mle)

Write θ̂n(X) as the value of θ that maximises

Ln(θ) =
n
∑

1

log f(Xi | θ)

or θ̂n for short; it is a r.v. (through its dependence on X). Usually we are able to find

θ̂n as follows: θ̂n is the solution of

∂

∂θj
Ln(θ) = 0, 1 ≤ j ≤ k

(θ being assumed to be of dimension k, say). These equations are conventionally called
the likelihood equations.

Warning
(a) As usual in maximising any function, we have to take care to check that these

equations do indeed correspond to the maximum (not just a local maximum,
not a saddlepoint, and so on). So, check that

minus the matrix of 2nd derivatives is positive-definite

to ensure that the log-likelihood surface is CONCAVE.
(b) We may need to use iterative techniques to solve them for a wide class of prob-

lems.

Basic properties of the mle

(a) We use the factorisation theorem to relate the mle to sufficient statistics.
Suppose t(x) is a sufficient statistic for θ. Then

n
∏

1

f(xi | θ) = g(t(x), θ)h(x)

say. Thus θ̂(x) depends on x only through t(x), the sufficient statistic (but θ̂(x)
itself is not necessarily sufficient for θ).
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Example. Take x1, . . . , xn a r.s. from f(x | θ), pdf of N(µ, σ2). Thus

θ =

(

µ

σ2

)

,

t(x) = (x̄,Σ
(

xi − x̄)2
)

is sufficient for θ.and

Show that µ̂ = x̄, σ̂2 =
1

n
Σ(xi − x̄)2

and hence θ̂ depends on x only through t(x).

(b) Suppose θ is scalar, and there exists t(x) an unbiased estimator of θ, and
var
(

t(X)
)

attains the CRLB. Then t(x) is the mle of θ.

Proof. First we prove the CRLB. Consider the r.v.s

t(X),
∂

∂θ
Ln(θ).

{

cov

[

t(X),
∂

∂θ
Ln(θ)

]}2

≤ var
(

t(X)
)

var

(

∂Ln

∂θ

)

(∗) Now

= if and only if
∂Ln

∂θ
is a linear function of t(X).with

∂Ln

∂θ
=

∂

∂θ
log f(x | θ) x being the whole sample.But

(∗∗) Thus E
(

∂Ln

∂θ

)

=
∫

x
∂Ln

∂θ
f(x | θ)dx

=
∫

x
1

f(x|θ)

[

∂
∂θ f(x | θ)

]

f(x | θ)dx
= ∂

∂θ

∫

x
f(x | θ)dx (under suitable regularity conditions)

= ∂
∂θ 1 = 0 (remembering that f(x | θ) is a pdf).

cov

(

t(X),
∂Ln

∂θ

)

= E

(

t(X)
∂Ln

∂θ

)

=

∫

t(x)
∂

∂θ
f(x | θ)dxThus

=
∂

∂θ

∫

t(x)f(x | θ)dx =
∂

∂θ
θ = 1

t being an unbiased estimator.

Thus (∗) can be rewritten as

var (t(X)) ≥ 1

/

E

(

∂Ln

∂θ

)2

= vn(θ) say,

= if and only if
∂Ln

∂θ
= a(θ)(t(X)− θ) + b(θ) say.with
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[But, taking E of this equation, we see that b(θ) = 0.] Thus, if t(X) is unbiased with
variance attaining the CRLB, then

∂Ln

∂θ
= a(θ)(t(x)− θ),

E

(

∂Ln

∂θ

)2

= (a(θ))2 vn(θ),and so

i.e. 1/vn(θ) = (a(θ))2vn(θ), hence vn(θ) = [a(θ)]−1 (we know that a(θ) > 0, since
cov

(

t(X), ∂Ln

∂θ

)

= 1).

Thus if t(x) unbiased, and its variance attains the CRLB, then

∂Ln

∂θ
= [vn(θ)]−1(t(x) − θ) where vn(θ) > 0,

and so Ln(θ) has a unique maximum, at its stationary point, θ̂ = t(x).

Exercise (1) Using
∫

x
f(x | θ)dx = 1 for all θ, show

E

(

∂Ln

∂θ

)2

= E

(−∂2

∂θ2
Ln

)

.

Exercise (2) Take
f(xi | θ) = θxi(1 − θ)1−xi

where xi = 0 or 1 that is x1, . . . , xn is a r.s. from Bi(1, θ). Show that

∂Ln

∂θ
=

n

θ(1 − θ)
(x̄− θ),

and hence θ̂n = x̄. Show directly that E(θ̂n) = θ, var (θ̂) = θ(1− θ)/n and use the CLT
(Central Limit Theorem) to show that, for large n,

θ̂n
approx∼ N

(

θ,
θ(1 − θ)

n

)

.

Outline Proof of Result 1 i.e. that

θ̂n
approx∼ N

(

θ, 1

/

E

(

∂Ln

∂θ

)2
)

for large n.

Proof. For clarity (you may disagree!) we will refer to θ0 as the true value of the

parameter θ. We know that θ̂n maximises Ln(θ) =
∑n

1 log f(Xj | θ) =
∑n

j=1 Sj(θ) say.
We assume that we are dealing, exclusively, with the totally straightforward case where

θ̂n is the solution of
∂Ln

∂θ
(θ) = 0.
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∗ Now
∂

∂θ
Ln(θ)

∣

∣

∣

∣

θ̂n

' ∂

∂θ
Ln(θ)|θ0

+ (θ̂n − θ0)
∂2

∂θ2
Ln(θ)|θ0

assuming the remainder is negligible, and the left hand side of ∗ = 0, by definition of
θ̂n. Hence

√
n(θ̂n − θ0) '







1√
n

n
∑

1

∂Sj

∂θ

∣

∣

∣

∣

∣

θ0







/







− 1

n

n
∑

1

∂2Sj

∂θ2

∣

∣

∣

∣

∣

θ0







.

Write

Uj =
∂

∂θ
log f(Xj | θ)

∣

∣

∣

∣

θ0

(this is a r.v.).

Now, as proved on page 6, Eθ0
(Uj) = 0 . Furthermore,

varθ0
(Uj) = Eθ0

(U2
j ) =

∫
(

∂

∂θ
log f(xj | θ)

)2

f(xj | θ)dxj

evaluated at θ = θ0

=

∫ (−∂2

∂θ2
log f(xj | θ)

)

f(xj | θ)dxj

evaluated at θ = θ0.

Write varθ0
(Uj) = i(θ0). Hence 1√

n

∑n
1 Uj has mean 0, variance i(θ0). Thus, by

the Central Limit Theorem (CLT), the distribution of 1√
n

∑

Uj → the distribution of

N(0, i(θ0)). But, for large n, we may use the Strong Law of Large Numbers (SLLN) to
show that

−1

n

n
∑

1

∂2Sj

∂θ2

∣

∣

∣

∣

θ=θ0

' −1

n

n
∑

1

E

(

∂2Sj

∂θ2

) ∣

∣

∣

∣

θ=θ0

= i(θ0).

Hence, for large n,
√
n(θ̂n − θ0) has approximately the same distribution as Z/i(θ0),

where Z ∼ N(0, i(θ0)), i.e.

√
n(θ̂n − θ0) is approximately N(0, 1/i(θ0)).

The statistician’s way of writing this is,

for large n, θ̂n
approx∼ N

(

θ0,
1

ni(θ0)

)

.

Comments

(i) The basic steps used in the above are Taylor series expansion about θ0, CLT,
and SLLN.
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(ii) The result generalises immediately to vector θ, giving

θ̂n
approx∼ N

(

θ0,
1

n

(

i(θ0)
)−1
)

,

the matrix i(θ0) having (i, j)th el.

E

( −∂2

∂θi∂θj
log f(X1 | θ)

) ∣

∣

∣

∣

θ0

.

(iii) The result also generalises to the case where X1, . . . , Xn are independent but
not identically distributed, e.g.

Xi independent Po(µi) (Poisson with mean µi)

with logµi = βT zi, zi given covariate,

β the unknown parameter of interest.

Thus f(xi | β) ∝ e−µiµxi

i

giving log f(xi | β) = −exp(βT zi) + (zT
i β)xi + constant.

Define Sj(β) =
∂

∂β
log f(xj | β),

so that E
(

Sj(β)
)

= 0. Then it can be shown, by applying a suitable variant of the CLT
to S1(β), . . . , Sn(β), that if

β̂ is the solution of
∂Ln

∂β
(β) = 0,

then, for large n, β̂ is approximately normal, with mean vector β,

and covariance matrix

(

E

(−∂2Ln

∂β∂βT

)

)−1

.

The asymptotic normality of the mle, for n independent observations, is used repeatedly
in our application of glm.

Result 2: Wilks’ Theorem

We state it again (slightly differently): let

x1, . . . , xn be a r.s. from f(x | θ), θ ∈ Θ where Θ ⊂ R
r.

Procedure. To test H0 : θ ∈ ω against H1 : θ ∈ Ω where ω ⊂ Ω ⊂ Θ, and ω,Ω,Θ are
given sets, we reject ω in favour of Ω if and only if

2 logRn ≡ 2

[

max
θ∈Ω

Ln(θ) − max
θ∈ω

Ln(θ)

]

10



is too large, and we find the appropriate critical value by using

The asymptotic result: For large n, if ω true,

2 logRn
approx∼ χ2

p

where p = dimΩ − dimω . (As for the mle, this result also holds for the more general
case where X1, . . . , Xn are independent, but not identically distributed).

We prove this very important theorem only for the following special case :
ω = {θ = θ0}, i.e. ω a point, hence of dimension 0, and Θ = Ω, assumed to be

of dimension r. Thus p = r.
(Even an outline proof of the theorem, in the case of general ω,Ω, takes several

pages: see for example Cox and Hinkley(1974).) In the special case,

2 logRn = 2
[

Ln(θ̂n) − Ln(θ0)
]

,

where θ̂n maximises Ln(θ) subject to θ ∈ Θ, i.e. is the usual mle. Thus

Ln(θ0) ' Ln(θ̂n) + (θ0 − θ̂n)Ta(θ̂n) + 1

2 (θ0 − θ̂n)T b(θ̂n)(θ0 − θ̂n)

where
a(θ̂n) = vector of first derivatives of Ln(θ) at θ̂n

b(θ̂n) = matrix of second derivatives of Ln(θ) at θ̂n.

}

By definition of θ̂n as the mle, a(θ̂n) = 0 (subject to the usual regularity conditions)
and

−b(θ̂n) '
(

E

(−∂2Ln

∂θi∂θj

))

at θ0
= ni(θ0)

2
(

Ln(θ0) − Ln(θ̂n)
)

' −(θ0 − θ̂n)T
(

ni(θ0)
)

(θ0 − θ̂n)giving

2 logRn = 2
(

Ln(θ̂n) − Ln(θ0)
)

' (θ̂n − θ0)
T
(

ni(θ0)
)

(θ̂n − θ0).i.e.

But, if θ = θ0,

(θ̂n − θ0)
approx∼ N

(

0,
(

ni(θ0)
)−1
)

.

Hence, for θ ∈ ω,

2 logRn
approx∼ χ2

p,

For this last step we have made use of the following lemma.

Lemma. If

Z ∼ Nr(0,Σ), then ZT Σ−1Z ∼ χ2
r

r × 1 (provided that Σ is of full rank).

Proof. By definition, Σ = E(ZZT ), the covariance matrix of Z. For any fixed r × r
matrix L,

LZ ∼ Nr(0, LΣLT )

11



[ recall that E(LZ) = LE(Z) = 0, E(LZ)(LZ)T = L[E(ZZT )]LT .]
But, Σ is an r×r positive definite matrix, so we may choose L real, non-singular,

such that LΣLT = Ir, the identity matrix, i.e. Σ = L−1(L−1)T .
Then LZ ∼ Nr(0, Ir), so that (LZ)1, . . . , (LZ)r are NID(0, 1) r.v.s. So, by

definition of χ2
r, the sum of squares of these ∼ χ2

r. But this sum of squares is just

(LZ)T (LZ), i.e. ZTLTLZ

i.e. ZT Σ−1Z.

Hence ZT Σ−1Z ∼ χ2
r as required (and hence has mean r, variance 2r: prove this).

Exponential Family Distributions

If
f(y | θ) = a(θ)b(y)exp

(

τ(y)π(θ)
)

for y ∈ E

is the pdf of Y where E, the sample space, is free of θ, and a(·) is such that

∫

y∈E

f(y | θ)dy = 1,

we say that Y has an exponential family distribution. In this case, if y1, . . . , yn is the
r.s. from f(y | θ), the likelihood is

f(y1, . . . , yn | θ) =
(

a(θ)
)n
b(y1), . . . , b(yn)exp

(

π(θ)
n
∑

1

τ(yi)
)

and so
∑n

1 τ(yi) ≡ t(y) is a sufficient statistic for θ. If, for y ∈ E,

f(y | π) = a(π)b(y)exp
(

τ(y)π
)

,

∫

y∈E

f(y | π)dy = 1,

we say that Y has an exponential family distribution,with natural parameter π.

The k-parameter generalisation of this is

f(y | π1, . . . , πk) = a(π)b(y)exp
(

k
∑

1

πiτi(y)
)

,

in which case (π1, . . . , πk) are the natural parameters, and by writing down

n
∏

1

f(yj | π),

you will see that
(

t1 ≡
n
∑

1

τ1(yj), . . . , tk ≡
n
∑

1

τk(yj)
)
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is a set of sufficient statistics for (π1, . . . , πk).

Exponential families have many nice properties. Several well-known distributions,
e.g. normal, Poisson, binomial, are of exponential family form. Here is one nice prop-
erty.

Maximum likelihood estimation and exponential families

Assume f(y | π) is as defined above, with π a scalar parameter. Then, if y1, . . . , yn is
a random sample from f(y | π), we see that

Ln(π) = n log a(π) + πt(y) + constant, where t(y) ≡
n
∑

1

τ(yi).

∂Ln

∂π
=
na′(π)

a(π)
+ t(y).(∗∗) Hence

(

a(π)
)−1

=

∫

y∈E

b(y)eπτ(y)dy since f(y | π) is a pdf. Differentiate w.r.t. π.But

−a′
a2

=

∫

τ(y)b(y)eπτ(y)dy(∗) Thus

−a′
a

=

∫

a(π)τ(y)b(y)eπτ(y)dy = E(τ(Y )).so

∂2L

∂π2
= n

∂

∂π

(

a′(π)

a(π)

)

Further, from (∗∗),

= n

[

a′′

a
−
(

a′

a

)2
]

.

But, differentiating (∗) gives

−a′′
a2

+
2(a′)2

a3
=

∫

(

τ(y)
)2
b(y)eπτ(y)dy

−a′′
a

+
2(a′)2

a2
= E

(

τ(Y )
)2

so

−a′′
a

+

(

a′

a

)2

= var
(

τ(Y )
)

.giving

Hence for all π
∂2L

∂π2
= −nvar

(

τ(Y )
)

< 0.

Hence, if π̂ is a solution of ∂L
∂π = 0, it is the maximum of L(π). Furthermore, we may

rewrite

∂L

∂π

∣

∣

∣

∣

π̂

= 0

t(y) = E
(

t(Y )
)

∣

∣

∣

∣

π=π̂

as

13



i.e. at the mle, the observed and expected values of t(y) agree exactly.

The multiparameter version of this result, which is proved similarly, is the fol-
lowing :

If f(yi | π) = a(π)b(yi)exp

( k
∑

1

πjτj(yi)

)

is the pdf of Yi, where π is now a k−dimensional vector, then

( −∂2Ln

∂πj∂πj′

)

is a positive definite matrix, i.e. Ln(π) is a CONCAVE function of π. This nice property
of the shape of the loglikelihood function makes estimation for exponential families
relatively straightforward.

Chapter 3: Introduction to glm: Generalised Linear Models

Our methods are suitable for the following types of statistical problem (all having n
independent observations, and some regression structure):

(i) The usual linear regression model

Yi ∼ NID(µi, σ
2), 1 ≤ i ≤ n

where µi = βTxi and xi a given covariate of dimension p, and β, σ2 are both unknown.
For example, µi = β1 + β2xi, where xi scalar, and so β of dimension 2, (and we might
want to estimate β2, β1, to test β2 = 0, and so on).

(ii) Poisson regression

Yi independent Po(µi), logµi = βTxi, 1 ≤ i ≤ n

(note that µi > 0, by definition). More generally, we might suppose that

g(µi) = βTxi,

where g(·) is a known function, β unknown, and xi is a known covariate.

(iii) Binomial regression

Yi independent Bi(ri, πi)

where πi depends on xi, a known covariate, for 1 ≤ i ≤ n. For example, in a pharma-
ceutical experiment

ri = number of patients given a dose xi of a new drug

Yi = number of these giving positive response to this drug (e.g. cured).
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We observe that Yi/ri tends to increase with xi and we want to model this relationship,

e.g. to find the x which will give E(Y/r) = .90 (i.e. the dose which gives a 90% cure
rate)

e.g. to compare the performance of this drug with a well-established drug: we might
find that a simple plot of Y/r against dose for each of the old and the new drugs
suggests that the old drug is better than the new at low doses, but the new drug
better than the old at higher doses.

We seek a model in which πi is a function of xi, but we must take account of the
constraint 0 < πi < 1.Thus πi = β1 + β2xi is not a suitable model, but

log
πi

1 − πi
= β1 + β2xi

often works well. Thus we take

g
(

E(Yi/ri)
)

= a linear function of xi, 1 ≤ i ≤ n

where

g(πi) = log

(

πi

1 − πi

)

is the ‘link function’, so-called because it links the expected value of the response
variable Yi to the explanatory covariates xi .

(Verify that this particular choice of g( ) gives

πi =
(

exp(β1 + β2xi)
)

/

(

1 + exp(β1 + β2xi)
)

so that πi ↑ as xi ↑ for β2 > 0).

(iv) Contingency tables (a less obvious application of glm).

e.g. (Nij) ∼Mn
(

n; (pij)
)

,
∑∑

pij = 1
multinomial, parameters n, (pij).

e.g. Nij = number of people of ethnic group i voting for political party j
in a sample of size n, 1 ≤ i ≤ I, 1 ≤ j ≤ J .

Suppose that the problem of interest is to test H0 : pij = αiβj for all (i, j), where
(αi), (βj) unknown and

∑

αi =
∑

βj = 1,
i.e. to test the hypothesis that ethnic group and party are independent.

Note that E(Nij) = npij ,

log E(Nij/n) = log pij ,so that

log pij = logαi + log βjand under H0

log E(Nij) = const + ai + bj for some a, b.equivalently

Thus, in terms of log E(Nij), testing H0 is equivalent to testing a hypothesis which is
linear in the unknown parameters.

15



All of the above problems fall within the same general class, and we can exploit this
fact to do the following.

(a) We use the same algorithm to evaluate the mle’s of the parameters, and their
(asymptotic) standard errors.

From now on we use the abbreviation se to denote standard error. The se is the
square root of the estimated variance.

(b) We test the adequacy of our models (by Wilks’ theorem, usually).

Exponential families revisited

We will need to be able to work with the case where Y1, . . . , Yn are independent but
not identically distributed, so we study the following general form for the distribution
of Y1, . . . , Yn. Here we use standard glm notation, see for example Aitkin et al., p. 322.

Take Y1, . . . , Yn independent and assume that Yi has pdf

f(yi | θi, φ) = exp

[

yiθi − b(θi)

φ

]

× exp c(yi, φ).

Thus

log f(yi | θi) =
yiθi − b(θi)

φ
+ c(yi, φ).

Assume further that E(Yi) = µi (we will see that µi is a function of θi only), and that
there exists a known function g(·) such that

g(µi) = βTxi

where xi is known, and β is unknown.

Our problem, in general, is the estimation of β. This naturally includes finding the se
of the estimator. The parameter φ, which in general is also unknown, is called the scale

parameter.

First we use simple calculus to find expressions for the mean and variance of Y .

Lemma 1. If Y has pdf

f(y | θ, φ) = exp

[

yθ − b(θ)

φ
+ c(y, φ)

]

E(Y ) = b′(θ), var(Y ) = φb′′(θ)then for all θ, φ,

Proof.

log f(y | θ, φ) =
(

yθ − b(θ)
)

/φ+ c(y, φ)

⇒ ∂

∂θ
log f(y | θ, φ) =

(

y − b′(θ)
)

/φ ∗

⇒ ∂2

∂θ2
log f(y | θ, φ) = −b′′(θ)/φ. ∗
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But for all θ, φ

∫

y

f(y | θ, φ)dy = 1

so E

(

∂

∂θ
log f(Y | θ, φ)

)

= 0

so E(Y ) = b′(θ). Similarly,

0 =

∫

∂2

∂θ2
f(y | θ, φ)dy =

∫

{

(

∂2

∂θ2
log f

)

f +

(

∂

∂θ
log f

)2

f

}

dy

0 = E

(

∂2

∂θ2
log f

)

+ E

(

∂

∂θ
log f

)2

giving

i.e. E

(

Y − b′(θ)

φ

)2

=
b′′(θ)

φ
from ∗,

i.e. var(Y ) = φb′′(θ).

Hence, returning to data y1, . . . , yn, we see that the loglikelihood function is, say,

`(β) =
n
∑

i=1

(

yiθi − b(θi)
)

/φ+
n
∑

i=1

c(yi, φ)

↑
`(β, φ))(actually

giving
∂`

∂β
≡ s(β) (say) =

n
∑

i=1

(

yi − b′(θi)
)

φ

∂θi

∂β

where we have used the chain rule, viz.

∂

∂β
(·) =

∂

∂θi
(·) ∂θi

∂β
for each i .

But g(µi) = βTxi, and so we see that, because µi = b′(θi),

g
(

b′(θi)
)

= βTxi,

g′
(

b′(θi)
)

b′′(θi)
∂θi

∂β
= xihence

g′(µi)b
′′(θi)

∂θi

∂β
= xii.e.

∂`

∂β
= s(β) =

n
∑

i=1

(yi − µi)xi

φg′(µi)b′′(θi)
so

∂`

∂β
= s(β) =

n
∑

1

(yi − µi)

g′(µi)Vi
xii.e.
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where Vi = var(Yi) = φb′′(θi); see Lemma 1.

The vector s(β) is called the score vector for the sample, and β̂ is found as the solution
of ∂`

∂β
= 0, i.e. s(β) = 0.

In general this set of equations needs to be solved iteratively, so we will need ∂2`
∂β∂βT ,the

matrix of second derivatives of the loglikelihood. In fact glm works with E

(

∂2`
∂β∂βT

)

:

to find this we use

Lemma 2.

E

(

∂2`

∂β∂βT

)

= −E

(

∂`

∂β

∂`

∂βT

)

.

Proof. Write `(β) = log f(y | β, φ) . Then for all β (and all φ)
∫

y

f(y | β)dy = 1

Thus
∂

∂β

∫

y

f(y | β)dy = 0

E

(

∂

∂β
`(β)

)

= 0 (a vector)

and
∂2

∂β∂βT

∫

y

f(y | β)dy = 0 (a matrix).

But
∫

∂2

∂β∂βT
f(y | β)dy = E

(

∂2

∂β∂βT
log f(y | β)

)

+ E

(

∂

∂β
`(β)

∂

∂βT
`(β)

)

hence

E

(

∂2`

∂β∂βT

)

= −E

(

∂`

∂β

∂`

∂βT

)

.

This concludes the proof of Lemma 2. We may apply this Lemma to obtain a simple
expression for the expected value of the matrix of second derivatives. Now

∂`

∂β
=

n
∑

i=1

(yi − µi)xi

g′(µi)Vi

and E(yi − µi) = 0, and y1, . . . , yn are independent. Hence

E

(

∂2`

∂β∂βT

)

= −E

(

n
∑

1

(yi − µi)
2

(

g′(µi)Vi

)2 xix
T
i

)

= −
n
∑

1

Vi
(

g′(µi)
)2
V 2

i

xix
T
i

= −
n
∑

1

wixix
T
i say, wi ≡ 1/

(

Vi

(

g′(µi)
)2
)

.
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We write W as the diagonal matrix





w1 0
.. .

0 wn





and thus we see

E

(

∂2`

∂β∂βT

)

= −XT W
n×n

X
n×p

.................Ex.

where

X =







xT
1
...
xT

n






.

Hence we can say that if β̂ is the solution of s(β) = 0, then β̂ is asymptotically normal,
with mean β and covariance matrix having as inverse

−E

(

∂2`

∂β∂βT

)

= XTWX.
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Reminder: The Newton-Raphson algorithm

To solve
∂`(β)

∂β
= 0.

Take β0 as ‘starting value’. We note that

∂`(β)

∂β

∣

∣

∣

∣

β1

' ∂`

∂β

∣

∣

∣

∣

β0

+
∂2`

∂β∂βT

∣

∣

∣

∣

β0

(β1 − β0).

Set the left hand side = 0 (because we seek β̂ such that ∂`
∂β

= 0 at β = β̂).

Then find β1 from β0 by

0 =
∂`

∂β

∣

∣

∣

∣

β0

+

(

∂2`

∂β∂βT

) ∣

∣

∣

∣

β0

(β1 − β0) ............It.

giving β1 as a linear function of β0.

Find β2 from β1 by

0 =
∂`

∂β

∣

∣

∣

∣

β1

+

(

∂2`

∂β∂βT

) ∣

∣

∣

∣

β1

(β2 − β1)

giving β2 as linear function of β1, and so on.

This process gives βν → β̂. Convergence for glm examples is usually remarkably quick:
in practice we stop the iteration when `(βν) and `(βν−1) are sufficiently close, and
this may only require 4 or 5 iterations. (But note that some extreme configurations of
data, for example zero frequencies in binomial regression, may have the effect that the
loglikelihood function does not have a finite maximum. In this case the glm algorithm
should report the failure to converge, and may give strangely large parameter estimates
with very large standard errors.)

In the glm algorithm the matrix ∂2`
∂β∂βT is replaced in It. by its expectation, from Ex.

The inverse covariance matrix

E

( −∂2`

∂β∂βT

)

of β̂ is estimated by replacing β by β̂. In addition, φ is replaced by φ̂, but in any case
φ = 1 for the binomial and Poisson distributions. The estimation of φ for the normal
distribution will be discussed further below.

Example 1. Yi ∼ NID(βTxi, σ
2), 1 ≤ i ≤ n. Take the special case βTxi = βxi, i.e.

linear regression through the origin. Thus

f(yi | β) =
1√

2πσ2
exp − 1

2σ2
(yi − βxi)

2

giving

log f(yi | β) = +
1

σ2

(

βyixi −
β2

2
x2

i

)

− y2
i

2σ2
− log

√
2πσ2
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which is of the form
(

yiθi − b(θi)
)

/φ+ c(yi, φ)

with
b′(θi) = µi = βxi, g(µi) = µi, φ = σ2

θi = βxi, b(θi) = 1

2θ
2
i .

[Hence b′′(θi) = 1, var(Yi) = φb′′(θi) : check .] In this case, it is trivial to show directly

that β̂ =

∑

xiYi
∑

x2

i

.

What does the glm algorithm do? If we substitute in

∂`

∂β
=
∑ (yi − µi)xi

g′(µi)Vi
where Vi = var(Yi)

and

E

(

∂2`

∂β2

)

= −
∑

wix
2
i , where w−1

i = Vi

(

g′(µi)
)2

we see that here
∂`

∂β
=
∑

(yi − βxi)xi/σ
2

and

E

(

∂2`

∂β2

)

= −
∑

x2
i /σ

2

so the glm iteration evaluates β1 from β0 by

0 =

∑

(yi − β0xi)xi

σ2
− (β1 − β0)

∑

x2
i

σ2

(thus β0 is irrelevant), giving β1 =
∑

xiyi/
∑

x2
i = β̂. Hence only one iteration is

needed to attain the mle. (One iteration will always be enough to maximise a quadratic
loglikelihood function.)

Furthermore, from the fact that β̂ =
∑

xiYi/
∑

x2
i , where Yi are independent, each with

variance σ2, it is easy to see directly that β̂ is normal, mean β, and var(β̂) = σ2/
∑

x2
i

(The result here exact , not asymptotic only). The general glm formula gives us

E

(

∂2`

∂β2

)

= −
∑

wix
2
i = −

∑

x2
i /σ

2,

and hence the general glm formula gives us

var(β̂) ' σ2/
∑

x2
i

(consistent with the above exact variance, of course).
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Example. Repeat the above, but now taking

Yi ∼ NID(β1 + β2xi, σ
2) 1 ≤ i ≤ n

i.e. the usual linear regression, with
∑

xi = 0 (without loss of generality) (so now you
need to find ∂`

∂β1

, ∂`
∂β2

, and so on).

You should find, again, that the glm algorithm needs only one iteration to reach the
well-known mle

β̂1 = ȳ, β̂2 =
∑

xiyi/
∑

x2
i ,

regardless of the position of the starting point (β10, β20).

Example 2. Assume that

Yi independent Bi(1, µi), 1 ≤ i ≤ n

and

log
(

µi/(1 − µi)
)

= βxi say,

i.e.

g(µi) = βxi,

thus defining g(·) as the link function. Then

P (Yi = yi | µi) = f(yi | µi) = µyi

i (1 − µi)
1−yi

giving

log f(yi | µi) = yi log
µi

1 − µi
+ log(1 − µi)

which we can rewrite in the general glm form as

log f(yi | µi) =
(

yiθi − b(θi)
)

/φ where φ = 1 and

θi = log
(

µi/(1 − µi)
)

, b(θi) = − log(1 − µi).

Thus

µi = eθi/(1 + eθi), b(θi) = + log(1 + eθi)

⇒ b′(θi) =
eθi

1 + eθi
, b′′(θi) =

eθi

(1 + eθi)2
= µi(1 − µi)

all of which, of course, agrees with what we already know, that

Yi ∼ Bi(1, µi) ⇒ E(Yi) = µi, var(Yi) = µi(1 − µi).

Furthermore,

`(β) =
∑

yiβxi −
∑

log(1 + eβxi)

(remembering that g(µ) = log
(

µ/(1 − µ)
)

)
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⇒ ∂`

∂β
=
∑

xiyi −
∑

xi
eβxi

1 + eβxi
.

So we can see at once that the only way to solve ∂`
∂β = 0 is by iteration. Now

∂`

∂β
=
∑

xiyi −
∑

xi

(

1 − 1

1 + eβxi

)

⇒ ∂2`

∂β2
= −

∑

x2
i

eβxi

(1 + eβxi)2
= E

(

∂2`

∂β2

)

i.e.

E

(

∂2`

∂β2

)

= −
∑

wix
2
i , wi =

1

Vi

(

g′(µi)
)2

where
Vi = µi(1 − µi)

g(µi) = log
(

µi/(1 − µi)
)

}

check

This time, to compute β̂, we find β1 from β0 by

0 =
∂`

∂β

∣

∣

∣

∣

β0

+

[

E

(

∂2`

∂β2

)]

β0

(β1 − β0)

and so on, and this converges to β̂, where

β̂
approx∼ N

(

β, vn(β)
)

vn(β) = 1/
∑

wix
2
i

where

wi =
eβxi

(1 + eβxi)2

which may be estimated by replacing β by β̂.

Exercise. Repeat the above with Yi ∼ Po(µi), logµi = βxi, i.e. the Poisson distribution
and the log link function. (You will find this gives φ = 1 again.)

The Canonical Link functions

In general in glm models, E(Yi) = µi, g(µi) = βTxi and the matrix ∂2`
∂β∂βT may be

different from the matrix E

(

∂2`
∂β∂βT

)

. But for a given exponential family f(·), there is

a ‘canonical link function’ g(·) such that these two matrices are the same.

If g(·) is such that we can write the loglikelihood `(β) as

`(β) =
(

p
∑

1

βνtν(y) − ψ(β)
)

/φ+ constant
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where ψ(β) is free of y [and t1(y), . . . , tp(y) are of course the sufficient statistics], then
g(·) is said to be the canonical link function. In this case

∂`

∂β
=

[

t(y) − ∂ψ

∂β

]/

φ

and
∂2`

∂β∂βT
= − 1

φ

∂2ψ

∂β∂βT
which is not a random variable.

Hence E

(

∂2`

∂β∂βT

)

=
∂2`

∂β∂βT
for all y.

Verify: If Yi ∼ Po(µi), g(µi) = β1+β2xi, then g(µ) = log µ is a canonical link function.
What are (t1(y), t2(y)) in this case?

Exercise (1) Take Yi ∼ Bi(1, µi), thus µi ∈ [0, 1]. Take as link g(µi) = Φ−1(µi), the
probit link, where Φ is the distribution function of N(0, 1). (Take g(µi) = βxi.) Show
this is not the canonical link function.

Exercise (2) Suppose, for simplicity, that β is of dimension 1, and the loglikelihood

`(β) =
(

βt(y) − ψ(β)
)

/φ.

Prove that var t(Y ) = φ

(

∂2ψ

∂β2

)

and hence that
∂2`

∂β2
< 0 for all β.

Hence any stationary point of `(β) is the unique maximum of β. Generalise this result
to the case of vector β.

Testing hypotheses about β

and
A measure of the goodness of fit: the scaled deviance

Returning to our original glm model, with loglikelihood for observations Y1, . . . , Yn as

`(β, φ) =
n
∑

1

{

yiθi − b(θi)

φ
+ c(yi, φ)

}

(glm)

with E(Yi) = µi, g(µi) = βTxi, where xi given, we proceed to work out ways of testing
hypotheses about the components of β.
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(i) If, for example, we just want to test

β1 = 0 where β =







β1
...
βp







then we can find β̂1 , and se(β̂1) its standard error, and refer |β̂1|/se(β̂1) to N(0, 1).

We reject β1 = 0 if this is too large.The quantity se(β̂1) is of course obtained as the
square root of the (1, 1)th element of the inverse of the matrix

−∂2`

∂β∂βT

∣

∣

∣

∣

β̂

.

So here we are using the asymptotic normality of the mle β̂, together with the formula
for its asymptotic covariance matrix.

(ii) If we want to test β = 0, we can use the fact that, asymptotically, β̂ ∼ N
(

β, V (β)
)

,
say. Hence

(β̂ − β)T
(

V (β̂)
)−1

(β̂ − β) ∼ χ2
p,

so, to test β = 0, just refer β̂T
(

V (β̂)
)−1

β̂ to χ2
p.

Similarly we could find an approximate (1 − α)-confidence region for β by observing
that, with c defined in the obvious way from the χ2

p distribution,

P
[

(β̂ − β)T
(

V (β̂)
)−1

(β̂ − β) ≤ c
]

' 1 − α

giving an ellipsoidal confidence region for β centred on β̂. This procedure can be
adapted, in an obvious way, to give a (1 − α)-confidence region for, say,

(

β1

β2

)

.

(iii) But we are more likely to want to test hypotheses about (vector) components of
β; for example with

Yi ∼ NID(µ+ β1xi + β2x
2
i + β3x

3
i , σ

2)

we may wish to test
(

β2

β3

)

=
(

0
0

)

, or, if

Yij ∼ Po(µij), 1 ≤ i ≤ r, 1 ≤ j ≤ s,

logµij = θ + αi + βj + (αβ)ij , 1 ≤ i ≤ r, 1 ≤ j ≤ s,

we may wish to test (αβ)ij = 0 for all i, j.

In general, with `(β) as in (glm) on p. 23, suppose that we wish to test β ∈ ωc (the
‘current model’) against β ∈ ωf (the ‘full model’), where ωc ⊂ ωf (and ωc, ωf are linear
hypotheses). Assume that φ is known. Define S(ωc, ωf ) = 2(Lf − Lc), where Lf , Lc

are loglikelihoods maximised on ωf , ωc respectively. Then

S(ωc, ωf ) = 2
∑

[

yi(θ̃i − θ̂i) −
(

b(θ̃i) − b(θ̂i)
)]

/φ
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where θ̂i = mle under ωc, θ̃i = mle under ωf . Define D(ωc, ωf ) = φS(ωc, ωf ).

Then D(ωc, ωf ) is termed the deviance of ωc relative to ωf ,

and S(ωc, ωf ) is termed the scaled deviance of ωc relative to ωf .

Distribution of the scaled deviance. If ωc is true,

S(ωc, ωf )
approx∼ χ2

t1−t2
, where t1 = dim(ωf ), and t2 = dim(ωc).

This result is exact for normal distributions with g(µ) = µ.

A practical difficulty, and how to solve it. In practice, for normal distributions,
φ is generally unknown (for binomial and Poisson, φ = 1). In this case we replace φ by
its estimate under the full model, and for the normal distribution we would then use
the F distribution for our test of ωc against ωf .

This is discussed in greater detail (but still without a complete proof) below.

A highly important special case of a generalised linear model is that of the linear model
with normal errors. This model, and its analysis, have been extensively studied, and
there are many excellent text-books devoted to this one subject, demonstrating it to
be both useful and beautiful. In this brief text, we introduce the reader to this topic
in the next Chapter.

Chapter 4: Regression for normal errors

Assume that

Yi ∼ NID(βTxi, σ
2) dim β = p.

We may rewrite this assumption as

Y ∼ Nn(Xβ, σ2In)

X being called the ‘design’ matrix, assumed here to have rank p.

Partition X, β as (X1

...X2),
(

β1

β2

)

respectively, so that Xβ = X1β1 +X2β2.Then,
suppose we wish to test H0 : β2 = 0. Hence we can see that H0 can be rewritten as
H0 : β ∈ ωc where ωc is a linear subspace of ωf , which is R

p. Now,

f(y | β, σ2) =
1

(
√

2πσ2)n
exp − 1

2

n
∑

1

(yi − βTxi)
2/σ2,

equivalently,

f(y | β, σ2) ∝ 1

(σn)
exp − 1

2σ2
(y −Xβ)T (y −Xβ).
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Thus β̃, the mle of β under ωf , minimises (y−Xβ)T (y−Xβ). Taking ∂
∂β . . . = 0 gives

(XTX)β̃ = XT y

β̃ = (XTX)−1XT yand hence

Xβ̃ = X(XTX)−1XT yand hence

ỹ = Xβ̃ = Pfywhich we rewrite as

where
ỹ = the fitted values under the full model
Pf = X(XTX)−1XT .

Check that Pf is a projection matrix. This means that it satisfies Pf = P T
f and

PfPf = Pf . Hence

max
ωf

f(y | β, σ2) =
const

σn
exp − 1

2 (y − ỹ)T (y − ỹ)/σ2.

Here ỹ is the projection of y onto the subspace ωf . Similarly,

max
ωc

f(y | β, σ2) =
const

σn
exp − 1

2 (y − ŷ)T (y − ŷ)/σ2,

where ŷ is the projection of y onto ωc (also called the fitted values under ωc) so that
ŷ = Pcy, where Pc = X1(X

T
1 X1)

−1XT
1 . Hence the scaled deviance is

S(ωc, ωf ) = 2
[

− 1

2(y − ỹ)T (y − ỹ) + 1

2 (y − ŷ)T (y − ŷ)
]/

σ2.

Try illustrating this for yourself with a sketch in which y is of dimension 3, ωf is a
plane, ωc is a line within ωf ,and all of y, ωf , ωc pass through the point 0.(A vector
subspace always passes through the origin.)

Observe from your picture that

Qc ≡ (y − ŷ)T (y − ŷ) ≥ (y − ỹ)T (y − ỹ) ≡ Qf .

Qc, Qf being the deviances in fitting ωc, ωf respectively .

The quantities Qc, Qf are very important. Here we are dealing with the normal linear
model, and Qc, Qf are usually referred to as the residual sums of squares fitting
ωc, ωf respectively.

S(ωc, ωf ) =
[

(y − Pcy)
T (y − Pcy) − (y − Pfy)

T (y − Pfy)
]/

σ2Hence

S = [yT y − yTPcy − yT y + yTPfy]/σ
2giving

(using P T
c Pc = Pc, etc.)

S = yT (Pf − Pc)y/σ
2.giving
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But
(Pf − Pc)(Pf − Pc) = Pf − 2Pc + Pc = Pf − Pc ,

since PfPc = PcPf = Pc, (using the fact that ωc ⊂ ωf ).

Hence S = yTPy/σ2

where P is the projection matrix, Pf − Pc. At this point we quote, without proof: If
y ∼ N(µ, σ2I) and Pµ = 0, then yTPy/σ2 ∼ χ2

r, where r = rank P . [ Check that if
E(Y ) ∈ ωc, then (Pf − Pc)E(Y ) = 0.]

Hence, to test µ ∈ ωc against µ ∈ ωf , we refer

yTPy/σ2 to χ2
r,

i.e. we refer [residual ss under ωc− residual ss under ωf ]/σ2 to χ2
r, where r = dimωf −

dimωc. But in practice this result is not directly useful, because

σ2 is unknown .

We overcome this difficulty by the following theorem, which we quote, WITHOUT
PROOF.

Theorem. Suppose Y ∼ N(µ, σ2I), where µ ∈ the linear subspace ωf . Suppose the
linear subspace ωc ⊂ ωf . Let

µ̃ = PfY, µ̂ = PcY

where Pf is the projection onto wf , Pc the projection onto ωc. As defined before, we
take

Qf = (Y − µ̃)T (Y − µ̃),
Qc = (Y − µ̂)T (Y − µ̂),

the residual ss fitting ωf

the residual ss fitting ωc

}

(so by definition Qc ≥ Qf ). Then

and

Qf/σ
2 ∼ χ2

df

(Qc −Qf )/σ2 ∼ χ2
r (noncentral),

}

independent

and this second term is central χ2
r if and only if µ ∈ ωc. Here

df = degrees of freedom of Qf = n− dim(ωf )

r = dim(ωf ) − dim(ωc).

Corollaries

(1) E(Qf/df) = σ2

so µ ∈ ωf ⇒ Qf/df (the ‘mean deviance’) is an unbiased estimate of σ2.
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(2) To test µ ∈ ωc against µ ∈ ωf , we use

(Qc −Qf )/r

Qf/df

which we refer to Fr,df , rejecting ωc if this ratio is too large.

Example 0. The distribution of the least-squares estimator.
Show that under ωf , β̃ has the N(β, V σ2) distribution, where V = (XTX)−1.

Example 1. One-way Analysis of Variance (anova) Suppose that we are comparing t
different treatments .We take as the model for the data (yij)

yij = µ+ θi + εij ,

for 1 ≤ i ≤ t, 1 ≤ j ≤ ni, and we assume that εij ∼ NID(0, σ2) , where yij = response
of jth observation on ith treatment. So

ωf is E(yij) = µ+ θi for all i, j, and
ωc is E(yij) = µ for all i, j,
i.e. ωc is no difference between treatments.
The residual ss (i.e. deviance) fitting ωc is

∑∑

(yij − ȳ)2 ≡ Qc.

Note that ‘treatments’ is a factor here: we wish to fit (θi) and not (θi). This will
necessitate a factor declaration in any glm package. Omitting such a declaration
would have serious and unwanted consequences: be consoled that this is one of many
instances in computational statistics where we learn by making mistakes.

To fit ωf , we must first tackle the problem of lack of parameter identifiability in our
model. Since, for example, E(yij) = µ+ θi(= (µ+ 10) + (θi − 10)), we see that µ, (θi)
and (µ+ 10), (θi − 10) give identical models for the data. We resolve this difficulty by
imposing a linear constraint on the parameters (θi). The particular constraint chosen
has no statistical interpretation: it is merely a device to enable us to obtain a unique
solution to the likelihood equations.

The standard glm constraint is θ1 = 0. Equivalently, we could impose the constraint
∑

niθi = 0. In any case, we still get the same fitted values, which you can check are

ỹij =
∑

j

yij/ni ≡ ȳi say,

and the same deviance

=
∑

i,j

(yij − ỹij)
2 ≡ Qf .

This gives the Analysis of Variance

Due to df
treatments ST =

∑

i ȳ
2
i ni − cf t− 1

residual ss Qf n− t
Total ss Qc =

∑∑

(yij − ȳ)2 n− 1
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(Here ‘treatments’ really means ‘Due to differences between treatments’)

Qf (check) ≡ Qc −
[

∑

ȳ2
i ni − cf

]

= Qc − STwhere

cf = correction factor =
(

∑∑

yij

)2/
n.

Thus, to test ωc, refer
ST /(t− 1)

Qf/(n− t)
to Ft−1,n−t.

Here ST = Qc −Qf = difference in deviances.

N.B. In using glm, you don’t need to know the formulae for Qc, Qf etc, since glm
works them out for you. You just need to know how to use Qc, Qf , ST etc. to construct
an Anova, and hence to do F tests.

Of course, because Anovas are of such everyday practical importance, many statistical
packages, eg SAS, Genstat, S-plus will have a single directive (eg aov() in Splus) which
will set up the whole Anova table in one fell swoop. Furthermore, they will generally
use a more efficient way of computing the sums of squares than the glm method that
we use here, which takes no account of any special properties of the design matrix X.
But it’s good for you at this stage to have to think about exactly how this table is
constructed from differences in residual sums of squares.

Example 2. Two-way Anova.

Suppose we have two factors having I, J levels respectively, and we have u observations
on each of the IJ combinations of factor levels .We take as our model for the responses
(yijk)

yijk = µ+ αi + βj + εijk, εijk ∼ NID(0, σ2)

with 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ u. For example, yijk is the kth observation on the
ith country, jth profession, and u = 1 in your practical worksheet. We might want to
test

ω0 : α = 0, β = 0

ω1 : α = 0

ω2 : β = 0

Here ωf is E(yijk) = µ+ αi + βj . Thus

ω0 ⊂ ω1 ⊂ ωf , ω0 ⊂ ω2 ⊂ ωf .

Exercises.

Note: we need to impose constraints on the parameters to ensure identifiability. For
the exercises below, it is algebraically convenient to impose the symmetric constraints

Σαi = Σβj = 0

rather than the default glm constraints

α1 = β1 = 0.
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Of course, if
µ+ αi + βj = m+ ai + bj

for all i, j, where
Σαi = Σβj = 0, and a1 = b1 = 0,

then you can easily work out the relationships between the two sets of parameters
µ, (αi), (βj) and m, (ai), (bj).

(i) Show that the residual ss fitting ω0 is
∑

i

∑

j

∑

k(yijk − ȳ)2

(ii) Show (from the one-way Anova) that the residual ss fitting ω1 is

∑

i

∑

j

∑

k

(yijk − ȳ+j+)2.

Note that ω1 : E(yijk) = µ+ βj (we define ȳ+j+ =
∑

i

∑

k yijk/Iu).

(iii) Show that ỹijk, the fitted value under ωf , may be written as

ỹijk = ȳi++ + ȳ+j+ − ȳ+++

and hence the residual ss fitting ωf =
∑∑∑

(yijk − ỹijk)2. Show that

residual ss fitting ω2− residual fitting ωf

=residual ss fitting ω0− residual ss fitting ω1.

In your practical worksheet on the Two-way Anova, you will see that the residual ss
fitting ω2, ωf , ω0, ω1 correspond respectively to the deviances fitting

country only,
country + occupation,
a constant, and
occupation only.

Because of the balance of the design with respect to the two factors in question,
these four deviances obey the linear equation given above. This leads us to our next
important definition.

Definition of parameter orthogonality for a linear model

Suppose, as on p. 25, we have

Y = Xβ + ε, ε ∼ N(0, σ2I)

Xβ = (X1

...X2)

(

β1

β2

)

where p1 + p2 = p.and

Then β1, β2 are said to be mutually orthogonal sets of parameters if and only if

XT
1 X2 = 0

↙ ↙ ↘
p1 × n n× p2 p1 × p2
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It is not always easy to check this condition directly. You may well find that an easier
way to check that the parameters β1, β2 are mutually orthogonal is to apply the Lemma
01.

Lemma 01. β1, β2 are orthogonal if and only if β̂1 ≡ β̃1 (an identity in Y ), where

β̂1= lse of β1 in fitting Y = X1β1 + ε (i.e. assuming β2 = 0)

β̃ =
(β̃1

β̃2

)

= lse of β in fitting Y = Xβ + ε (i.e. the full model).

Here we use the abbreviation lse to denote Least Squares Estimator.

Proof. We have already seen that β̃ is the solution of

XTXβ̃ = XTY ;

similarly β̂1 is the solution of

XT
1 X1β̂1 = XT

1 Y.

The result follows from writing XTX as

(

XT
1

XT
2

)

(X1 X2) =

(

XT
1 X1 XT

1 X2

XT
2 X1 XT

2 X2

)

Orthogonality between sets of parameters has an important consequence for residual
sums of squares, as shown in Lemma 02.

Lemma 02. If β1, β2 are orthogonal, then

(residual ss fitting E(Y ) = X1β1)− (residual ss fitting E(Y ) = X1β1 +X2β2)

=(residual ss fitting E(Y ) = 0)− (residual ss fitting E(Y ) = X2β2).

Proof.

(residual ss fitting E(Y ) = X1β1) = (Y −X1β̂1)
T (Y −X1β̂1).

Further

(residual ss fitting E(Y ) = Xβ) = (Y −Xβ̃)T (Y −Xβ̃),

and

(residual ss fitting E(Y ) = 0) = Y TY .

Lastly,

(residual ss fitting E(Y ) = X2β2) = (Y −X2β̂2)
T (Y −X2β̂2).

The result follows from writing XTX as a partitioned matrix, and then using the fact
that XT

1 X2 = 0.

Apply Lemma 01 to answer the following questions, in which the errors εi may be
assumed to have the usual distribution.
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Exercise 1. In the model
Yi = β1 + β2xi + εi

with 1 ≤ i ≤ n, show that the parameters β1, β2 are mutually orthogonal if and only if
Σxi = 0.

Exercise 2. In the model

Yij = µ+ θi + εij , 1 ≤ j ≤ u, 1 ≤ i ≤ t,

show that if we impose the constraint Σθi = 0, then µ is orthogonal to the set (θi).

In practice we are never interested in fitting the hypothesis E(Y ) = 0, but we are
interested in fitting the model

E(Y ) = µ1n

as our ‘baseline’ model (1n here denoting the n-dimensional unit vector). For this
reason we need the following.

Extension of the definition of orthogonality

Suppose
Y = Xβ + ε and dim(β) = p = 1 + p1 + p2,

which we rewrite as
Y = µ1n +X1β1 +X2β2 + ε,

where β1, β2 are of dimensions p1, p2 respectively.

β =





µ
β1

β2



 , X = (1n

...X1

...X2)thus defining

yi = µ+ βT
1 x1i + βT

2 x2i + εi, say.and

Then µ, β1, β2 are mutually orthogonal sets of parameters if

1T
nX1 = 0, 1T

nX2 = 0, XT
1 X2 = 0.

Consider the linear hypotheses

ω0 : E(Y ) = µ1n

ω1 : E(Y ) = µ1n +X2β2

ω2 : E(Y ) = µ1n +X1β1

ωf : E(Y ) = µ1n +Xβ



















Then, as in Lemma 02, we can show that if µ, β1, β2 are mutually orthogonal,then

residual ss fitting ω2 – residual ss fitting ωf ,
= residual ss fitting ω0 – residual ss fitting ω1.

The proof is left as an exercise:
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note that the residual ss fitting ω0 is (Y − µ∗1n)T (Y − µ∗1n)
where µ∗ =

∑

Yi/n = Ȳ .

You should now be able to extend the definition to orthogonality between any number
of sets of parameters.

Exercise 1. In the model

Yi = β1 + β2xi + β3zi + εi

for i = 1, . . . , n with Σxi = Σzi = 0, show that the parameters β1, β2, β3 are mutually
orthogonal if and only if Σxizi = 0.

Exercise 2. In the model for the response Y to factors A, B say

Yijk = µ+ αi + βj + εijk

with k = 1, . . . , u, i = 1, . . . , I, j = 1, . . . , J , and constraints Σαi = Σβj = 0, show that
µ, (αi), (βj) are mutually orthogonal sets of parameters.

Exercise 3. The model in Ex. 2 above assumes that the effects of the two factors are
additive. We may want to check for the presence of an interaction between A, B,
using the model

Yijk = µ+ αi + βj + γij + εijk

Show that with the constraints on (αi), (βj) as above, and also with the constraints
Σjγij = 0 for each i,Σiγij = 0 for each j, then the sets of parameters

µ, (αi), (βj), (γij)

are mutually orthogonal.

What does it mean to say that there is an interaction between two factors? If an
interaction γ is present, then the effect of one factor, say A, on the response Y depends
on the level of the second factor, say B. For example, in a psychological experiment
where A is the noise level , say ‘quiet’ or ‘loud’, and B is the sex of the subject, (male
or female) then if males perceived a much larger difference between ‘quiet’ and ‘loud’
than the corresponding difference perceived by the females, we say that there is an
interaction between A and B.

An interaction between two factors is almost always most easily explained by drawing
a graph,

eg of the fitted value of Yijk against j, for each level of i.

The standard glm constraints for α, β, γ are not the symmetric ones given above, but
the ‘corner point’ ones

α1 = 0, β1 = 0, γ1j = 0 for all j, γi1 = 0 for all i.

Collinearity. For convenience we restate our original model

Yi ∼ NID(βTxi, σ
2), i = 1, . . . , n
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or equivalently
Y ∼ N(Xβ, σ2In).

We know that the Least Squares Equations are

XTXβ̂ = XTY.

The p × p matrix XTX is non-singular if X is of full rank. If X is of less than full
rank, then there is an infinity of possible solutions to the Least Squares Equations. (Of
course, this is just another way of saying that the matrix XTX does not possess an
inverse.) The columns of X are then said to be collinear, in other words, they are
linearly dependent.

We have already seen that for certain models, for example

E(Yij) = µ+ θi

a constraint is needed on the parameters to ensure identifiability, and hence to find
a unique solution to the Least Squares Equations. In the case of factor levels, this
constraint will be automatically imposed for us by the glm package. Typically, this is
θ1 = 0, etc.

What happens if we, perhaps by accident, try to fit a model E(Y ) = Xβ where X is
not of full rank, and where the problem is not automatically ‘fixed up’ for us by the
glm imposing its own constraints? For example, what happens if we ask the glm to fit

E(Yi) = µ+ β1xi + β2zi + β3wi,

where (for good or bad reasons) we have arranged that wi = 6 xi + 7 zi, say? Hence,
we have certainly arranged that the design matrix X is of less than full rank. A
sophisticated glm package will report this to us right away, with some phrase involving
’non-singular’: this enables us, if we so wish, to reduce the set of covariates to get a
design matrix of full rank. However, with almost all glm packages, we could just press
on and insist on our original choice of covariates. In this case, the glm package would
work out for us that not all the parameters can be estimated, and would consequently
report in the list of parameter estimates that some are aliased. In the example above,
β3 would be reported as aliased, since once the first 3 parameters are estimated, β3

cannot be estimated. Thus the glm package will set β3 to zero.

Exercise 1. In the model
E(Yij) = µ+ θi + βxi,

where j = 1, . . . , u and i = 1, . . . , I and (xi) are given covariates, show that not all the
parameters (θi), β can be estimated. Experiment with this model with a small set of
fictitious data and your favourite glm package.

Exercise 2. Algebraically, we can see that given points (xi, Yi), i = 1, . . . , n where
(xi) is scalar, then we should be able to find a polynomial of degree (n− 1) which will
give a perfect fit:

Yi = β0 + β1xi + ...+ βn−1x
n−1
i .
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In practice this approach is not useful and is not even numerically feasible, as the
following experiment will show you. Try generating a random sample of n points (n =
30 say) (xi) from the rectangular distribution on [0, 1], and generate an independent
random sample of n points (Yi). What happens when you fit a straight line, a quadratic,
a cubic. . .and so on for the dependence of Y on x? You should find that when you get
up to a polynomial of degree more than about 6, the matrix XTX becomes effectively
singular, so that the coefficients of x7 and so on may be reported as ‘aliased’.
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Chapter 5: Regression for binomial data

Suppose Ri are independent Bi(ni, pi), 1 ≤ i ≤ k and (r1, . . . , rk) are the corresponding
observed values. Our general hypothesis is

ωf : 0 ≤ pi ≤ 1, 1 ≤ i ≤ k,

and under ωf ,

loglikelihood (p) =
∑

[ri log pi + (ni − ri) log(1 − pi)] + constant

which is maximised with respect to p ∈ ωf by pi = ri/ni, [check].

Define logit(p) = log(p/(1 − p)) : we will work with this particular link function here.
(Later you may wish to try other choices for the link function.) We wish to fit

ωc : logit(pi) = βTxi, 1 ≤ i ≤ k

↓
p× 1

where xi are given covariates, p < k, say. Under ωc,

loglikelihood = `(β) = βT
∑

rixi −
∑

ni log(1 + eβT xi) + const. [check]

(

since pi = eβT xi/(1 + eβT xi) = pi(β)
)

,

so `(β) is maximised by β̂, the solution to

∑

rixi =
∑

nixi
eβT xi

1 + eβT xi
.

Put ei = nipi(β̂), the ‘expected values under ωc’. Verify that

2× [loglikelihood maximised under ωf− loglikelihood maximised under ωc]

=2
∑

(

ri log
ri
ei

+ (ni − ri) log
(ni − ri)

(ni − ei)

)

≡ D, say.(∗)

To test ωc against ωf , we refer D to χ2
k−p, rejecting ωc if D is too big (so for a good fit

we should find D ≤ k − p). Assuming that ωc fits well, we may wish to go on to test,
say, ω1 : β2 = 0, where

β =

(

β1

β2

)

where β1, β2 are of dimensions p1, p2 respectively. So under ω1, log
(

pi/(1−pi)
)

= βT
1 x1i,

say.
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Let D1 be the deviance of ω1, defined as in (∗) [ei = ei(β
∗
1)]. By definition D1 > D,

and, by Wilks’ theorem, to test ω1 against ωc we refer D1 −D to χ2
p2

, rejecting ω1 in
favour of ωc if this difference is too large. glm prints D1 −D as ‘increase in deviance’,
with the corresponding increase in degrees of freedom (p2).

Note. At the stage of fitting ωc we get (from glm), β̂ and se(β̂j) for j = 1, . . . , p. The
standard errors come from

[

−E

(

∂2`

∂β∂βT

)]−1

.

Since β̂ is asymptotically normal,with mean β, we can, for example, test βp = 0 by

referring
(

β̂p/se(β̂p)
)

to N(0, 1).

Here is an example of binomial logistic regression with 3 2-level explanatory factors.

Farrington and Morris of the Cambridge University Institute of Criminology collected
data from Cambridge City Magistrates’ Court on 391 different persons sentenced for
Theft Act Offences between January and July 1979.

Leaving aside the 85 persons convicted for burglary , there were 120 people for shoplifting

and 186 convicted for other theft acts. (The burglary offences are not considered
further here.) The types of sentence were sorted according as to whether they were
‘lenient’ or ‘severe’, and those convicted were sorted into men and women, showing
that 153 out of 203 men were given a ‘lenient’ sentence, compared with 89 out of 103
as the corresponding figure for the women. These bald summary statistics suggest
that men are being treated more harshly than women, but of course, there’s more
to this than first meets the eye. A more detailed examination of these 306 individuals
allowed the individuals to be classified also by Previous convictions (none/one or more),
and Offence type (shoplifting only/other). For those convicted of shoplifting only, the
numbers given lenient sentences were

24/25, 17/23, 48/51, 15/21

these being given in the order

m, m, f, f for gender, and
n, p, n, p, for n = No previous conviction, and p = Previous conviction.

For those convicted of some other offence, the corresponding figures are

52/61, 60/94, 22/24, 4/7.

Let yijk be the number given a lenient sentence, and let totijk be the corresponding
total, for i, j, k = 1, 2. We take i = 1, 2 for gender = male, female, j = 1, 2 for Previous
convictions = none or some, and k = 1, 2 for Offence type = shoplifting or other.
We assume that yijk are independent, Bi(totijk, pijk). Then, using binomial logistic
regression, it can be shown that the model

logit(pijk) = µ+ αi + βj + γk
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with the usual constraints α1 = β1 = γ1 = 0 fits well: its deviance is 1.5565 which is
well below the expectation of a χ2

4 variable. The estimates of µ, α2, β2, γ2 with their
corresponding se’s are 2.627(.4376), .009485(.3954), −1.522(.3361), −.6044(.3662) re-
spectively. Comparing the ratio (.009485/.3954) with N(0, 1) suggests to us that the
parameter α2 can be dropped from the model. In other words, whether or not an
individual is given a Lenient sentence is not affected by gender. Removing the term
α2 from the model causes the deviance to increase by only .001 for an increase of 1 df:
the resulting model has deviance 1.5571, which may be referred to χ2

5. The estimates
of µ, β2, γ2 for this reduced model are 2.634(.3461), −1.524(.3261), −.6082(.3301) re-
spectively, showing that, as we might expect, the odds in favour of getting a Lenient
sentence are reduced if there is one or more previous conviction, and reduced if the
offence type is other than shoplifting. More specifically, if there is one or more previous
conviction, then the odds are reduced by a factor of about (1/4.6) = exp − 1.524: if
the offence type is other than shoplifting then the odds of getting a Lenient sentence
are reduced by a factor of about (1/1.8) .

Exercise 1. Explore what happens to the above model if you allow an interaction
between previous conviction and offence type, i.e. if you try the model

logit(pijk) = µ+ βj + γk + δjk.

Exercise 2. Try the above exercise with the link functions

g(p) = Φ−1(p), the probit

g(p) = log(− log(1 − p)), the complementary log− log.

Exercise 3. Warning: in the case of BINARY data, ie when ni = 1 for all i, we cannot
use the deviance to assess the fit of the model (the asymptotics go wrong). Show that
if ni = 1 for all i, so that ri only has 0, 1 as possible values, then the maximum value
of the log-likelihood under ωf is always 0.

Chapter 6: Poisson regression and contingency tables

Example 1. The total number of reported new cases per month of AIDS in the UK
up to November 1985 are listed below (data taken from A.M. Sykes 1986).

0 0 3 0 1 1 1 2 2 4 2 8 0 3 4 5 2 2

2 5 4 3 15 12 7 14 6 10 14 8 19 10 7 20 10 19

(data for 36 consecutive months – reading across)

Let us take as our model for Yi the number of new cases reported in the ith month,

Yi independent Poisson with mean µi, 1 ≤ i ≤ 36.

Thus the ‘full’ model is
ωf : µi ≥ 0, 1 ≤ i ≤ 36.
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If we plot Yi against i, we observe that Yi increases (more or less) as i increases. So let
us try to model this by a simple loglinear relationship . Thus the ‘constrained’ model
is

ωc : logµi = α+ βi, 1 ≤ i ≤ 36,

giving
µi = exp(α+ βi)

`(α, β) =
∑

log(e−µiµyi

i ) with µi = µi(α, β)

= −
∑

exp(α+ βi) +
∑

yi(α+ βi).

Hence we can find the mle’s of α, β as the solution of

∂`

∂α
= 0,

∂`

∂β
= 0

and we can find the se’s of these estimators in the usual way. This is easily achieved
in glm using the Poisson “family” with the log-link function, which of course is the
canonical link function for this distribution. To test β = 0, we refer β̂/se(β̂) =
(.07957/.007709) to N(0,1), or refer 127.8, the increase in deviance when i is droppped
from the model to χ2

1. These two tests are asymptotically equivalent. Note that the fit
of ωc is not very good: the deviance of 62.36 is large compared with χ2

34. The approx-
imation to the χ2 distribution cannot be expected to be very good here since many of
the ei, the fitted values under the null hypothesis ωc, are very small. We could
improve the approximation by combining some of the cells to give a smaller number of
cells overall, but with each of (ei) greater than or equal to 5 .

Verify: The deviance for testing ωc against ωf is

2
36
∑

1

yi log
yi

ei
, where

ei = ei(α̂, β̂) = exp(α̂+ β̂i).

This deviance is approximately distributed as χ2
34, if ωc true, provided that (ei) is not

too small.

A useful general result. By writing yi = ei + ∆i, so that Σ∆i = 0, and expanding
log(1 + (∆i/ei)) show that the deviance

2Σyilog(yi/ei)

is approximately
∑

(yi − ei)
2/ei :

this latter expression is called Pearson’s χ2. For the current example the deviance
and Pearson’s χ2 are 62.36, 62.03 respectively.

Example 2. Accidents 1978–81, for traffic into Cambridge
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Estimated
Time of day Accidents traffic volume

Trumpington Road (07.00–09.30 11 2206
(09.30–15.00 9 3276
(15.00–18.30 4 1999

Mill Road (07.00–09.30 4 1399
(09.30–15.00 20 2276
(15.00–18.30 4 1417

We take as our model for (Yij), the number of accidents,

Yij ∼ independent Po(µij)

for Road i, and Time of day j.

We might reasonably expect the number of accidents to depend on the traffic volume,
so we look for a model

µij ∝ aibj × vγ
ij

i.e. log µij = constant + log ai + log bj + γ log vij .

This then enables us to estimate a, b, γ and test a = 1 etc. Written more obviously as
a glm, this is :

logµij = µ+ αi + βj + γ log vij

say, where i = 1, 2, j = 1, 2, 3, and α1 = 0, β1 = 0 for identifiability.

Hence α2 = 0 if and only if the two roads are equally risky, β2 represents the difference
between time 2 and time 1, and β3 represents the difference between time 3 and time
1.

The estimate of α2 compared with its se (6.123/2.671) shows that Mill Road is more
dangerous than Trumpington Road. The model seems to fit well (its deviance is 1.88,
which is non-significant when referred to χ2

1). The 1st and 3rd Times of Day are about
as dangerous as each other, and each is quite a lot more dangerous than the 2nd Time
of Day. (The estimates of β2, β3 are respectively −6.075(2.972), .04858(.5673).)

The accident rate has a strong dependence on the traffic volume, as we would expect:
the estimate of γ is 15.42(6.885). We take a further look at how the rate depends on
the Road and on the Time of Day, by dropping the corresponding parameters from the
model, in turn, and assessing, from the relevant χ2 distributions, whether or not the
resultant increases in deviance are significant. For example, dropping the Road term
gives an increase in deviance of 5.709, which is significant compared with χ2

1, so we
put it back into the model. Similarly, dropping Time of Day from the model gives an
increase in deviance of 5.701, which is significant compared with χ2

2, so we put this
term back into the model.

But you can check that the model can be simplified by combining the 1st and 3rd Times
of Day, so that we have a new 2-level factor (with levels ‘rush-hour’ and ‘non-rush-hour’
say). The resulting model fits well: its deviance of 1.8896 is low compared with χ2

2.
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Question: Predict the number of accidents on Mill Road between 0700 and 0930 for
traffic flow 2000. [Warning: You get a weird answer. It turns out that the question
being asked is a silly one: can you see why?]

Example 3. The Independent , October 18, 1995, under the headline “So when should
a minister resign?”, gave the following data for the periods when the Prime Ministers
were, respectively, Attlee, Churchill, Eden, Macmillan, Douglas-Home, Wilson, Heath,
Wilson, Callaghan, Thatcher, Major. In the years

1945–51, 51–55, 55–57, 57–63, 63–64, 64–70, 70–74, 74–76, 76–79, 79–90, 90–

when the Governments were, respectively,

lab,con,con,con,con,lab,con,lab,lab,con,con

(where ‘lab’ = Labour, and ‘con’ = Conservative), the total number of ministerial
resignations were

7, 1, 2, 7, 1, 5, 6, 5, 4, 14, 11.

(These resignations occurred for one or more of the following reasons: Sex scandal,
Financial scandal, Failure, Political principle, or Public criticism.)

We can fit a Poisson model to Yi, the number of resignations, taking account of the type
of Government (a 2-level factor) and the length in years of that Government. Thus,
our model is

log(E(Yi)) = µ+ αj + γ logyearsi

where j = 1, 2 for con, lab respectively, and logyears is defined as log(years). We have
taken ‘years’ as 6, 4, 2, 6, 1, 6, 4, 2, 3, 11, 5: this clearly introduces some error due
to rounding, but the exact dates of the respective Governments are not given. This
model fits surprisingly well: the deviance is 10.898 (with 8 df). Note that the effect of
political party is non-significant (α̂2 = −.04607(.2710).)

The coefficient γ̂ is .9188 (se = .2344). For a Poisson process this coefficient would be
exactly one. We can force the glm to fit the model with γ set to one by declaring
logyears as an offset when fitting the glm. The resulting model then has deviance
11.016 (df = 9).

Example 4. Observe that if Ri is distributed as Bi(ni, pi) where ni is large and pi is
small, then Ri is approximately Poisson, mean µi, where

log(µi) = log(ni) + log(pi).

In this case, binomial logistic regression of the observed values (ri) on explanatory
variables (xi), say, will give extremely similar results, for example in terms of deviances
and parameter estimates, to those obtained by the Poisson regression of (ri) on (xi),
with the usual log-link function, and an offset of (log(ni)) .

Try both binomial and Poisson regression on the following data-set, which appeared
in The Independent , March 8, 1994, under the headline ‘Thousands of people who
disappear without trace’.

r/n = 33/3271, 63/7257, 157/5065 for males

r/n = 38/2486, 108/8877, 159/3520 for females.
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Here, using figures from the Metropolitan police,

n = the number reported missing during the year ending March 1993, and
r = the number still missing at the end of that year.

and the 3 binomial proportions correspond respectively to ages 13 years and under, 14
to 18 years, 19 years and over.

Questions of interest are whether a simple model fits these data, whether the age and/or
sex effects are significant, and how to interpret the statistical conclusions to the layman.

Contingency tables

Example. The Daily Telegraph (28/10/88), under the headline ‘Executives seen as
Drink Drive threat’, presented the following data from breath-test operations at Royal
Ascot and at Henley Regatta:

Arrested Not arrested Tested
Ascot 24 2210 2234
Henley 5 680 685

29 2890 2919

So at Ascot, 1.1% of those tested are arrested, compared with 0.7% at Henley.

The multinomial distribution

Assume (Nij) ∼ Mn
(

n, (pij)
)

n fixed (= 2919), where pij = P (an individual is in
row i, column j). Thus with data (nij),

p(n | p) = n!
∏∏ p

nij

ij

nij !
,
∑∑

pij = 1.

We wish to test
H0 : pij = pi+p+j for all i, j,

i.e. (for this example) whether or not you are arrested is independent of whether you
are at Ascot or Henley.

[Verify, for this example, H0 is equivalent to

p11/p1+ = p21/p2+

i.e. P (arrested|Ascot) = P (arrested|Henley).]

Verify H0 is equivalent to

∗ log pij = const + αi + βj for some α, β.

Now, there is no multinomial ‘error’ function in glm. The following Lemma shows that
for testing independence in a 2-way contingency table we can use the Poisson error
function as a ‘surrogate’.
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Using the Poisson error function in glm for the multinomial distribution

The Poisson ‘trick’ for a 2-way contingency table

Consider the r×c contingency table {yij}. Thus yij = number of people in row i, column
j, 1 ≤ i ≤ r, 1 ≤ j ≤ c. Assume that the sampling is such that (Yij) ∼ Mn

(

n, (pij)
)

multinomial parameters n, (pij). Then

p
(

(yij) | (pij)
)

= n!
∏∏

(

p
yij

ij

/

yij !
)

,

and, to test
H0 : pij = αiβj for some α, β(

∑∑

αiβj = 1) against

H : pij ≥ 0,
∑∑

pij = 1,

we maximise L(p) =
∑∑

yij log pij on each of H,H0 respectively, giving

∑∑

yij log(yij/n),
∑∑

yij log(eij/n)

where eij = expected frequency under H0, so eij = yi+y+j/n. We apply Wilks’ theorem
to reject H0 if and only if D = 2

∑∑

yij log(yij/eij) is too BIG compared with χ2
f

(

where f = (r − 1)(c− 1)
)

.

How can we make use of the Poisson error function in glm to compute this deviance
function?

Here’s the trick: suppose now that Yij ∼ indep Po(µij). Consider testing

HP0 : logµij = α′
i + β′

j for some α′, β′, for all i, j, against

HP : logµij any real number.

Now

loglikelihood = L(µ) = −
∑∑

µij +
∑∑

yij logµij + const.

You will find that L(µ) is maximised under HP by

µ̂ij = yij for all i, j.

You will also find that L(µ) is maximised under HP0 by

µ∗
ij = yi+y+j/y++ = eij

say, and applying Wilks’ theorem we see that we reject HP0 in favour of HP if and
only if DP is too big compared with χ2

f , where

2L(µ̂) − 2L(µ∗) =

DP = 2[−
∑∑

µ̂ij +
∑∑

yij log µ̂ij +
∑∑

µ∗
ij −

∑∑

yij logµ∗
ij ].
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But
∑∑

µ̂ij =
∑∑

µ∗
ij (check). Hence we have the following identity :

DP = D ≡ 2
∑∑

yij log(yij/eij).

So we can compute the appropriate deviance for testing independence for the multi-
nomial model by pretending that (yij) are observations on independent Poisson r.v.s.
This is a special case of the following

General result, relating Poisson and multinomial loglinear models.

We assume that we are given

(Yi) ∼Mn
(

n, (pi)
)

, Y1 + · · ·+ Yk = n, p1 + · · ·+ pk = 1,

and given covariates x1, . . . , xk. Let (yi) be the corresponding observed values. We
wish to test

H0 : log pi = µ+ βTxi, 1 ≤ i ≤ k for some β (of dim p)

(where µ is such that
∑

pi = 1) against

H : pi ≥ 0,
∑

pi = 1.

Then the deviance for testing H0 against H may be computed as if (yi) were observa-
tions on independent Po(µi) random variables, and that we are testing

HP0 : log(µi) = µ′ + βTxi against

HP : log(µi) = any real numbers.

Reminder : In proving this general result we make use of the following Lemma.

Suppose that the pdf of sample y is

f(y | β) = a(y)b(β)exp
(

βT t(y)
)

where
∫

f(y | β)dy = 1. Then at the mle of β, say β̂, the observed and expected values
of t(y) agree exactly. This is proved by observing that

L(β) = log b(β) + βT t(y),
∂L

∂β
= . . . (see p. 12 for completion)

Proof of the General Result

With (yi) as observations from the Mn
(

n, (pi)
)

distribution, we see that the loglikeli-
hood is, say,

L(p) =
∑

yi log pi + constant.

Under H0, pi ∝ exp(βTxi), so

pi =
(

exp(βTxi)
)

/
∑

exp(βTxj),
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L(p) =
∑

yi

(

βTxi − log
∑

exp(βTxj)
)

+ constantThus

L
(

p(β)
)

= βT (
∑

yixi) − y+ log
(

∑

exp(βTxj)
)

+ constantgiving

which is maximised with respect to β by

∗ ∂L

∂β
= 0, i.e.

∑

yixi = y+

(

∑

j

xjexp(βTxj)

)/

∑

j

exp(βTxj),

∗∗ giving ei = np∗i as ‘fitted values’ under H0, p
∗
i ∝ exp(β̂Txi), β̂ being solution of ∗.

It follows from p∗1 + · · · + p∗k = 1 that
∑k

1 ei = n. Thus D = 2
∑

yi log(yi/ei).

But if, on the other hand, we assume (yi) are observations on independent Po(µi), and
we test

HP0 : log µi = µ′ + βTxi, 1 ≤ i ≤ k (dimHP0 = p+ 1)
against HP : log µi anything (dimHP = k)

we find loglikelihood = L(µ) = −
∑

µi +
∑

yi log µi + constant

So, under HP0,

L(µ) = L(µ′, β) = −
∑

exp(µ′ + βTxi) +
∑

yi(µ
′ + βTxi) + constant

∂L

∂µ′ (µ′, β) = 0 gives
∑

exp(µ′ + βTxi) =
∑

yi

∂L

∂β
(µ′, β) = 0 gives

∑

xiexp(µ′ + βTxi) =
∑

yixi.

Hence

eµ̂′

=
∑

i

yi

/

∑

j

exp(β̂Txj)

and β̂ is the solution of
∑

yixi = y+

∑

xiexp(β̂Txi)
∑

exp(β̂Txj)
,

i.e. β̂ is as in ∗.

Further, the sufficient statistics are (
∑

yi,
∑

xiyi) [for (µ′, β)]. So at the mle, the
observed and expected values of

∑

Yi agree exactly, and we find

[

max
HP

L(µ) − max
HP0

L(µ)

]

= −
∑

µ̂i +
∑

yi log µ̂i +
∑

µ∗
i −

∑

yi logµ∗
i
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µ̂i = mle of µi under HP , hence µ̂i = yiwhere

µ∗
i = mle of µi under HP0, hence

∑

µ∗
i = y+

µ∗
i = ei with ei as in ∗∗.and

Hence
∑

µ̂i =
∑

µ∗
i . Hence

D (multinomial deviance)= 2
∑

yi log(yi/ei)

≡DP (Poisson deviance)= 2
∑

yi log(µ̂i/ei).

Exercise 1. With (yi) distributed as Multinomial, with parameters n, (pi) and with

log(pi) = βTxi+ constant, as above, show that the asymptotic covariance matrix of β̂
may be written as the inverse of the matrix

n[Σpjxjxj
T − Σ(pjxj)Σ(pjxj

T )]

and verify directly that this is a positive-definite matrix.

Exercise 2. Let x1, z1 be scalars and let x2, z2 be p-dimensional vectors. Take a11

scalar, a12 = aT
21 vectors, and a22 a p× p matrix. Solve the simultaneous equations

a11x1 + a12x2 = z1

a21x1 + a22x2 = z2

for x2 in terms of z1, z2 (hence discovering the form of the inverse of a partitioned
matrix).

Now use this result to find the asymptotic covariance matrix of β̂, given (yi) observa-
tions on independent Poisson variables, mean µi, where

log(µi) = µ′ + βTxi.

Compare the result with the answer to Exercise 1.

Exercise 3. Let yi be observations on independent Poisson, mean µi, as above, with

log(µi) = µ′ + βTxi .

Let L(µ′, β) be the corresponding log-likelihood. Derive an expression for the profile
log likelihood L(β), which is defined as the function L(µ′, β), maximised with respect
to µ′. Show that this profile log-likelihood function is the identical to a constant +
the log-likelihood function for the multinomial distribution, with the usual log-linear
model(i.e. log(pi) = βTxi+ constant). [Profile log-likelihood functions, in general, are
an ingenious device for ‘eliminating’ nuisance parameters, in this case µ′. But they are
not the only way of eliminating such parameters: the Bayesian method would be to
integrate out the corresponding nuisance parameters using the appropriate probability
density function, derived from the joint prior density of the whole set of parameters.]
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Multi-way contingency tables: for enthusiasts only

Given several discrete-valued random variables, say A,B,C,. . ., there are many different
sorts of independence between the variables that are possible. This makes analysis
of multi-way contingency tables interesting and complex. Fortunately, the relationship
between the variety of types of independence and log-linear models fits naturally within
the glm framework. We will once again make use of the relationship between the
Poisson and the multinomial in the context of log-linear models. An example with only
3 variables, say A, B and C, serves to illustrate the methods used in tables of dimension
higher than 2. Suppose A,B,C correspond respectively to the rows, columns and layers
of the 3-way table. Let

pijk = P (A = i, B = j, C = k) for i = 1, . . . , r, j = 1, . . . , c, k = 1, . . . , `

so that Σpijk = 1, and let (nijk) be the corresponding observed frequencies, assumed
to be observations from a multinomial distribution, parameters n, (pijk). For example,
we might have data from a random sample of 454 people eligible to vote in the next
UK election. Each individual in the sample has told us the answer to questions A,B,C,
where

A = voting intentions (Labour,Conservative,Other)
B = employment status (employed,unemployed,student,pensioner)
C = place of residence (urban,non-urban)

Let us suppose that the (fictitious) resulting 3-way table is

C = urban C = non-urban
A = A=

B = Lab Cons Other Lab Cons Other
employed 50 40 13 31 40 9
unemployed 40 7 5 60 5 5
student 14 9 16 32 7 11
pensioner 10 14 6 3 25 2

There are 8 different loglinear hypotheses corresponding to types of independence be-
tween A,B,C that we now consider. Assume in all of these that the parameters given
are such that Σpijk = 1.

We now enumerate the possible loglinear hypotheses.

H0 : For some α, β, γ, pijk = αiβjγk for all i, j, k,
thus H0 corresponds to A,B,C independent.

H1 : pijk = αiβjk for all i, j, k, for some α, β,
thus H1 corresponds to A independent of (B,C).

(Likewise, we could consider the hypothesis : B independent of (A,C),
and the hypothesis :C independent of (A,B).)
H2 : pijk = βijγik for all i, j, k, for some β, γ.

You may check that H2 is equivalent to

P (B = j, C = k|A = i) = P (B = j|A = i)P (C = k|A = i) for all i, j, k.
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Thus H2 corresponds to the hypothesis that, for each i, conditional on A= i, the vari-
ables B,C are independent. In this case we say that “B, C are independent, conditional
on A”. (Likewise,we can define 2 similar hypotheses by interchanging A,B,C):

H3 : pijk = αjkβikγij for all i, j, k, for some α, β, γ.

This hypothesis, which is symmetric in A,B,C, cannot be given an interpretation in
terms of conditional probability. We say that H3 corresponds to ‘no 3-way interaction’
between A,B,C. In other words, the interaction between any 2 factors, say A and B for
a given level of the 3rd factor, say C= k, is the same for all k. Written formally, this
is that for each i, j

(pijkprck)

(pickprjk)

is the same for all k .

The 8 hypotheses are easily seen to be related to one another: you may check that

H0 ⊂ H1 ⊂ H3, and H0 ⊂ H2 ⊂ H3 and H1 ∩H2 = H0.

All of the 8 hypotheses above may be written as loglinear hypotheses and hence tested
within the glm framework with the Poisson distribution and log link function (the
default for the Poisson). For example, we may rewrite H2 as

log(pijk) = φij + ψik

for some φ, ψ which, in the glm notation for interactions between factors, corresponds
to the model

A ∗B + A ∗ C or equivalently A ∗ (B + C)

Exercise 1. Show that in the same notation, H0, H1, H3 correspond respectively to

A+ B + C, A+ B ∗ C, (B ∗ C + A ∗B + A ∗ C)

Exercise 2. The data in the example above were partly invented to show a 3-way
interaction between the factors A, B, C: we might expect that the relationship between
voting intention and employment status would not be the same for the Urban voters as
for the Non-urban ones. Using the notation above, and your glm package, show that
the deviance for

(A+ B + C) ∗ (A+B + C) is 15.242 (6 df)

(A+B) ∗ C is 122.07 (12 df)

(A ∗B) + C is 27.144 (11 df)

A+B + C is 132.3 (17 df).

Of course, since H3 failed to fit the data, it was in fact obvious that none of the stronger
hypotheses could fit the data.

Exercise 3. Consider the 2 × 2 × 2 table
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C = 1 C = 2
A = 1 A = 2 A = 1 A = 2

B = 1 17 23 36 50
B = 2 29 14 59 24

Show that the deviance for fitting the model A ∗B +B ∗ C + A ∗ C is .12362, 1 df.

By comparing the parameter estimates for this model with their se’s, find the simplest
model that fits the 3-way table, and interpret it by an independence statement.

The relation between binomial logistic regression and loglinear models in a
multi-way contingency table

In a multi-way contingency table, it may not be appropriate to treat the variables, say
A,B,C,. . . symmetrically. For example it may be more natural to treat

A as a response variable, and
B,C,. . . as explanatory variables.

In particular, if the number of levels of A is 2, for example corresponding to yes,no,
then it may make the analysis easier to interpret if we do a binomial logistic regression
of A on the factors B,C,. . ..

Is such an analysis essentially different from a loglinear analysis? We can see from the
following considerations that there must be certain exact correspondences between the
two approaches. To be specific, take the case where (Yijk) is multinomial, parameters
n, (pijk) and suppose i = 1, 2. Write y+jk as y1jk+y2jk. Then Y1jk|y+jk are independent
Binomial variables, parameters y+jk, θjk where

θjk = p1jk/p+jk.

So, for example, the model A∗B+B∗C+C ∗A for (pijk) can be shown to be equivalent
to the model

logit(θjk) = βj + γk.

Exercise. Use the data from the 2×2×2 table above, with A as the response variable,
so that you use the binomial proportions 17/40, 29/43, 36/86, 59/83 as the responses
corresponding to factors (B,C) as (1,1), (2,1), (1,2), (2,2). Show that the deviance
and the fitted frequencies for the model B + C are exactly the same as those for
A ∗ B + B ∗ C + A ∗ C with data (yijk) and the Poisson model, as above. Check
algebraically that this must be so.

Simpson’s Paradox (also known as Yule’s Paradox)

We only have space in these notes for a brief discussion of the fascinating ramifications of
multi-way contingency tables. But we will just issue the following WARNING. We have
already seen that for 3-way tables, there are several different varieties of independence.

It may be misleading to collapse a multi-way table over (possibly important) categories.
For example, suppose that the 2 × 2 table on (Henley/Ascot) and (Arrested/Not ar-
rested) was in fact derived from the 2 × 2 × 2 table:
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Arrested Not arrested

23 men 2 men
Ascot 24 〈 2210 〈

1 woman 2208 women
3 men 340 men

Henley 5 〈 680 〈
2 women 340 women

Hence although the overall arrest rate at Ascot is not significantly different from that
at Henley, there is a clear difference between the Arrest rate for men at Ascot and the
Arrest rate for men at Henley.

For example, the deviance for testing independence on the marginal 2-way table (As-
cot/Henley) × (Arrested/Not arrested) is 0.6773, which is non-significant when com-
pared to χ2

1, suggesting that the arrest rate at Ascot (.011) is not significantly different
from that (.007) at Henley.

Now you see that things are quite complex, because of course the way in which any two
of the factors depend on each other depends strongly on the level of the third factor;
we deliberately invented a data-set with a strong 3-way interaction. You can see from
the full 3-way table that the arrest rate is independent of gender for Henley although
the arrest rate strongly depends on gender for Ascot.

The 2 × 2 table

3 340
2 340

gives a deviance of 0.19990, while the 2 × 2 table

23 2
1 2208

gives a deviance of 234.0. Of course, it is scarcely necessary to find the exact numerical
values of the deviances to understand about the 3-factor interaction: we include them
here merely for completeness.
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Appendix 1: The Multivariate Normal Distribution.

We say that the k-dimensional random vector Y is multivariate normal, parameters
µ,Σ if the probability density function of Y is

f(y|µ,Σ) =
1

(2π)k/2|Σ|1/2
exp−(y − µ)T Σ−1(y − µ)/2

for all real y1, . . . , yk. We write this as

Y ∼ Nk(µ,Σ).

Observe that
∫

f(y|µ,Σ)dy = 1, for all µ,Σ.

Furthermore, it is easily verified that Y has characteristic function ψ(t) say, where

ψ(t) = E(exp(itTY )) =

∫

exp(itT y)f(y|µ,Σ)dy

so that
ψ(t) = exp(iµT t− tT Σt/2).

By differentiating the characteristic function, it may be shown that

E(Y ) = µ ,E(Y − µ)(Y − µ)T = Σ

and hence
E(Yi) = µi, cov(Yi, Yj) = Σij .

Σ is a symmetric non-negative definite matrix: thus its eigen-values are all real and
greater than or equal to zero.

If A is any p × k constant matrix, and Z = AY , then Z is also multivariate normal,
with

Z ∼ Np(Aµ,AΣ AT ).

Hence, for example, Y1 ∼ N1(µ1,Σ11).
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Appendix 2: Regression diagnostics for the Normal Model

Residuals and leverages

Take yi = βTxi + εi, 1 ≤ i ≤ n, εi ∼ NID(0, σ2).

Equivalently, Y = X β + ε, ε ∼ Nn(0, σ2I)
↓ ↙↘

n×1 n×p p×1

We compute the lse β̂ as (XTX)−1XTY and, using ε ∼ N(0, σ2I), we can say

and

β̂ ∼ N(β, σ2
(

XTX)−1
)

R(β̂)

σ2
=

(Y −Xβ̂)T (Y −Xβ̂)

σ2
∼ χ2

n−p







independent,

and hence test, e.g., β2 = 0, by using β̂2, se (β̂2) etc.

All our hypothesis tests will depend on the assumption

εi ∼ NID(0, σ2)

so we need some way of checking this: this is what qqplots do.

Define Ŷ = Xβ̂ = X(XT X)−1XTY, fitted value
≡ HY say, H ‘hat matrix’

residual ε̂ = Y− Ŷ , observed–fitted.

Then ε̂ = Xβ + ε−H(Xβ + ε) = (I −H)ε (check). Hence

ε̂ ∼ N
(

0, σ2(I −H)(I −H)T
)

but H = HT , HH = H, so
ε̂ ∼ N

(

0, σ2(I −H)
)

.

Let hi = Hii; then
ε̂i ∼ N

(

0, σ2(1 − hi)
)

.

We define

ηi = ε̂i

/

√

1 − hi

as the standardised residuals. We do a visual check of whether η1, . . . , ηn forms a r.s.
from N(0, σ2) as follows.

What is the sample distribution function of (η1, . . . , ηn)? It is defined as

Fn(x) say =
no. out of (η1, . . . , ηn) ≤ x

n
.

Hence Fn(x) ↑ as x ↑, and for large n, we should find

Fn(x) ' Φ(x/σ)
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which is the distribution function of N(0, σ2).

We could sketch Fn(x) against x, and see if it resembles a Φ(x/σ) for some σ. This is
hard to do. So instead we sketch Φ−1

(

Fn(x)
)

to see if it looks like x/σ for some σ, i.e.
a straight line through origin:

This is what a qqplot does for you. Filliben’s coefficient measures the closeness to a
straight line. (The Weisberg-Bingham test is also useful.)

Leverages. Note: Ŷ = HY , H = X(XTX)−1XT , giving

ŷi =

n
∑

j=1

hijyj say, hii = hi.

var(ε̂i) = σ2(1 − hi), we can see hi ≤ 1Now, because

H ≥ 0, we can see hi ≥ 0.and because

The larger hi is, the closer ŷi will be to yi. We say that xi has high ‘leverage’ if hi

large. Note

rank(H) = p, HH = H ⇒
n
∑

1

hi = tr(H) = rank(H) = p.

A point xi for which hi > 2p/n is said to be a ‘high leverage’ point. Leverages are also
referred to as ‘influence values’ in some packages.

Exercise 1. Suppose

orthogonal columns
↙

X = (a1

... . . .
...ap) where aT

i aj = 1 for i = j
n×p = 0 otherwise

Then show

hi = a2
1i + a2

2i + · · ·+ a2
pi, 1 ≤ i ≤ n,

(so verify
∑n

1 hi = p).

Exercise 2. Most modern regression software will give you qqplots and leverage plots:
note that leverages depend only on the covariate values (x1, . . . , xn). Some regression
software will also give Cook’s distances: these measure the influence of a particular
data point (xi, yi) on the estimate of β. Specifically, let β̂(i) be the lse of β obtained
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from the data-set (x1, y1), . . . , (xn, yn) with (xi, yi) omitted. Thus, using an obvious
notation,

XT
(i)X(i)β̂(i) = XT

(i)y(i).

The Cook’s distance of (xi, yi) is defined as

Di =
dT

i (XTX)di

ps2

where
di = β̂(i) − β̂,

and s2 is the usual estimator of σ2. These are scaled so that a value of Di > 1
corresponds to a point of high influence.

Note that
XT

(i)X(i) = XTX − xix
T
i .

and given any non-singular symmetric matrix A and vector b, of the same dimension,
we may write

(A− bbT )−1 = A−1 − A−1b(1 − bTA−1b)−1bTA−1.

Hence show that if ŷ(i) is defined as xT
i β̂(i) then

ŷ(i) = (ŷi − hiyi)/(1 − hi)

where hi = xT
i (XTX)−1xi, the leverage of xi as defined previously.

We have briefly described some regression diagnostics for the important special case of
the normal linear model. You will find that the more sophisticated glm packages also
give regression diagnostics corresponding to those that we have described for any glm
model, for example Poisson or binomial. It is a matter of good statistical practice to
use these diagnostics, which are usually just quick graphical checks.

55



RESUMÉ. The important things you need for this course are

(i) How to find
∂

∂β
,

∂2

∂β∂βT
(e.g. of L(β)).

(ii) How to find E(Y ) and cov(Y ).

(iii) Basic properties of normal, Poisson and binomial.

(iv) Asymptotic distribution of θ̂ (mle).
Application of Wilks’ theorem (∼ χ2

p).

(v) Time in front of the computer console, studying the glm directives, trying out
different things, interpreting the glm output, and learning from your mistakes,
whether they be trivial or serious.
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