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Note: this set of basic notes contains deliberate gaps, for you to fill in.
The models
yi = a+ Bz + ¢,

yi = a+ Br; + vz + €

and
Yij = p+a; + B + €5

may all be seen as special cases of the model
yi=p"wi+e

for i = 1,...,n where we assume that (¢;,7 = 1,...,n) form a random sample
from N(0,02). Here y; is the ‘dependent’ variable, x; is the known covariate, /3
the unknown parameter, of dimension say p, and ¢; is the unknown ‘error’: we
assume that (e;,i = 1,....,n) ~ NID(0,0?), ie (¢;,i = 1,...,n) form a random
sample from N(0,0%). The parameter o2 is also unknown. We rewrite this
model as

Y=XB+e,

where € ~ N,,(0,02I) (a multivariate- normal distribution).

How do we estimate 37 What is the accuracy of our estimate? How do we check
the validity of our model?

The mle (maximum likelihood estimator) is say B, which is the vector that
minimises

Si(yi — BT xs)?,
equivalently minimises

R(B) = (Y - XB)" (Y — Xp).

Take the partial derivative wrt 3 of the expression above, and set it to 0. Then
you find that the equation for (3 is

2XTy = 2xTX5.

Suppose that X is of full rank, p, then XTX is non-singular, and we see that
R(B) is min’d wrt 8 by 3, the solution of

g=xXTx)"'xTy.
We now find the distribution of B Write
B=(XTX)'XT(XB+e) =8+ (XTX) "X

Now E(e) = 0 and E(ee”) = ¢2I. Hence (check), E(3) = 3, ie the estimator j
is unbiased.
Further

B—p=Le



say, where L = (XTX)™'XT. Thus, since € ~ N, (0,021), we see that
B— B~ Ny(0,6°LL").

Furthermore, LLT = (X7 X)~!, CHECK THIS,
and so we see that .
6 - B ~ NP(0702(XTX)71)7

which we rewrite as

B~ Ny(B,0° (X" X)),

If 02 were known, we could use this result to produce confidence intervals for
say (1, a component of /3.
How do we get around the problem of o2 unknown?
We use the following powerful distributional result (which we do NOT PROVE
here):
define A A .

Q=R(B) =Y - XY - Xp),

as the residual sum of squares (rss), then
B~ Ny(8,0°(XTX)7),

independently of @), and

Q/o* ~ X}
where f = n — p, thus f = number of independent observations minus number
of parameters fitted.
Hence (i) E(Q) = fo?, and so s2 = Q/f is our unbiased estimator of o2.
Further, (ii)

(Bj = Bj)/Jviis® ~ ty

where (v;;) is the matrix (X7 X)~' (having jth diagonal element (vj;)).
Observe that in general the components of 3 will be correlated, since (XTXx)~!
is not necessarily a diagonal matrix.

We can always reparametrise, say from 3 to -y, by a non-singular linear trans-
formation, to arrange that the components of 4 are uncorrelated. In this case
we say that 1,...,7, are orthogonal parameters.

How do we do this? We use a bit more algebra. Suppose we define v = B, for
some non-singular p x p matrix B.

Y =Xf+e=(XB ')y+e.

Thus
Y =Xi7+e,

say, where X; = XB~!, and
F ~ Np(y, o (X X1) 7).

Hence the parameters 71, ...,7, are orthogonal provided that we arrange that
(X! X,) is a diagonal matrix: without loss of generality (wlog) we can arrange
that (X{ X;) = I, the p x p identity matrix.

Specifically, we require (XB~1)T(XB~1) to be I,,.

This is equivalent to the problem: choose B a real p x p matrix, such that

XxTx = B"B.

The reason that we can find such a B is that XTX is a p x p positive- definite
matrix.
Important special case: orthogonal polynomials. Consider

yi:a+ﬂmi+’ym?+q.



We can rewrite this as
yi=o + B8 (x; — )+ (x; —2)* +b(z; — %) +¢) + €,
with b, ¢ such that
Y((z; —2)* +b(z; — %) +¢) =0
Y((x; — 2)* +b(z; — ) +¢)(z; — ) = 0.

What are the consequent equations for b, ¢?

Then the parameters o', 3',~' are mutually orthogonal, although the parame-
ters a, 8,7 were not, in general. This is used, for example, by S-Plus in the
construction of orthogonal polynomials.

What about residuals? What about diagnostic plots? First, some more algebra.
Define the fitted values Y = X3, and define e =Y — Y as the residuals. Then
you can check that

V=X(XTx)"'xTy = PY

say, where P is a projection matrix, ie it satisfies
pP=PT PP=P,

thus it is symmetric and idempotent. (P is also called H, the ‘hat’ matrix.)
Now

(CHECK THIS), and so
€ ~ N(0,0”1) implies € ~ N(0,0%(I — P)).

CHECK THIS.
FILL IN THE STORY BEHIND THE qqplot.



Define h; as the ith diagonal element of the matrix P. Then ¢; ~ N(0, (1 —
hi)o?) and 0 < h; < 1 (can you prove this?). We call h; the leverage of the
point x;.

Then ¥;h; = trace(P) by definition of the function trace(), and, since PP = P,
all the eigen-values of P are 0 or 1 (prove this). Hence ¥;h; = sum of eigen
values of P = rank(P) = p.

Here is a picture to illustrate a point of high leverage.

Without the special point z;, as in the picture, we may think that there is no
particular relationship between y and =z.

But if we include z; in our regression fit, then we will find that

i) the fit looks much better (R? is closer to 1).

ii) Since h; is relatively large, we’ll find that h; ~ 1, and since the fitted value
Ui = X;hi;jy;, we will find that §; ~ y;; the point P is exerting very high leverage
at P, and the fit there is nearly perfect.

This could be very misleading, or it could mean that if we took more observa-
tions, then we might discover something rather interesting.

Back to residuals and fitted values. First, observe that

Y =PYée=( - P

imply that
Y = PXf+ Pe,é = (I — P)e

and hence ... cov(é;,Y;) =0 for all i, j.
Typically we plot €; against Y; expecting to see ‘no particular trend’: as in the
picture below:

But you may find, eg if y; corresponds to height, weight, monetary value,... that
le;| tends to increase as Y; increases: the residuals tend to ‘fan out’ as in the
sketch below:

This suggests that in the model
Y=X[B+e¢

we should assume that €; ~ N(0,07), ie the variance is non-constant, we have
heteroscedasticity. There is a ‘fix-up’ which often enables us to get over this
problem: namely to work with a transformation of y; rather than y; itself. For
example, if we take the model

log(yi) = (XB); + €
we may well find (from the diagnostic plots) that apparently
var(e;) ~ constant.

In this case we say that log() is a variance-stabilising transformation.
Motivation for variance-stabilising transformation: Lemma
Suppose the rv Y is approximately distributed as N (u, 02 (u)).



Take any ‘well-behaved’ transformation g().
Then, use Taylor’s theorem (FILL IN) to show that, approximately:

9(Y) ~ N(g(n),0” (1) (g'(1n))?)-

Hence, given the function o2(u), for example
o (1) ox i,

we can choose the function g() such that o(u)(g'(n))? = constant, by solving
the corresponding differential equation.
We return to the question of transforming the response variable Y when we
discuss the family of Box-Cox transformations: this allows you to let mle find
the best transformation.
More on testing hypotheses in the linear model
We first need to state one more theorem, which we will then use, without proof.
Let Q be the model

Y=XB+e,

with the usual assumption that e ~ N(0,02I), and let X, 3 be partitioned so
that X3 = X181 + X28>. Let w be the submodel say

Y = X] /81 + €,
and let Rq, R,, be the corresponding residual sums of squares. Note,

Rqo <R,.

Put Q1 = R, — Rq. Then, on Q, Rq/0®> ~ xj independently of Q;, and
Q1/0? ~ non-central x7, , where fi = dim(Q) — dim(w). Further, this second
x?2 is ordinary (ie central) x2 if and only if w is true. Hence, to test w against

1 we refer the following ratio to Fi ..

Q1/fi
Ro/f
We will need to change our notation a little to apply this result to get the usual

analysis of variance.
Consider the model

yi=p+ B8z + e

equivalently
QY =pul+ X8 +e,

and assume as usual that e ~ N(0,027).

In a general notation, we have the following anova, ie analysis of variance. This
enables us to construct the F' test of the hypothesis 8 = 0. Table 1 gives us the
basic analysis of variance.

Here ‘total’ is actually the resid ss fitting the ‘baseline’ model

Hy:Y =pul +e

Thus Hj is the hypothesis § = 0.
It can be shown that, on Hy,

Sg/o? ~ x5, Ralo® ~xh 1,

and these two are independent. From this result we can construct the F'—test
of B =0, ie refer FILL IN FORMULA



Table 1: anova

due to 8 Ss p
residual Rog n—-p-1
‘total’  X(y; — ) n—1

Observe that Sg/‘total’ is called the multiple correlation coefficient R?: the
closer it is to 1, the better the regression ‘explains’ the variation in the data y.
But in fact, we are more likely to want to test whether particular components of
B are zero, ie to test whether the corresponding columns of X can be ‘dropped’
from the model.

Suppose we now partition X, 3 so that

XB= X181+ Xafo.
We may wish to test the model
W1 Y:l,Ll—FX]B] + €

against the model (2, equivalently, to test wy : 82 = 0, assuming that 2 is true.
Let Rq = resid ss fitting (2, thus

Ro=(Y — - XB)"(Y - ji— XB),

and let R,, = resid ss fitting w, thus

R., > Rq.

For this particular test we will use the following result: on (2,
Rg/o® ~ Xiqu independently of (R,, — Rgq)/o* ~ X22({3)

and this second 2 is non-central, unless 3, = 0. Hence, to test 82 = 0, we
refer the following RATIO (fill in) to Fjp, ,—1_p.

and we can construct an extended aov like this
fill in big table

Observe, Rq is defined in terms of the fitted value fi, B, as above,

and correspondingly, R, is defined in terms of the fitted value say u*, Sy,
specifically:

If we now want to test, say 81 = 0, we have to start again, in order to compute
the appropriate residual ss.
In a nutshell, this is why, in general, the result of (for example)

anova(lm(y~ x+z))

will look different from the result of

anova(lm(y~ z+x))



From the point of view of the anova (ie from the point of view of hypothesis
testing) the order in which the terms appear in the linear model is very im-
portant, unless we have a design such that the parameters corresponding to x, z
are orthogonal. EXPAND THIS STATEMENT.



