
The general linear model: what you need to knowP.M.E.Altham, Statisti
al Laboratory, University of Cambridge.O
tober 14, 2004Note: this set of basi
 notes 
ontains deliberate gaps, for you to �ll in.The models yi = �+ �xi + �i;yi = �+ �xi + 
xi2 + �iand yij = �+ �i + �j + �ijmay all be seen as spe
ial 
ases of the modelyi = �Txi + �ifor i = 1; :::; n where we assume that (�i; i = 1; :::; n) form a random samplefrom N(0; �2). Here yi is the `dependent' variable, xi is the known 
ovariate, �the unknown parameter, of dimension say p, and �i is the unknown `error': weassume that (�i; i = 1; :::; n) � NID(0; �2), ie (�i; i = 1; :::; n) form a randomsample from N(0; �2). The parameter �2 is also unknown. We rewrite thismodel as Y = X� + �;where � � Nn(0; �2I) (a multivariate- normal distribution).How do we estimate �? What is the a

ura
y of our estimate? How do we 
he
kthe validity of our model?The mle (maximum likelihood estimator) is say �̂, whi
h is the ve
tor thatminimises �i(yi � �Txi)2;equivalently minimises R(�) = (Y �X�)T (Y �X�):Take the partial derivative wrt � of the expression above, and set it to 0. Thenyou �nd that the equation for �̂ is2XTY = 2XTX�:Suppose that X is of full rank, p, then XTX is non-singular, and we see thatR(�) is min'd wrt � by �̂, the solution of�̂ = (XTX)�1XTY:We now �nd the distribution of �̂. Write�̂ = (XTX)�1XT (X� + �) = � + (XTX)�1XT �:Now E(�) = 0 and E(��T ) = �2I . Hen
e (
he
k), E(�̂) = �, ie the estimator �̂is unbiased.Further �̂ � � = L�1



say, where L = (XTX)�1XT . Thus, sin
e � � Nn(0; �2I), we see that�̂ � � � Np(0; �2LLT ):Furthermore, LLT = (XTX)�1, CHECK THIS,and so we see that �̂ � � � Np(0; �2(XTX)�1);whi
h we rewrite as �̂ � Np(�; �2(XTX)�1):If �2 were known, we 
ould use this result to produ
e 
on�den
e intervals forsay �1, a 
omponent of �.How do we get around the problem of �2 unknown?We use the following powerful distributional result (whi
h we do NOT PROVEhere):de�ne Q = R(�̂) = (Y �X�̂)T (Y �X�̂);as the residual sum of squares (rss), then�̂ � Np(�; �2(XTX)�1);independently of Q, and Q=�2 � �2fwhere f = n� p, thus f = number of independent observations minus numberof parameters �tted.Hen
e (i) E(Q) = f�2, and so s2 = Q=f is our unbiased estimator of �2.Further, (ii) (�̂j � �j)=qvjjs2 � tfwhere (vij) is the matrix (XTX)�1 (having jth diagonal element (vjj )).Observe that in general the 
omponents of �̂ will be 
orrelated, sin
e (XTX)�1is not ne
essarily a diagonal matrix.We 
an always reparametrise, say from � to 
, by a non-singular linear trans-formation, to arrange that the 
omponents of 
̂ are un
orrelated. In this 
asewe say that 
1; : : : ; 
p are orthogonal parameters.How do we do this? We use a bit more algebra. Suppose we de�ne 
 = B�, forsome non-singular p� p matrix B.Y = X� + � = (XB�1)
 + �:Thus Y = X1
 + �;say, where X1 = XB�1, and̂
 � Np(
; �2(XT1 X1)�1):Hen
e the parameters 
1; : : : ; 
p are orthogonal provided that we arrange that(XT1 X1) is a diagonal matrix: without loss of generality (wlog) we 
an arrangethat (XT1 X1) = Ip, the p� p identity matrix.Spe
i�
ally, we require (XB�1)T (XB�1) to be Ip.This is equivalent to the problem: 
hoose B a real p� p matrix, su
h thatXTX = BTB:The reason that we 
an �nd su
h a B is that XTX is a p� p positive- de�nitematrix.Important spe
ial 
ase: orthogonal polynomials. Consideryi = �+ �xi + 
x2i + �i:2



We 
an rewrite this asyi = �0 + �0(xi � �x) + 
0((xi � �x)2 + b(xi � �x) + 
) + �i;with b; 
 su
h that �((xi � �x)2 + b(xi � �x) + 
) = 0�((xi � �x)2 + b(xi � �x) + 
)(xi � �x) = 0:What are the 
onsequent equations for b; 
?Then the parameters �0; �0; 
0 are mutually orthogonal, although the parame-ters �; �; 
 were not, in general. This is used, for example, by S-Plus in the
onstru
tion of orthogonal polynomials.What about residuals? What about diagnosti
 plots? First, some more algebra.De�ne the �tted values Ŷ = X�, and de�ne �̂ = Y � Ŷ as the residuals. Thenyou 
an 
he
k that Ŷ = X(XTX)�1XTY = PYsay, where P is a proje
tion matrix, ie it satis�esP = P T ; PP = P;thus it is symmetri
 and idempotent. (P is also 
alled H , the `hat' matrix.)Now �̂ = : : : : : : = (I � P )�(CHECK THIS), and so� � N(0; �2I) implies �̂ � N(0; �2(I � P )):CHECK THIS.FILL IN THE STORY BEHIND THE qqplot.
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De�ne hi as the ith diagonal element of the matrix P . Then �̂i � N(0; (1�hi)�2) and 0 � hi � 1 (
an you prove this?). We 
all hi the leverage of thepoint xi.Then �ihi = tra
e(P ) by de�nition of the fun
tion tra
e(), and, sin
e PP = P ,all the eigen-values of P are 0 or 1 (prove this). Hen
e �ihi = sum of eigenvalues of P = rank(P ) = p.Here is a pi
ture to illustrate a point of high leverage.
Without the spe
ial point xi, as in the pi
ture, we may think that there is noparti
ular relationship between y and x.But if we in
lude xi in our regression �t, then we will �nd thati) the �t looks mu
h better (R2 is 
loser to 1).ii) Sin
e hi is relatively large, we'll �nd that hi ' 1, and sin
e the �tted valueŷi = �jhijyj , we will �nd that ŷi ' yi; the point P is exerting very high leverageat P , and the �t there is nearly perfe
t.This 
ould be very misleading, or it 
ould mean that if we took more observa-tions, then we might dis
over something rather interesting.Ba
k to residuals and �tted values. First, observe thatŶ = PY; �̂ = (I � P )�imply that Ŷ = PX� + P�; �̂ = (I � P )�and hen
e : : : 
ov(�̂i; Ŷj) = 0 for all i; j.Typi
ally we plot �̂i against Ŷi expe
ting to see `no parti
ular trend': as in thepi
ture below:But you may �nd, eg if yi 
orresponds to height, weight, monetary value,... thatj�ij tends to in
rease as Ŷi in
reases: the residuals tend to `fan out' as in thesket
h below:This suggests that in the model Y = X� + �we should assume that �i � N(0; �2i ), ie the varian
e is non-
onstant, we haveheteros
edasti
ity. There is a `�x-up' whi
h often enables us to get over thisproblem: namely to work with a transformation of yi rather than yi itself. Forexample, if we take the modellog(yi) = (X�)i + �iwe may well �nd (from the diagnosti
 plots) that apparentlyvar(�i) ' 
onstant:In this 
ase we say that log() is a varian
e-stabilising transformation.Motivation for varian
e-stabilising transformation: LemmaSuppose the rv Y is approximately distributed as N(�; �2(�)).4



Take any `well-behaved' transformation g().Then, use Taylor's theorem (FILL IN) to show that, approximately:g(Y ) � N(g(�); �2(�)(g0(�))2):Hen
e, given the fun
tion �2(�), for example�2(�) / �2;we 
an 
hoose the fun
tion g() su
h that �2(�)(g0(�))2 = 
onstant, by solvingthe 
orresponding di�erential equation.We return to the question of transforming the response variable Y when wedis
uss the family of Box-Cox transformations: this allows you to let mle �ndthe best transformation.More on testing hypotheses in the linear modelWe �rst need to state one more theorem, whi
h we will then use, without proof.Let 
 be the model Y = X� + �;with the usual assumption that � � N(0; �2I), and let X; � be partitioned sothat X� = X1�1 +X2�2. Let ! be the submodel sayY = X1�1 + �;and let R
; R! be the 
orresponding residual sums of squares. Note,R
 � R! :Put Q1 = R! � R
. Then, on 
, R
=�2 � �2f independently of Q1, andQ1=�2 � non-
entral �2f1 , where f1 = dim(
) � dim(!). Further, this se
ond�2 is ordinary (ie 
entral) �2 if and only if ! is true. Hen
e, to test ! against
 we refer the following ratio to F�;�.Q1=f1R
=f :We will need to 
hange our notation a little to apply this result to get the usualanalysis of varian
e.Consider the model yi = �+ �Txi + �iequivalently 
 : Y = �1 +X� + �;and assume as usual that � � N(0; �2I).In a general notation, we have the following anova, ie analysis of varian
e. Thisenables us to 
onstru
t the F test of the hypothesis � = 0. Table 1 gives us thebasi
 analysis of varian
e.Here `total' is a
tually the resid ss �tting the `baseline' modelH0 : Y = �1 + �:Thus H0 is the hypothesis � = 0.It 
an be shown that, on H0,S�=�2 � �2p; R
=�2 � �2n�1�pand these two are independent. From this result we 
an 
onstru
t the F�testof � = 0, ie refer FILL IN FORMULA: : : : : : :5



Table 1: anovadue to � S� presidual R
 n� p� 1`total' �(yi � �y)2 n� 1Observe that S�=`total0 is 
alled the multiple 
orrelation 
oeÆ
ient R2: the
loser it is to 1, the better the regression `explains' the variation in the data y.But in fa
t, we are more likely to want to test whether parti
ular 
omponents of� are zero, ie to test whether the 
orresponding 
olumns of X 
an be `dropped'from the model.Suppose we now partition X; � so thatX� = X1�1 +X2�2:We may wish to test the model!1 : Y = �1 +X1�1 + �against the model 
, equivalently, to test !1 : �2 = 0, assuming that 
 is true.Let R
 = resid ss �tting 
, thusR
 = (Y � �̂�X�̂)T (Y � �̂�X�̂),and let R!1 = resid ss �tting !1, thusR!1 � R
:For this parti
ular test we will use the following result: on 
,R
=�2 � �2n�1�p independently of (R!1 � R
)=�2 � �2p2(
)and this se
ond �2 is non-
entral, unless �2 = 0: Hen
e, to test �2 = 0, werefer the following RATIO (�ll in) to Fp2;n�1�p.and we 
an 
onstru
t an extended aov like this�ll in big tableObserve, R
 is de�ned in terms of the �tted value �̂; �̂, as above,and 
orrespondingly, R!1 is de�ned in terms of the �tted value say ��; ��1 ,spe
i�
ally: :If we now want to test, say �1 = 0, we have to start again, in order to 
omputethe appropriate residual ss.In a nutshell, this is why, in general, the result of (for example)anova(lm(y~ x+z))will look di�erent from the result ofanova(lm(y~ z+x)) 6



From the point of view of the anova (ie from the point of view of hypothesistesting) the order in whi
h the terms appear in the linear model is very im-portant, unless we have a design su
h that the parameters 
orresponding to x; zare orthogonal. EXPAND THIS STATEMENT..
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