An aspect of discrete data analysis: fitting a beta-binomial distribution to the hospitals data

P.M.E. Altham, Statistical Laboratory, University of Cambridge
January 30, 2002

Address Centre for the Mathematical Sciences, Wilberforce Road, Cambridge CB3 OWB, UK, Fax no 01223-337956.
P.Altham@statslab.cam.ac.uk

I was an invited speaker at the meeting 'The Design and Analysis of Potency Assays for Biotechnology Products’ at the National Institute for Biological Standards and Control, UK, October 5-6, 2000.

Keywords Over-dispersion, beta-binomial, S-Plus, glm.

Abstract Statistical analysis for discrete data, particularly for probability models such as the binomial, Poisson and multinomial, is by now very well understood, with a wealth of suitable software. It can happen that the standard glm (generalized linear modelling) software is not completely appropriate, since over-dispersion is present, relative to the standard distributions such as the Poisson or the binomial. Failure to take account of this over-dispersion, for example in fitting a model such as \(\log(p/(1 - p)) = \alpha + \beta x\) (where the covariate \(x\) is the dose) will mean that our estimates of \(\beta\) will be less precise than the binomial-based formula gives us. Thus for example we will be quoting confidence intervals for \(\beta\) that are too narrow. One way of coping with this problem is to use a probability model which is more general than the binomial, and one such model is the beta-binomial. This paper discusses beta-binomial modelling (in S-Plus) in relation to the interesting data set given in the 1998 BMJ paper by Spiegelhalter and Marshall on success rates of 52 in vitro fertilisation clinics in the UK.
Introduction
Statistical analysis for discrete data, particularly for probability models such as the binomial, Poisson and multinomial, is by now very well understood, with a wealth of suitable software. Such software typically exploits the connexion between these models and generalized linear modelling (glm), so that for example, it is very easy to do log-linear regression for the Poisson and the multinomial, and logistic or probit regression for the binomial. My favoured software, both for teaching and for research/consultancy, is S-Plus, or equivalently the free ‘version’ of S-Plus called R.

It can happen that the standard glm software is not completely appropriate, since over-dispersion is present, relative to the standard distributions such as the Poisson or the binomial. What exactly do we mean by over-dispersion? One way of answering this question is to note that both the binomial and the Poisson make a very strong assumption about the structure of the variance. For example, if Y has a Poisson distribution, then if we assume that \(E(Y) = \mu \), then \(var(Y) = \mu \) also, although in practice we may suspect that \(var(Y) > \mu \). It is possible to take account of this over-dispersion by modelling Y as negative-binomial, which corresponds to assuming that the distribution of Y conditional on the parameter \(\mu \) is Poisson, but \(\mu \) itself is a random variable with a gamma distribution. Suitable software is available via the library(MASS) suite of functions compiled by Venables and Ripley. If we assume that Y is binomial, with parameters \(n, p \), then \(E(Y) = np \) and \(var(Y) = np(1 - p) \). If in fact we have over-dispersion relative to the binomial, then we will find that \(var(Y) > np(1 - p) \). Failure to take account of this over-dispersion, for example in fitting a model such as \(\log(p/(1 - p)) = \alpha + \beta x \) (where the covariate \(x \) is the dose) will mean that our estimates of \(\beta \) will be less precise than the binomial-based formula gives us. Thus for example, with no correction for the extra-binomial variation, we will be quoting confidence intervals for \(\beta \) that are too narrow.

One way of coping with this problem is to use a probability model which is more general than the binomial, and one such model, which we can easily fit in S-Plus, is the beta-binomial. This paper discusses beta-binomial modelling in relation to the interesting data set of Spiegelhalter and Marshall (1998) on success rates of 52 in vitro fertilisation clinics in the UK.

Materials and Methods
E.C.Marshall and D.J.Spiegelhalter (1998) analyse the data from which the Table below has been constructed. To quote from E.C.Marshall’s unpublished PhD thesis, which also includes these data, ‘In July 1996 the Human Fertilisation and Embryology Authority reported on 25730 in vitro fertilisation treatments carried out in 52 clinics over the period from 1 April 1994 to 31 March 1995. An overall adjusted live birth rate of 14.5 % was found.’

The full dataset is given in Marshall’s thesis, and is not reproduced here. If we denote by \(r \) the number of live births, and let \(n \) be the number of fertilisations, then the figures for \(r/n \) range from the least successful of
Withington Hospital ($r = 7, n = 147, r/n = 0.047$), Manchester Fertility Services ($r = 41, n = 506, r/n = 0.081$), Fazakerley Hospital ($r = 20, n = 240, r/n = 0.083$), ... to St James's Hospital ($r = 121, n = 537, r/n = 0.225$), Birmingham Women’s Hospital ($r = 60, n = 267, r/n = 0.225$), and finally, the most successful, NU<RFURE, Nottingham ($r = 204, n = 861, r/n = 0.237$).

The full dataset shows that there is not only substantial variation in r/n, the proportion of successful attempts, but also in n, the total number of attempts. **Results**

First we will fit the binomial with constant probability p to these data, namely

$$r_i \sim \text{independent } Bi(n_i, p), \ 1 \leq i \leq 52.$$

This is easily achieved within S-Plus by

```r
data_ <- read.table("hospitals.data", header=T)
attach(data)
first.glm_ <- glm(r/n ~ 1, binomial, weights=n)
summary(first.glm)
```

which shows a deviance of 390.76, with $df = 51$. So we have substantial overdispersion with respect to the model of constant binomial parameter p. We will compute the binomial residuals, for comparison later with the betabinomial residuals.

```r
p_ <- first.glm$fitted.values ; q_ <- 1-p
res_ <- (r-n*p)/sqrt(n*p*q)
sum(res^2) # as a check
chisq.test(cbind(r,n-r)) # as another check
# sqrt(n) * resid(first.glm) would give us the deviance residuals instead
```

Our next step is to allow one extra parameter: we assume that

$$r_i|p_i \sim Bi(n_i, p_i)$$

and assume further that p_i has the beta distribution, parameters θ, ϕ.

This has the consequence that each r_i then has a beta-binomial distribution, parameters n_i, θ, ϕ.

Again assume that all the r_i's are independent.

We pause to derive the frequency function for the beta-binomial, and also its mean and variance. Now

$$f(r|p) = \binom{n}{r} p^r (1-p)^{n-r}, \ \text{for } r = 0, \cdots, n$$

where p has density $g(p)$ say, where

$$g(p) = \frac{\Gamma(\theta + \phi)}{\Gamma(\theta) \Gamma(\phi)} \ p^{\theta-1} (1-p)^{\phi-1}, \ \text{for } 0 \leq p \leq 1.$$
Thus, integrating with respect to p, we find that the frequency function for r is

$$f(r) = \int f(r|p) g(p) dp = \left(\frac{n}{r} \right) \frac{\Gamma(\theta + \phi) \Gamma(\theta + r) \Gamma(\phi + n - r)}{\Gamma(\theta + \phi + n) \Gamma(\theta + \phi) \Gamma(\theta + r) \Gamma(\phi + n - r)}.$$

It is easy to see that

$$E(r) = E(E(r|p)) = nE(p) = n \frac{\theta}{\theta + \phi} = np',$$

say. Similarly

$$\text{var}(r) = E(\text{var}(r|p)) + \text{var}(E(r|p)),$$

or, alternatively, if we denote X_1, \ldots, X_n as the responses (1 or 0), of the $1\text{st}, 2\text{nd}, \ldots, nth$ member of the set of n individuals which make up the response for a given hospital, we see that

$$\text{var}(r) = \text{var}(X_1 + \cdots + X_n) = n \text{var}(X_1) + n(n-1)\text{cov}(X_1, X_2),$$

giving

$$\text{var}(r) = np'q' + n(n-1)p'q' \rho'$$

where $p' = \frac{\theta}{\theta + \phi}$ as above and $\rho = 1/\theta + \phi + 1 = \text{corr}(X_1, X_2)$.

In the S-Plus commands below, we compute

$$-\sum_i \log f(r_i|\theta, \phi)$$

as MINUS the log likelihood function, and then minimise it to find the maximum likelihood estimates of θ, ϕ. ‘General optimization and maximum likelihood estimation’ is given as Chapter 8 in Venables and Ripley (1999).

```r
library(nlm)

lbetabin <- function(p)
{
  th <- p[1]
  phi <- p[2]
  sum(-lgamma(th + r) - lgamma(phi + n - r) + lgamma(th + phi + n) +
      lgamma(th) + lgamma(phi) - lgamma(th + phi))
}

p <- c(.15,.85) # These are our initial estimates of theta, phi,
# taken from the binomial fit, and setting theta + phi = 1.
# One way to proceed is as follows
fit.first <- nlm(lbetabin,p,print.level=1) # this does not quite converge, and
fit.first$converged # shows that we have not yet reached convergence, but
fit.first$x # shows that we have
#  estimates theta =10.76 , phi=63.25. So we use these as starting values, thus
p <- fit.first$x
fit.next <- nlm(lbetabin,p,print.level=1) # now quickly converges, giving
# the following estimates
fit.next$x
10.92 63.23 # for theta, phi
```
Now we try a different minimisation function
p = c(.15, .85) # same starting values
fit.betabin = nlminb(start = p, objective = 1betabin, lower = c(0, 0))
which gives
fit.betabin # whose contents include the following
$parameters:
[1] 10.92643 63.25428
$objective:
[1] 10184.99
$message:
[1] "RELATIVE FUNCTION CONVERGENCE"
(We edit the output to save space here.)

library(MASS)
vcov.nlminb(fit.betabin) # gives us the approximate covariance matrix for these
parameter estimates, as
6.36 36.71
36.71 222.26

It is interesting that we find
\[\hat{\theta} = 10.93 (se = 2.52), \hat{\phi} = 63.25 (se = 14.91) \]

which corresponds to a beta-density for \(p \) which is quite sharply peaked. The
plot is given in Figure 1, and is obtained as follows:

th = 10.93; phi = 63.25
p = (1:100)/100
f = dbeta(p,th,phi)
plot(p,f,type="l")

We can use the parameter estimates to compute the correct estimated variance
for \(r_i \), and hence compute a \(\chi^2 \) goodness of fit statistic for the model.

th = 10.93; phi = 63.25; pi = th/(th + phi)
betabin.resid = (r - n*pi)/sqrt(n*pi *(1-pi) *(1+ (n-1)/(th + phi+1)))
plot(res,betabin.resid)
betabin.chi2 = sum(betabin.resid^2)

This finds the \(\chi^2 \) statistic as 50.41, with 50 df, showing that the inclusion of
just 1 extra parameter gives a model that satisfactorily accounts for the ‘over-
dispersion’ relative to the ordinary binomial.

Here are the ordered binomial residuals.

round(sort(res),2) # shows us 'best' and 'worst' on crude 1-parameter binomial model

King'sColl ManchesterFS Ninewells Hull Withington Cromwell Walsgrave
-6.85 -4.36 -4.16 -3.63 -3.48 -3.4 -3.11

5
Fazakerley Aberdeen GlasgowRI BMIChiltern Sheffield FC UCH London FC St Mary's
-2.9 -2.65 -2.51 -2.15 -2.1 -2.04 -1.8 -1.36
BUPALe'ster Hartlepool Edinburgh ACU Wirral FC Bourne Hall C Le'ster RI Royal Vic I
-1.21 -1.14 -1.08 -0.98 -0.97 -0.82 -0.66
Washington Bridge FC BMIPortland Newham GH UWhales Esperance H Wessex FS
-0.66 -0.51 -0.42 -0.41 -0.27 -0.16 -0.09
Churchill C Midland F S Univ Bristol NStaffs Northampton Royal Masonic Wolfson FC
0.01 0.18 0.29 0.41 0.47 0.67 0.81
London Womens Guys & St Thom S Cleveland BUPARoding BMIPark Holly HoFU
0.93 1.19 1.2 1.22 1.65 1.67
Southmead Gen BMIPriory BMIChelsfield Birmingham Leeds Gen I Oxford IVF
1.76 1.77 2.09 3.41 4 4.27
RMH Belfast St James's Lister NU RURE
4.75 4.87 6.59 7.12

and here are the ordered beta-binomial residuals, which can also be compared to the standard normal function:

round(sort(betabin.resid),2) # for betabinomial residuals

Withington Manchester FS King's Coll Ninewells Hull Fazakerley Cromwell
-1.99 -1.47 -1.46 -1.45 -1.41 -1.37 -1.26
BMIChiltern Walsgrave Aberdeen UCH Hartlepool BUPALe'ster GlasgowRI
-1.2 -1.11 -1.09 -0.79 -0.74 -0.72 -0.65
Sheffield FC Wirral FC London FC Le'ster RI St Mary's Edinburgh ACU BMIPortland
-0.61 -0.53 -0.47 -0.47 -0.38 -0.35 -0.32
Newham GH Washington Royal Vic I Bourne Hall C Bridge FC UWhales Esperance H
-0.25 -0.23 -0.22 -0.16 -0.11 -0.09 -0.02
Wessex FS Churchill C Midland F S Univ Bristol Royal Masonic Wolfson FC Northampton
0.03 0.07 0.12 0.15 0.26 0.28 0.30
NStaffs London Womens Guys & St Thom BMIPark BUPARoding S Cleveland Holly HoFU
0.31 0.41 0.5 0.6 0.69 0.84 0.86
BMIPriory BMIChelsfield Leeds Gen I Southmead Gen Oxford IVF Birmingham
0.93 1.15 1.16 1.28 1.50 1.57 1.67
RMH Belfast Lister St James's NU RURE
1.73 1.74 1.79 2.10

Discussion and Conclusions
• Allowing for over-dispersion via the beta-binomial model shows us that in terms of this model, there is only one hospital with a large and negative residual (Withington) and only four with large and positive residuals. It seems more sensible to compare the 92 institutions via their beta-binomial residuals rather than their binomial residuals, since we know that the model of a constant binomial parameter p is such a poor fit.
• Note that the estimates of θ, ϕ obtained above give a very small estimate for ρ, the correlation between individual responses at the same hospital, namely $\hat{\rho} = 1/(1 + 10.93 + 63.25) = 0.013$. But this very small positive correlation 'magnifies' the variance of r/n relative to that of the true binomial because of...
the large values of \(n\) that are involved; half of these are between 210 and 641.

- The sample correlation matrix for \(\hat{\theta}, \hat{\phi}\) suggests that from the point of view of the function-minimisation problem, we could find a much ‘better’ parametrisation, in which the two parameters are closer to being orthogonal. It is worth experimenting with the parametrisation \(\pi = \theta/(\theta + \phi), \psi = \theta + \phi\).

- One of the objectives of Marshall and Spiegelhalter in looking at this table was to produce a ‘reliable’ ranking of the hospitals, since a ranking based on the crude success rate can be quite misleading. How do we address this question with the benefit of our beta-binomial model?

Of course, whether we use a binomial or a beta-binomial distribution, our statistical ‘comparison’ of clinics will be extremely simplistic, since it will fail to take account of what must be relevant background information, such as the ages of the women trying for conceptions, and so forth. However, even a simplistic analysis make be useful, in that it will prompt us to ask, say ‘What is it about NURTURE that makes it so much more successful than the others?’ and to call for more data than just the bare figures \((r, n)\) given here.

- The betabinomial and other models for binomial overdispersion are discussed in the paper by Lindsey and Altham (1998), which includes an analysis of sex-ratio data.

- The newest version of S-Plus, ie Splus5, gives just slightly different parameter estimates etc from the ones quoted above; these very slight differences do not affect the argument of the paper.

References

