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IntrodutionStatistial analysis for disrete data, partiularly for probability models suh asthe binomial, Poisson and multinomial, is by now very well understood, with awealth of suitable software. Suh software typially exploits the onnexion be-tween these models and generalized linear modelling (glm), so that for example,it is very easy to do log-linear regression for the Poisson and the multinomial,and logisti or probit regression for the binomial. My favoured software, bothfor teahing and for researh/ onsultany, is S-Plus, or equivalently the free`version' of S-Plus alled R.It an happen that the standard glm software is not ompletely appropriate,sine over-dispersion is present, relative to the standard distributions suh asthe Poisson or the binomial. What exatly do we mean by over-dispersion?One way of answering this question is to note that both the binomial and thePoisson make a very strong assumption about the struture of the variane.For example, if Y has a Poisson distribution, then if we assume that E(Y ) = �,then var(Y ) is fored to be � also, although in pratie we may suspet thatvar(Y ) > �. It is possible to take aount of this over-dispersion by modellingY as negative-binomial, whih orresponds to assuming that the distribution ofY onditional on the parameter � is Poisson, but � itself is a random variablewith a gamma distribution. Suitable software is available via the library(MASS)suite of funtions ompiled by Venables and Ripley. If we assume that Y isbinomial, with parameters n; p, then E(Y ) = np and var(Y ) = np(1 � p).If in fat we have over-dispersion relative to the binomial, then we will �ndthat var(Y ) > np(1 � p). Failure to take aount of this over-dispersion, forexample in �tting a model suh as log(p=(1� p)) = �+�x (where the ovariatex is the dose) will mean that our estimates of � will be less preise than thebinomial-based formula gives us. Thus for example, with no orretion for theextra-binomial variation, we will be quoting on�dene intervals for � that aretoo narrow.One way of oping with this problem is to use a probability model whih ismore general than the binomial, and one suh model, whih we an easily �tin S-Plus, is the beta-binomial. This paper disusses beta-binomial modellingin relation to the interesting data set of Spiegelhalter and Marshall (1998) onsuess rates of 52 in vitro fertilisation linis in the UK.Materials and MethodsE.C.Marshall and D.J.Spiegelhalter (1998) analyse the data from whih theTable below has been onstruted. To quote from E.C.Marshall's unpublishedPhD thesis, whih also inludes these data, `In July 1996 the Human Fertilisationand Embryology Authority reported on 25730 in vitro fertilisation treatmentsarried out in 52 linis over the period from 1 April 1994 to 31 Marh 1995.An overall adjusted live birth rate of 14.5 % was found.'The full dataset is given in Marshall's thesis, and is not reprodued here.If we denote by r the number of live births, and let n be the number of fer-tilisations, then the �gures for r, n and r=n range from the least suessful of2



Withington Hospital (r = 7; n = 147; r=n = 0:047), Manhester Fertility Ser-vies (r = 41; n = 506; r=n = :081), Fazakerley Hospital (r = 20; n = 240; r=n =:083), ...... to St James's Hospital (r = 121; n = 537; r=n = :225), Birming-ham Women's Hospital (r = 60; n = 267; r=n = :225), and �nally, the mostsuessful, NURTURE, Nottingham (r = 204; n = 861; r=n = :237).The full dataset shows that there is not only substantial variation in r=n, theproportion of suessful attempts, but also in n, the total number of attempts.ResultsFirst we will �t the binomial with onstant probability p to these data, namelyri � independent Bi(ni; p); 1 � i � 52:This is easily ahieved within S-Plus bydata _ read.table("hospitals.data", header=T)attah(data)first.glm _ glm(r/n ~ 1, binomial, weights=n)summary(first.glm)whih shows a deviane of 390.76, with df = 51. So we have substantial overdis-persion with respet to the model of onstant binomial parameter p. We willompute the binomial residuals, for omparison later with the betabinomialresiduals.p _ first.glm$fitted.values ; q _ 1-pres _ (r-n*p)/sqrt(n*p*q)sum(res^2) # as a hekhisq.test(bind(r,n-r)) # as another hek# sqrt(n) * resid(first.glm) would give us the deviane residuals insteadOur next step is to allow one extra parameter: we assume thatrijpi � Bi(ni; pi)and assume further that pi has the beta distribution, parameters �; �.This has the onsequene that eah ri then has a beta-binomial distribution,parameters ni; �; �.Again assume that all the ri's are independent.We pause to derive the frequeny funtion for the beta-binomial, and alsoits mean and variane. Nowf(rjp) = �nr�pr(1� p)n�r; for r = 0; � � � ; nwhere p has density g(p) say, whereg(p) = �(� + �)�(�)�(�) p��1(1� p)��1; for 0 � p � 1:3



Thus, integrating with respet to p, we �nd that the frequeny funtion for r isf(r) = Z f(rjp)g(p)dp = �nr� �(� + �)�(�)�(�) �(� + r)�(� + n� r)�(� + �+ n) :It is easy to see thatE(r) = E(E(rjp)) = nE(p) = n �=(� + �) = np0;say. Similarly var(r) = E(var(rjp)) + var(E(rjp));or, alternatively, if we denote X1; � � � ; Xn as the responses (1 or 0), of the1st; 2nd; � � � ; nth member of the set of n individuals whih make up the responsefor a given hospital, we see thatvar(r) = var(X1 + � � �+Xn) = n var(X1) + n(n� 1)ov(X1; X2);giving var(r) = np0q0 + n(n� 1)�p0q0where p0 = �=(� + �) as above and � = 1=(� + �+ 1) = orr(X1; X2).In the S-Plus ommands below, we ompute��ilogf(rij�; �)as MINUS the loglikelihood funtion, and then minimise it to �nd the maximumlikelihood estimates of �; �. `General optimization and maximum likelihoodestimation' is given as Chapter 8 in Venables and Ripley (1999).lbetabin _ funtion(p){th <- p[1℄phi <- p[2℄sum( - lgamma(th + r) - lgamma(phi + n - r) + lgamma(th + phi + n) +lgamma(th) + lgamma(phi) - lgamma(th + phi))}p _ (.15,.85) # These are our initial estimates of theta, phi,# taken from the binomial fit, and setting theta + phi =1.# One way to proeed is as followsfit.first _ nlmin(lbetabin,p,print.level=1) # this does not quite onverge, andfit.first$onverged # shows that we have not yet reahed onvergene, butfit.first$x # shows that we have# estimates theta =10.76 , phi=63.25. So we use these as starting values, thusp _ fit.first$xfit.next _ nlmin(lbetabin,p,print.level=1) # now quikly onverges, giving# the following estimatesfit.next$x10.92 63.23 # for theta, phi 4



# Now we try a different minimisation funtionp _ (.15,.85) # same starting valuesfit.betabin _ nlminb(start = p, objetive = lbetabin, lower = (0, 0))# whih givesfit.betabin # whose ontents inlude the following$parameters:[1℄ 10.92643 63.25428$objetive:[1℄ 10184.99$message:[1℄ "RELATIVE FUNCTION CONVERGENCE"(We edit the output to save spae here.)library(MASS)vov.nlminb(fit.betabin) # gives us the approximate ovariane matrix for these# parameter estimates, as6.36 36.7136.71 222.26It is interesting that we �nd�̂ = 10:93(se = 2:52); �̂ = 63:25(se = 14:91)whih orresponds to a beta-density for p whih is quite sharply peaked. Theplot is given in Figure 1, and is obtained as follows:th _ 10.93; phi _ 63.25p _ (1:100)/100f _ dbeta(p,th,phi)plot(p,f,type="l")We an use the parameter estimates to ompute the orret estimated varianefor ri, and hene ompute a �2 goodness of �t statisti for the model.th _ 10.93; phi _ 63.25; pi _ th/(th + phi)betabin.resid _ (r - n*pi)/sqrt( n*pi *(1-pi)*(1+ (n-1)/(th + phi+1)))plot(res,betabin.resid)betabin.hi2 _ sum(betabin.resid^2)This �nds the �2 statisti as 50.41, with 50 df, showing that the inlusion ofjust 1 extra parameter gives a model that satisfatorily aounts for the `over-dispersion' relative to the ordinary binomial.Here are the ordered binomial residuals.round(sort(res),2) # shows us `best' and `worst' on rude 1-parameter binomial modelKing'sColl ManhesterFS Ninewells Hull Withington Cromwell Walsgrave-6.85 -4.36 -4.16 -3.63 -3.48 -3.4 -3.115



Fazakerley Aberdeen GlasgowRI BMIChiltern SheffieldFC UCH LondonFC StMary's-2.9 -2.65 -2.51 -2.15 -2.1 -2.04 -1.8 -1.36BUPALe'ster Hartlepool EdinburghACU WirralFC BourneHallC Le'sterRI RoyalViI-1.21 -1.14 -1.08 -0.98 -0.97 -0.82 -0.66Washington BridgeFC BMIPortland NewhamGH UHWales EsperaneH WessexFS-0.66 -0.51 -0.42 -0.41 -0.27 -0.16 -0.09ChurhillC MidlandFS UnivBristol NStaffs Northampton RoyalMasoni WolfsonFC0.01 0.18 0.29 0.41 0.47 0.67 0.81LondonWomens Guys&StThom S.Cleveland BUPARoding BMIPark HollyHoFU0.93 1.19 1.2 1.22 1.65 1.67SouthmeadGen BMIPriory BMIChelsfield Birmingham LeedsGenI OxfordIVF1.76 1.77 2.09 3.41 4 4.27RMHBelfast StJames's Lister NURTURE4.75 4.87 6.59 7.12and here are the ordered beta-binomial residuals, whih an also be omparedto the standard normalround(sort(betabin.resid),2) # for betabinomial residualsWithington ManhesterFS King'sColl Ninewells Hull Fazakerley Cromwell-1.99 -1.47 -1.46 -1.45 -1.41 -1.37 -1.26BMIChiltern Walsgrave Aberdeen UCH Hartlepool BUPALe'ster GlasgowRI-1.2 -1.11 -1.09 -0.79 -0.74 -0.72 -0.65SheffieldFC WirralFC LondonFC Le'sterRI StMary's EdinburghACU BMIPortland-0.61 -0.53 -0.47 -0.47 -0.38 -0.35 -0.32NewhamGH Washington RoyalViI BourneHallC BridgeFC UHWales EsperaneH-0.25 -0.23 -0.22 -0.16 -0.11 -0.09 -0.02WessexFS ChurhillC MidlandFS UnivBristol RoyalMasoni WolfsonFC Northampton0.03 0.07 0.12 0.15 0.26 0.28 0.30NStaffs LondonWomens Guys&StThom BMIPark BUPARoding S.Cleveland HollyHoFU0.31 0.41 0.5 0.6 0.69 0.84 0.86BMIPriory BMIChelsfield LeedsGenI SouthmeadGen OxfordIVF Birmingham0.93 1.15 1.16 1.28 1.50 1.67RMHBelfast Lister StJames's NURTURE1.73 1.74 1.79 2.10Disussion and Conlusions� Allowing for over-dispersion via the beta-binomial model shows us that interms of this model, there is only one hospital with a large and negative resid-ual (Withington) and only four with large and positive residuals. It seems moresensible to ompare the 52 institutions via their beta-binomial residuals ratherthan their binomial residuals, sine we know that the model of a onstant bino-mial parameter p is suh a poor �t.� Note that the estimates of �; � obtained above give a very small estimate for�, the orrelation between individual responses at the same hospital, namely�̂ = 1=(1 + 10:93 + 63:25) = 0:013. But this very small positive orrelation`magni�es' the variane of r=n relative to that of the true binomial beause of6



the large values of n that are involved: half of these are between 210 and 641.� The sample orrelation matrix for �̂; �̂ suggests that from the point of viewof the funtion-minimisation problem, we ould �nd a muh `better' parametri-sation, in whih the two parameters are loser to being orthogonal. It is worthexperimenting with the parametrisation � = �=(� + �);  = � + �:� One of the objetives of Marshall and Spiegelhalter in looking at this tablewas to produe a `reliable' ranking of the hospitals, sine a ranking based on therude suess rate an be quite misleading. How do we address this questionwith the bene�t of our beta-binomial model?Of ourse, whether we use a binomial or a beta-binomial distribution, our sta-tistial `omparison' of linis will be extremely simplisti, sine it will fail totake aount of what must be relevant bakground information, suh as the agesof the women trying for oneptions, and so forth. However, even a simplistianalysis make be useful, in that it will prompt us to ask, say `What is it aboutNURTURE that makes it so muh more suessful than the others?' and to allfor more data than just the bare �gures (r; n) given here.� The betabinomial and other models for binomial overdispersion are disussedin the paper by Lindsey and Altham (1998), whih inludes an analysis of sex-ratio data.� The newest version of S-Plus, ie Splus5, gives just slightly di�erent parameterestimates et from the ones quoted above; these very slight di�erenes do nota�et the argument of the paper.ReferenesLindsey, JK and Altham, PME: Analysis of the human sex ratio using overdis-persion models. App Statist 1998;47:149{157.Marshall, EC: Statistial methods for Institutional Comparisons. PhD thesis,University of Cambridge, 1999.Marshall, EC and Spiegelhalter, DJ: Reliability of league tables of in vitro fertil-isation linis: retrospetive analysis of live birth rates. British Medial Journal1998;316:1701{4.Venables WN and Ripley BD: Modern Applied Statistis with S-Plus. NewYork, Springer, 1999.

7



p

f

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

8


