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I/12M
i) Assume that the n-dimensional observation vector Y may be written

Y = Xβ + ε,

where X is a given n× p matrix of rank p, β is an unknown vector, and

ε ∼ Nn(0, σ
2I).

Let Q(β) = (Y −Xβ)T (Y −Xβ). Find β̂, the least-squares estimator of β, and show that

Q(β̂) = Y T (I −H)Y

where H is a matrix that you should define.
If now Xβ is written as Xβ = X1β1 +X2β2, where X = (X1 : X2), β

T = (βT1 : βT2 ), and β2 is
of dimension p2, state without proof the form of the F−test for testing H0 : β2 = 0.

ii) The data in the GLIM analysis shown were obtained as part of a health survey in the
US investigating cholesterol levels in women from two states, Iowa and Nebraska (denoted by 1,2
respectively). Discuss carefully the GLIM analysis below, using sketch graphs to illustrate the two
models being fitted. Which is your preferred model? What F -test would be appropriate?

$un 30 $data state age chol $read

1 46 181 1 52 228 1 39 182 1 65 249 1 54 259

1 33 201 1 49 121 1 76 339 1 71 224 1 41 112 1 58 189

2 18 137 2 44 173 2 33 177 2 78 241 2 51 225 2 43 223

2 44 190 2 58 257 2 63 337 2 19 189 2 42 214 2 30 140

2 47 196 2 58 262 2 70 261 2 67 356 2 31 159 2 21 191

2 56 197

$fact state 2 $yvar chol $fit state*age$d e $

$fit - state.age$d e $

(nb these data came from the Glim Manual, p368. I have corrected a typo in the 2nd line of the
data; ie 232 has been replaced above by 121. This error would not have affected the candidates,
but it would certainly affect later students if they were seeking to check all the estimates.)

$factor state 2 $yvar chol $fit state*age $d e $

deviance= 48395

df = 26

estimate se parameter

1 35.81 55.12 1

2 65.49 61.98 STAT(2)

3 3.238 1.009 AGE

4 -0.7177 1.163 STAT(2).AGE

scale parameter taken as 1861

1
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$fit - state.age$d e$

deviance = 49104 (change = +709.1)

df = 27 (change = +1)

estimate se parameter

1 64.49 29.30 1

2 28.65 16.54 STAT(2)

3 2.698 0.4960 AGE

scale parameter taken as 1819

————————————————————————-
Outline solution
i)

With Q(β) = (Y −Xβ)T (Y −Xβ), we see that Q(β) is minimised with respect to β by β̂, the
solution to

∂Q(β)

∂β
= 0

ie
XT (Y −Xβ) = 0.

Note that rank(X) = rank(XTX), hence the p × p matrix XTX is of full rank, hence (XTX)−1

exists, hence β̂ is the unique solution to

β̂ = (XTX)−1XTY

and by simple manipulation, we see that

Q(β̂) = Y TY − Y THY.

H is of course the usual ‘hat’ matrix X(XTX)−1XT .
With Xβ = X1β1 + X2β2, let us write RΩ, Rω as the residual sums of squares fitting the

models
Ω : E(Y ) = Xβ, ω : E(Y ) = X1β1

respectively.
Note that ω ⊆ Ω, and dim(Ω) − dim(ω) = p2.
Facts: to be quoted without proof,
on Ω, RΩ/σ

2 ∼ χ2
n−p

and on ω, (Rω −RΩ)/σ2 ∼ χ2
p2

and these are independent random variables.
So to test ω against Ω, we refer

(Rω − RΩ)/p2

RΩ/(n− p)
to Fp2,n−p

.
All of the above is standard book work.
ii) The model we are fitting is say

Ω : yij = µ+ θi + βxij + γixij + εij , for 1 ≤ j ≤ ni, 1 ≤ i ≤ 2.

Here yij is the cholesterol reading for the jth woman, ith state,
and i = 1, 2 for Iowa, Nebraska respectively,
xij is the corresponding age
and θ1 = 0, γ1 = 0 (the usual GLIM constraints)
and εij ∼ NID(0, σ2).
So we see that we are fitting 2 lines, which have possibly different slopes and different intercepts.
We find that the fitted lines are
for Iowa, chol = 35.81 + 3.238× age
and for Nebraska, chol = (35.81 + 65.49) + (3.238− 0.7177)× age
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with our estimate of σ2 as deviance/df = 48395/26.
But we see, from .7177/1.163 (referred to t26, but there is no need for formal use of tables) that

we can DROP the state.age interaction, and so we fit two parallel straight lines, resulting in the
fitted lines

chol = 64.49 + 2.698 × age for Iowa,
chol = (64.49 + 28.65) + 2.698× age for Nebraska,
with σ2 estimated by 49104/27.
The appropriate F -test , which tests whether the 2 slopes are indeed the same, is to refer

((709.1/1)/(48395/26)) to F1,26 and it would presumably be non- significant.
In fact (look at (28.65/16.54)) we could probably use just one line for the whole data-set.

paper2/11M
i) Suppose that Y1, ..., Yn are independent binomial observations, with

Yi ∼ B(ti, πi) and log(πi/(1 − πi)) = βTxi, for 1 ≤ i ≤ n,

where t1, ..., tn and x1, ..., xn are given. Discuss carefully the estimation of β.
ii) A new drug is thought to check the development of symptoms of a particular disease. A

study on 338 patients who were already infected with this disease yielded the data below.

Symptoms

Race Drug use Yes No

White Yes 14 93

No 32 81

Black Yes 11 52

No 12 43

You see below the corresponding GLIM analysis. Discuss its interpretation carefully.

$units 4 $data y n $read

14 93 32 81 11 52 12 43 $

$yvar y $cal tot=y+n$err b tot $

$factor race 2 drug 2 $fit race + drug$d e $

scaled deviance = 1.3835

df = 1

estimate se parameter

1 -1.1738 0.2404 1

2 -0.05548 0.2886 race(2)

3 0.7195 0.2790 drug(2)

—————————————————————————
Solution
i) With f(yi|πi) ∝ πyi

i (1 − πi)
ti−yi we see that

`(β) =
∑

(yi log(πi/(1 − πi)) + ti log(1 − πi)).

Substitute for πi in terms of β to give

`(β) = βT
∑

xiyi −
∑

ti log(1 + exp(βTxi)) + constant.

Hence
∂`

∂β
=

∑

xiyi −
∑

tixiπi
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and so

−
∂2`

∂β∂βT
=

∑

tixixi
Tπi(1 − πi) = (V (β))−1

say. The rest of the solution consists of describing the iterative solution of

∂`

∂β
= 0

and the large-sample distribution of β̂ which is of course

N(β, V (β)).

ii) The fitted model is
yij ∼ B(totij , πij), 1 ≤ i, j ≤ 2

with i = 1, 2 corresponding to Race (White, Black) and j = 1, 2 corresponding to Drug Use (Yes,
No).

We fit
ω : log(πij/(1 − πij)) = µ+ αi + βj

with α1 = β1 = 0, the usual GLIM constraints.
Thus, using Wilks’ theorem, we may test the adequacy of ω by referring 1.385 to χ2

1, so that
our model ω clearly fits well.

Furthermore, α̂2/se(α̂2) is clearly non-significant when referred to N(0, 1), so that Race is not
significant in its effect on Symptoms(Yes/No).

However, (7195/.2790) is clearly in the tail of N(0, 1), showing that [Drug Use = No] increases
the probability of [Symptoms = Yes]; the drug use is effective in reducing the probability of
Symptoms.

Note that we could have tried to fit

$fit race*drug$

allowing for a possible interaction between Race and Drug use; this model would have given us a
perfect fit (zero deviance), but it is in any case obvious from the fact the the model ω fits so well
that the race.drug term must be non-significant.

4/13M Suppose that Y1, ..., Yn are independent random variables, and that Yi has probability
density function

f(yi|θi, φ) = exp[(yiθi − b(θi))/φ+ c(yi, φ)].

Assume that E(Yi) = µi, and that there is a known link function g such that

g(µi) = βTxi,where xi is known and β is unknown.

Show that
(a) E(Yi) = b′(θi),
(b) var(Yi) = φb′′(θi) = Vi say, and hence
(c) if `(β, φ) is the log-likelihood function from the observations (y1, ..., yn) then

∂`(β, φ)

∂β
=

n
∑

1

(yi − µi)xi
g′(µi)Vi

.

Describe briefly how GLIM finds the maximum likelihood estimator β̂, and discuss its application
for Yi independent Poisson random variables, with mean µi, and

logµi = βTxi, 1 ≤ i ≤ n.

——————————————————————————-
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Solution
This is ‘the calculus at the heart of GLIM’: see your lecture notes for the full story.
The example has φ = 1
and

`(β) = −
∑

exp(βTxi) + βT
∑

xiyi + constant

so that GLIM will solve, by iteration, the simultaneous equations

∂`

∂β
= 0.
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Computational Statistics
Mathematical Tripos 1998, Part IIA, questions and solutions

The numerical parts of the questions have been edited somewhat, as you will see below. (They
have been recast in R, but are essentially asking the same as in the original version of the question.
The R output is given in slightly reduced form.)
PAPER A1. 13D
(i) Suppose Y1, ..., Yn are independent observations, with

E(Yi) = µi, g(µi) = βTxi, 1 ≤ i ≤ n,

where g(·) is a known function. Suppose also that Yi has a probability density function

f(yi|θi, φ) = exp[(yiθi − b(θi))/φ+ c(yi, φ)]

where φ is known. Show that if `(β) is defined as the corresponding log likelihood, then

∂`

∂β
=

∑ (yi − µi)xi
g′(µi)Vi

where Vi = var(Yi), 1 ≤ i ≤ n.

(ii) Murray et al. (1981) in a paper “Factors affecting the consumption of psychotropic drugs”
presented the data on a sample of individuals from West London in the table below:

sex age.group psych r n

1 1 1 9 531

1 2 1 16 500

1 3 1 38 644

1 4 1 26 275

1 5 1 9 90

1 1 2 12 171

1 2 2 16 125

1 3 2 31 121

1 4 2 16 56

1 5 2 10 26

2 1 1 12 588

2 2 1 42 596

2 3 1 96 765

2 4 1 52 327

2 5 1 30 179

2 1 2 33 210

2 2 2 47 189

2 3 2 71 242

2 4 2 45 98

2 5 2 21 60

Here r is the number on drugs, out of a total number n. The variable ‘sex’ takes values 1, 2 for
males, females respectively, and the variable ‘psych’ takes values 1, 2, according to whether the
individuals are not, or are, psychiatric cases.

Discuss carefully the interpretation of the R-analysis below. (You need not prove any of the
relevant theorems needed for your discussion, but should quote them carefully.)

data _ read.table("data", header=T)

attach(data)

sex _ factor(sex); psych _ factor(psych)

age.group _ factor(age.group)
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summary(glm(r/n ~ sex + age.group + psych, binomial, weights=n))

deviance = 14.803

d.f.= 13

Coefficients:

Value Std.Error

(Intercept) -4.016 0.1506

sex 0.6257 0.09554

age.group2 0.7791 0.1610

age.group3 1.323 0.1476

age.group4 1.748 0.1621

age.group5 1.712 0.1899

psych 1.417 0.09054

The term ‘sex’ is dropped from the model above, and the deviance then increases by 45.15 (corre-
sponding to a 1 d.f. increase) to 59.955 (14 d.f.). What do you conclude?

SOLUTION.
(i) Dropping the suffix i, we see that

logf(y|θ, φ) = (yθ − b(θ))/φ + term free of θ.
Thus

∂logf(y|θ)

∂θ
= (y − b′(θ))/φ.

Now apply the well-known results (suppressing the known constant φ) that since
∫

f(y|θ)dy = 1
for all θ,

E(
∂logf(y|θ)

∂θ
)) = 0,

and

E(
−∂2logf(y|θ)

∂θ2
) = var(

∂logf(y|θ)

∂θ
)

and apply the chain-rule, to give the desired expression for

∂`/∂β.

(ii) The model that we are fitting is ri ∼ independent Bin(ni, πi), for 1 ≤ i ≤ 20, where (since the
logit link is the default for the binomial)

log(πi/(1 − πi)) = µ+ sexj(i) + age.groupk(i) + psychl(i)

and, for example, j(i) = 1, 1, 1, ...2, 2, 2, (ie as in the first column of the data). We know that R
will assume the usual parameter identifiability conditions:

sex1 = 0, age.group1 = 0, psych1 = 0,

so that in the output, each factor level is effectively being compared with the first corresponding
factor level.

By Wilks’ theorem, we know that the deviance of 14.803 can be compared to χ2
13, and this

comparison shows that the model fits well, since 14.803 is only slightly bigger than the expected
value of χ2

13.
We also know that, approximately, each (mle/its standard error) can be compared with N(0, 1)

to test for significance of that parameter.
So we see that a female is significantly more likely than a comparable male to be on drugs,
and the probability of being on drugs increases as the age.group increases (more or less, since

the last 2 age.groups have almost the same parameter estimate)
and those who are psychiatric cases are more likely than those who are not psychiatric cases

to be on drugs.
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If the term ‘sex’ is dropped from the model, the deviance increases by what is obviously a
hugely significant amount, so it was clearly wrong to try to reduce the model in this way (as we
should expect, from the original est/se for sex).

PAPER A2. 11D
(i) Suppose that Y1, . . . , Yn are independent Poisson random variables, with E(Yi) = µi, 1 ≤ i ≤ n.
Let H be the hypothesis H : µ1, . . . , µn ≥ 0.

Show that D, the deviance for testing

H0 : logµi = µ+ βTxi, 1 ≤ i ≤ n,

where x1, . . . , xn are given covariates, and µ, β are unknown parameters, may be written

D = 2[
∑

yilogyi − µ̂
∑

yi − β̂T
∑

xiyi],

where you should give equations from which (µ̂, β̂) can be determined.
How would you make use of D in practice?

(ii) A.Sykes (1986) published the sequence of reported new cases per month of AIDS in the UK for
each of 36 consecutive months up to November 1985. These data are used in the analysis below,
but have been grouped into 9 (non-overlapping) blocks each of 4 months, to give 9 consecutive
readings.

It is hypothesised that for the logs of the means, either, there is a quadratic dependence on i,
the block number or, the increase is linear, but with a ‘special effect’ (of unknown cause) coming
into force after the first 5 blocks.

Discuss carefully the analysis that follows below, commenting on the fit of the above hypotheses.

n _ scan()

3 5 16 12 11 34 37 51 56

i _ scan()

1 2 3 4 5 6 7 8 9

summary(glm(n~i,poisson))

deviance = 13.218

d.f. = 7

Coefficients:

Value Std.Error

(intercept) 1.363 0.2210

i 0.3106 0.0382

ii _ i*i ; summary(glm(n~ i + ii, poisson))

deviance = 11.098

d.f.= 6

Coefficients:

Value Std.Error

(Intercept) 0.7755 0.4845

i 0.5845 0.1712

ii -0.02030 0.0141

special _ scan()

1 1 1 1 1 2 2 2 2
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special _ factor(special)

summary(glm(n~ i + special, poisson))

deviance = 8.2427

d.f.= 6

Coefficients:

Value Std.Error

(intercept) 1.595 0.2431

i 0.2017 0.0573

special 0.6622 0.2984

SOLUTION

(i) We have f(yi|µi) ∝ e−µi µi
yi

from which we see that the loglikelihood is

∑

logf(yi|µi) = −
∑

µi +
∑

yilogµi + constant.

Clearly this is maximised under H by

µ̂i = yi, 1 ≤ i ≤ n.

Under H0, we see that the loglikelihood is now `(µ, β), where

`(µ, β) = −
∑

eµ+βT xi + µ
∑

yi + βT
∑

xiyi.

Hence, taking partial derivatives with respect to µ, β respectively, we obtain the equations

∑

eµ+βT xi =
∑

yi

∑

xie
µ+βTxi =

∑

xiyi,

which is a set of equations for (µ̂, β̂), which we could solve iteratively by glm().
The given expression for D is twice the difference between the loglikelihood maximised under

H , H0, respectively. (Observe that the
∑

µ̂i term will cancel.)
Use of D: Wilks’ theorem tells us that for large n, on H0, D is approximately distributed as

χ2
f , where f is the difference in dimension between H and H0: let us call this n− 1 − p.

We see that H0 will be a good fit to the data if we find that D ≤ n− 1− p, (recalling that the
expected value of a χ2 variable is its d.f.)
(ii) Throughout we assume the model ni ∼ independent Po(µi) for i = 1, . . . , 9.

The log link is the default for the Poisson. The first model we try is say

HL : log(µi) = µ+ β i, i = 1, . . . , 9.

This has a deviance which is nearly twice its d.f, showing that HL is not a good fit. Note that
under HL, the estimate of the slope β is clearly positive: compare (0.3106/0.0382) to N(0, 1).

The next model we try is say

HQ : log(µi) = µ+ β + γ i2, i = 1, . . . , 9.

Although the deviance is reduced (by 13.218−11.098), this model still has a deviance nearly twice
its d.f. Inspection of γ̂, −0.02030, and its se, shows that there may be a significant quadratic
effect. But the next model we try, which extends HL by one more parameter, but in a different
way from HQ, produces a much better fit. It corresponds to

HS : log(µi) = µ+ β i, i = 1, . . . , 5,
and log(µi) = µ+ special+ β i, i = 6, . . . , 9.
This time the deviance is only a little bigger than its d.f. Furthermore, comparing the estimate

of ‘special’ with its se (0.662/0.2984), we see that ‘special’ (ie the ‘jump’ in the line) is clearly
significant.
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PAPER 4, 14D
Write an essay on fitting the model

ω : yi = βTxi + εi, 1 ≤ i ≤ n,

where ε1, . . . , εn are assumed to be independent normal, mean 0, variance σ2, and where β, σ2 are
unknown, and x1, . . . , xn are known covariates. Include in your essay discussion of the following
special cases of ω :

ω1 : yi = µ+ β1x1i + β2x2i + εi, 1 ≤ i ≤ n,

ω2 : yijk = µ+ αi + βj + εijk, 1 ≤ k ≤ nij , 1 ≤ i ≤ r, 1 ≤ j ≤ c,

where
∑ ∑

nij = n.
[Any distribution results that you need may be quoted without proofs.]

SOLUTION
This model may be rewritten in matrix form

y = Xβ + ε

where ε ∼ N(0, σ2I).
Much of the solution is essentially contained in your lecture notes: here are points that you

should cover in your essay, possibly with appropriate sketch diagrams:
a) The estimation of β, σ2, the joint distribution of these estimates, and how to construct

confidence intervals for elements of β. (Remember, you don’t need to prove any of the distributional
results.)

b) What to do if Xβ = X1β1 +X2β2, and we want to test, say, β2 = 0.
c) The relevance of projections.
d) The relevance of (and of course the definition of) parameter orthogonality.
e) How to check the assumption ε ∼ N(0, σ2I). (ie what to do with residuals.)
The two hypotheses ω1, ω2 can be used to illustrate some of the above points. Note that if

nij = u say, for all i, j then we have a balanced two-way design, for which the standard ‘two-way
anova’ is appropriate.
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Mathematical Tripos 1999, Part IIA, questions

Paper 1. 13D (i) Suppose Yi are independent Binomial variables, and

Yi ∼ Bi(ni, pi), 1 ≤ i ≤ k.

Discuss carefully the maximum likelihood estimation of the parameters (α, β) in the model

ω : log(pi/(1 − pi)) = α+ βxi, 1 ≤ i ≤ k,

where x1, · · · , xk are given covariates. How would you assess the fit of the model ω in practice?
(ii) You see below a table of data analysed in R via glm(.).

A B n r

1 1 796 498

1 2 1625 878

2 1 142 54

2 2 660 197

With A and B each defined as factors,

glm(r/n ~ A+ B, family=binomial, weights=n)

found that the deviance was .00019, with 1 df, and the estimates for A(2), B(2) were respectively
−1.015(se = 0.0872), −0.3524(se = 0.0804), and “intercept” 0.5139(se = 0.687). What is the
model that is being fitted here? Does it fit well? How do you interpret the parameter estimates?
How would you compute the fitted values of r/n for A = 1, B = 1?
[ In the original data set, A and B correspond to race and sex respectively, and r/n was the observed
proportion of a certain type of success.]

Paper 2. 12D
(i) Suppose that the random variable Y has probability density function

f(y|θ, φ) = exp[(yθ − b(θ))/φ + c(y, φ)]

for −∞ < y <∞. Show that for −∞ < θ <∞, φ > 0

E(Y ) = b′(θ), var(Y ) = φb′′(θ).

(ii) Suppose that we have independent observations Y1, · · · , Yn and that we assume the model
ω : Yi is Poisson, parameter µi, and log(µi) = β0 + β1xi,
where x1, · · · , xn are given scalar covariates.
Find the equations for the maximum likelihood estimators β̂0, β̂1, and state without proof the

asymptotic distribution of β̂1.
If, for a particular Poisson model you found that the deviance obtained on fitting ω was 29.3,

where n = 35, what would you conclude?

Paper 4. 14D
Consider the linear regression

Y = Xβ + ε,

where Y is an n-dimensional observation vector, X is an n × p matrix of rank p, and ε is an
n-dimensional vector with components ε1, · · · , εn, where ε1, · · · , εn are normally and independently
distributed, each with mean 0 and variance σ2. We write this as ε ∼ Nn(0, σ

2In).

(a) Let β̂ be the least-squares estimator of β. Show that

β̂ = (XTX)−1XTY.
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(b) Define Ŷ = Xβ̂ and ε̂ = Y − Ŷ . Show that Ŷ may be written

Ŷ = HY,

where H is a matrix to be defined.
(c) Show that Ŷ is distributed as Nn(Xβ,Hσ

2), and ε̂ is distributed as Nn(0, (In −H)σ2).
(d) Show that if hi is defined as the ith diagonal element of H , then 0 ≤ hi ≤ 1, for i = 1, · · · , n.
(e) Why is hi referred to as the “leverage” of the ith point? Sketch a graph as part of your

answer.

Hint: You may assume that if the n-dimensional vector Z has the multivariate normal distri-
bution, mean µ, and covariance matrix V, so that we may write

Z ∼ Nn(µ, V ),

then for any constant q × n matrix A,

AZ ∼ Nq(Aµ,AV A
T ).
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Mathematical Tripos, Part IIA, 2000
I/13

(i) Consider the linear regression
Y = Xβ + ε,

where Y is an n-dimensional observation vector, X is an n × p matrix of rank p, and ε is an
n-dimensional vector with components ε1, · · · , εn. Here ε1, · · · , εn are normally and independently
distributed, each with mean 0 and variance σ2; we write this as ε ∼ Nn(0, σ

2In).

(a) Define R(β) = (Y −Xβ)T (Y −Xβ). Find an expression for β̂, the least squares estimator of

β, and state without proof the joint distribution of β̂ and R(β̂).

(b) Define ε̂ = Y −Xβ̂. Find the distribution of ε̂.
(ii) We wish to investigate the relationship between n, the number of arrests at football matches in
a given year, and a, the corresponding attendance (in thousands) at those matches, for the First
and Second Divisions clubs in England and Wales. Thus, we have data

(nij , aij) j = 1, · · · , Ni, i = 1, 2,

where N1 = 21 and N2 = 23. We fit the model

H0 : log(nij) = µ+ βlog(aij) + θi + εij j = 1, · · · , Ni, i = 1, 2,

with θ1 = 0, and we assume that the εij are distributed as independent N(0, σ2) random variables.
We find the following estimates, with standard errors given in brackets:
µ̂ = −0.9946(2.1490)

β̂ = 0.8863(0.3647)

θ̂2 = 0.5261(0.3401)
with residual sum of squares = 37.89(41df). The residual sum of squares if we fit H0 with β and
θ2 each set to 0 is 43.45.

Give an interpretation of these results, using an appropriate sketch graph.
How could you check the assumptions about the distribution of (εij)? What linear model would

you try next?

2/12
(i) Suppose that Y1, · · · , Yn are independent observations, with E(Yi) = µi, g(µi) = βTxi, where
g(·) is the known “link” function, β is an unknown vector of dimension p, and x1, ..., xn are given
covariate vectors. Suppose further that the log-likelihood for these data is `(β), where we may
write

`(β) =
(Σp1βνtν(y) − ψ(β))

φ
+ constant,

for some function ψ(β). Here t1(y), ..., tp(y) are given functions of the data y = (y1, · · · , yn), and
φ is a known positive parameter.
(a) What are the sufficient statistics for β?
(b) Show that E(tν(Y )) = ∂ψ

∂βν

, for ν = 1, ..., p.

(ii) With the same notation as in Part (i), find an expression for the covariance matrix of (t1(Y ), ..., tp(Y )),

and hence show that `(β) is a concave function. Why is this result useful in the evaluation of β̂,
the maximum likelihood estimator of β?
Illustrate your solution by the example

Yi ∼ Bi(1, µi)where 0 < µi < 1,

log
µi

(1 − µi)
= βxi, 1 ≤ i ≤ n,

with x1, ..., xn known covariate values, each of dimension 1. Your solution should include a state-
ment of the large-sample distribution of β̂.
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4/14
In an actuarial study, we have independent observations on numbers of deaths y1, ..., yn and we
assume that Yi has a Poisson distribution, with mean µiti, for i = 1, ..., n. Here (t1, .., tn) are given
quantities, for example “person-years at risk”.

(a) Find the maximum likelihood estimators µ̂1, ..., µ̂n.
(b) Now consider the model

ω : logµi = βTxi, 1 ≤ i ≤ n,

where x1, ..., xn are given vectors, each of dimension p. Derive the equations for β̂, the maximum
likelihood estimator of β, and briefly discuss the method of solution used by the function glm( )
in R to solve this equation.

(c) How is the deviance for ω computed ? If you found that this deviance took the value 27.3,
and you knew that n = 37, p = 4, what would you conclude about ω?

(d) Discuss briefly how your answers to the above are affected if the model ω is replaced by the
model

ωI : µi = βTxi, 1 ≤ i ≤ n.

Mathematical Tripos, Part IIA, 2001

1/13.
(i) Assume that the n-dimensional observation vector Y may be written as

Y = Xβ + ε ,

where X is a given n× p matrix of rank p, β is an unknown vector, and

ε ∼ Nn(0, σ
2I).

Let Q(β) = (Y −Xβ)T (Y −Xβ). Find β̂, the least-squares estimator of β, and show that

Q(β̂) = Y T (I −H)Y,

where H is a matrix that you should define.
(ii) Show that ΣiHii = p. Show further for the special case of

Yi = β1 + β2xi + β3zi + εi, 1 ≤ i ≤ n,

where Σxi = 0,Σzi = 0, that

H =
1

n
11T + axxT + b(xzT + zxT ) + czzT ;

here, 1 is a vector of which every element is one, and a, b, c, are constants that you should derive.
Hence show that, if Ŷ = Xβ̂ is the vector of fitted values, then

1

σ2
var(Ŷi) =

1

n
+ ax2

i + 2bxizi + cz2
i , 1 ≤ i ≤ n.

2/12
(i) Suppose that Y1, . . . , Yn are independent random variables, and that Yi has probability density
function

f(yi|θi, φ) = exp[(yiθi − b(θi))/φ+ c(yi, φ)].

Assume that E(Yi) = µi, and that g(µi) = βTxi, where g(.) is a known ‘link’ function, x1, . . . , xn
are known covariates, and β is an unknown vector. Show that

E(Yi) = b′(θi), var(Yi) = φb′′(θi) = Vi, say,
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and hence
∂l

∂β
=

∑

i

(yi − µi)xi
g′(µi)Vi

, where l = l(β, φ) is the log − likelihood.

(ii) The table below shows the number of train miles (in millions) and the number of collisions
involving British Rail passenger trains between 1970 and 1984. Give a detailed interpretation of
the R output that is shown under this table:

year collisions miles

1 1970 3 281

2 1971 6 276

3 1972 4 268

4 1973 7 269

5 1974 6 281

6 1975 2 271

7 1976 2 265

8 1977 4 264

9 1978 1 267

10 1979 7 265

11 1980 3 267

12 1981 5 260

13 1982 6 231

14 1983 1 249

Call:

glm(formula = collisions ~ year + log(miles), family = poisson)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 127.14453 121.37796 1.048 0.295

year -0.05398 0.05175 -1.043 0.297

log(miles) -3.41654 4.18616 -0.816 0.414

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 15.937 on 13 degrees of freedom

Residual deviance: 14.843 on 11 degrees of freedom

Number of Fisher Scoring iterations: 4

4/14
(i) Assume that the independent observations Y1, . . . , Yn are such that

Yi ∼ Binomial(ti, πi), and log
πi

1 − πi
= βTxi for 1 ≤ i ≤ n ,

where x1, . . . , xn are given covariates. Discuss carefully how to estimate β, and how to test that
the model fits.
(ii) Carmichael et al. (1989) collected data on the numbers of 5-year old children with “dmft”, i.e.
with 5 or more decayed, missing or filled teeth, classified by social class, and by whether or not
their tap water was fluoridated or non-fluoridated. The numbers of such children with dmft and
the total numbers, are given in the table below:

dmft

Social Class |Fluoridated Non-fluoridated

--------------|---------------------------

I | 12/117 12/56
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II | 27/170 48/146

III | 11/52 29/64

Unclassified | 24/118 49/104

A (slightly edited) version of the R output is given below. Explain carefully what model is being
fitted, whether it does actually fit, and what the parameter estimates and Std. Errors are telling
you. (You may assume that the factors SClass (social class) and Fl (with/without) have been
correctly set up.)

Call:

glm(formula = Yes/Total ~ SClass + Fl, family = binomial, weights = Total)

Coefficients:

Estimate Std. Error z value

(Intercept) -2.2716 0.2396 -9.480

SClassII 0.5099 0.2628 1.940

SClassIII 0.9857 0.3021 3.262

SClassUnc 1.0020 0.2684 3.734

Flwithout 1.0813 0.1694 6.383

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 68.53785 on 7 degrees of freedom

Residual deviance: 0.64225 on 3 degrees of freedom

Number of Fisher Scoring iterations: 3

Here ‘Yes’ is the vector of numbers with dmft, taking values 12, 12, . . . , 49, ‘Total’ is the vector
of Total in each category, taking values 117, 56, . . . , 118, 104 and SClass, Fl are the factors corre-
sponding to Social class and Fluoride status, defined in the obvious way.

P.M.E.Altham’s Part IIA Tripos questions, June 2002.
Computational Statistics and Statistical Modelling.

Question 1.
(i) Suppose Y1, . . . , Yn are independent Poisson variables, and

E(Yi) = µi , logµi = α+ βTxi , 1 ≤ i ≤ n

where α, β are unknown parameters, and x1, . . . , xn are given covariates, each of dimension p.
Obtain the maximimum likelihood equations for α, β, and explain briefly how you would check the
validity of this model.
(ii) The data below show y1, . . . , y33, which are the monthly accident counts on a major US highway
for each of 12 months of 1970, then for each of 12 months of 1971, and finally for the first 9 months of
1972. The data-set is followed by the (slightly edited) R output. You may assume that the factors
‘Year’ and ‘month’ have been set up in the appropriate fashion. Give a careful interpretation of
this R output, and explain
a) how you would derive the corresponding standardised residuals, and
b) how you would predict the number of accidents in October 1972.

52 37 49 29 31 32 28 34 32 39 50 63

35 22 27 27 34 23 42 30 36 56 48 40

33 26 31 25 23 20 25 20 36

>first.glm _ glm(y~ Year + month, poisson) ; summary(first.glm)

Call:

glm(formula = y ~ Year + month, family = poisson)
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.81969 0.09896 38.600 < 2e-16 ***

Year1971 -0.12516 0.06694 -1.870 0.061521 .

Year1972 -0.28794 0.08267 -3.483 0.000496 ***

month2 -0.34484 0.14176 -2.433 0.014994 *

month3 -0.11466 0.13296 -0.862 0.388459

month4 -0.39304 0.14380 -2.733 0.006271 **

month5 -0.31015 0.14034 -2.210 0.027108 *

month6 -0.47000 0.14719 -3.193 0.001408 **

month7 -0.23361 0.13732 -1.701 0.088889 .

month8 -0.35667 0.14226 -2.507 0.012168 *

month9 -0.14310 0.13397 -1.068 0.285444

month10 0.10167 0.13903 0.731 0.464628

month11 0.13276 0.13788 0.963 0.335639

month12 0.18252 0.13607 1.341 0.179812

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 101.143 on 32 degrees of freedom

Residual deviance: 27.273 on 19 degrees of freedom

Number of Fisher Scoring iterations: 3

Question 2.
(i) Suppose that the random variable Y has density function of the form

f(y|θ, φ) = exp
[yθ − b(θ)

φ
+ c(y, φ)

]

where φ > 0. Show that Y has expectation b′(θ) and variance φb′′(θ).
(ii) Suppose now that Y1, . . . , Yn are independent negative exponential variables, with Yi having
density function

f(yi|µi) = (1/µi)e
−yi/µi

for yi > 0. Suppose further that g(µi) = βTxi for 1 ≤ i ≤ n, where g( ) is a known ‘link’ function,
and x1, . . . , xn are given covariate vectors, each of dimension p. Discuss carefully the problem of
finding β̂, the maximum likelihood estimator of β, firstly for the case g(µi) = 1/µi, and secondly
for the case g(µi) = logµi.
(Any standard theorems used need not be proved.)

Paper 4 question.
Assume that the n−dimensional observation vector Y may be written as

Y = Xβ + ε

where X is a given n× p matrix of rank p, β is an unknown vector, with βT = (β1, . . . , βp), and

ε ∼ Nn(0, σ
2I) ∗

where σ2 is unknown. Find β̂, the least-squares estimator of β, and describe (without proof) how
you would test

H0 : βν = 0
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for a given ν.
Indicate briefly two plots that you could use as a check of the assumption *.
Sulphur dioxide is one of the major air pollutants. A data-set presented by Sokal and Rohlf (1981)
was collected on 41 US cities in 1969-71, corresponding to the following variables:
Y = Sulphur dioxide content in micrograms per cubic metre
X1 = average annual temperature in degrees Fahrenheit
X2 = number of manufacturing enterprises employing 20 or more workers
X3 = population size (1970 census) in thousands
X4 = Average annual wind speed in miles per hour
X5 = Average annual precipitation in inches
X6 = Average annual number of days with precipitation per year.
Interpret the R output that follows below, quoting any standard theorems that you need to use.

>next.lm <- lm(log(Y) ~ X1 + X2 + X3 + X4 + X5 + X6)

>summary(next.lm)

Call:

lm(formula = log(Y) ~ X1 + X2 + X3 + X4 + X5 + X6)

Residuals:

Min 1Q Median 3Q Max

-0.79548 -0.25538 -0.01968 0.28328 0.98029

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.2532456 1.4483686 5.008 1.68e-05 ***

X1 -0.0599017 0.0190138 -3.150 0.00339 **

X2 0.0012639 0.0004820 2.622 0.01298 *

X3 -0.0007077 0.0004632 -1.528 0.13580

X4 -0.1697171 0.0555563 -3.055 0.00436 **

X5 0.0173723 0.0111036 1.565 0.12695

X6 0.0004347 0.0049591 0.088 0.93066

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

Residual standard error: 0.448 on 34 degrees of freedom

Multiple R-Squared: 0.6541

F-statistic: 10.72 on 6 and 34 degrees of freedom,p-value: 1.126e-06

Notes for solution on the R output.

Here, we are fitting
log(Yi) = µ+ β1X1i + . . .+ β6X6i + εi

for i = 1, . . . , 41 with the usual assumption that εi ∼ NID(0, σ2).
We see that R2 = 0.6541 (not a bad fit, but still a lot of scatter). Note that R2 = (ss due to
regression)/(“total” ss),
and the F-statistic of 10.72 is closely related to this: specifically
F-statistic = [(ss due to regression)/6]/[(residual ss)/34],
and if the null hypothesis H : β1 = . . . = β6 = 0 is true, this quantity has the distribution F , with
6, 34 degrees of freedom. Evidently 10.72 is well out in the right-hand tail of this F− distribution,
the corresponding p-value is tiny (1.126e− 06 in fact, and we don’t need this ridiculous accuracy,
but that’s computers for you.)
We reject the hypothesis H .
More interestingly, we can assess the significance of each of the coefficients β1, . . . , β6 in turn, from
the corresponding t−values. For example, for β1,
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the t-value is −0.0599017/0.0190138 = −3.150).
We see that β3, β5, β6 can probably be dropped from the model.
Note that because the parameters are almost certainly non-orthogonal, when we fit

lm(log(Y) ~ X1 + X2 + X4)

which would be the natural next step in the fitting process, our estimates for β1, β2, β4 may change
quite markedly (and so too will their se’s, generally reducing a bit).
It appears that (back in 1969-71) the amount of pollution (sulphur dioxide)
decreased as the average annual temperature increased,
increased as the amount of industry increased,
and decreased as the wind speed increased.
When these 3 variables are taken into account, the other 3 variables (namely population size, total
rainful p.a., and total number of rainy days p.a.) have no significant effect.
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Part IIA, June 2003.
Paper 1, number 13.
(i) Suppose Yi, 1 ≤ i ≤ n, are independent binomial observations, with Yi ∼ Bi(ti, πi), 1 ≤ i ≤ n,
where t1, . . . , tn are known, and we wish to fit the model

ω : log(πi/(1 − pii)) = µ+ βTxi, for each i,

where x1, . . . , xn are given covariates, each of dimension p. Let µ̂, β̂ be the maximum likelihood
estimators of µ, β. Derive equations for µ̂, β̂ and state without proof the approximate distribution
of β̂.
(ii) In 1975, data were collected on the 3-year survival status of patients suffering from a type of
cancer, yielding the following table

survive?

age in years malignant yes no

under 50 no 77 10

under 50 yes 51 13

50-69 no 51 11

50-69 yes 38 20

70+ no 7 3

70+ yes 6 3

Here the second column represents whether the initial tumour was no malignant or was malignant.
Let Yij be the number surviving, for age group i and malignancy status j, for i = 1, 2, 3 and
j = 1, 2, and let tij be the corresponding total number. Thus Y11 = 77, t11 = 87. Assume
Yij ∼ Bi(tij , πij , 1 ≤ i ≤ 3, 1 ≤ j ≤ 2. The results from fitting the model

log(πij/(1 − πij)) = µ+ αi + βj

with α1 = 0, β1 = 0 give β̂2 = −0.7328(se = 0.2985), and deviance = 0.4941. What do you
conclude?
Why do we take α1 = 0, β1 = 0 in the model?
What “residuals” should you compute, and to which distribution would you refer them?

Paper 2, number 12.
(i) Suppose Y1, . . . , Yn are independent Poisson variables, and

E(Yi) = µi, log(µi) = α+ βti, for i = 1, . . . , n,

where α, β are two unknown parameters, and t1, . . . , tn are given covariates, each of dimension 1.
Find equations for α̂, β̂, the maximum likelihood estimators of α, β, and show how an estimator of
var(β̂) may be derived, quoting any standard theorems you may need.
(ii) By 31 December 2001, the number of new vCJD patients, classified by reported calendar year
of onset, were

8, 10, 11, 14, 17, 29, 23

for the years
1994, . . . , 2000 respectively.

Discuss carefully the (slightly edited) R output for these data given below, quoting anay standard
theorems you may need.

> year

[1] 1994 1995 1996 1997 1998 1999 2000

> tot

[1] 8 10 11 14 17 29 23

> first.glm <- glm(tot ~ year, family=poisson)
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> summary(first.glm)

Call:

glm(formula = tot ~ year, family = poisson)

Coefficients:

Estimate Std.Error z-value Pr(>|z|)

(Intercept) -407.81284 99.35709 -4.105 4.05e-05

year 0.20556 0.04973 4.133 3.58e-05

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 20.7753 on 6 degrees of freedom

Residual deviance: 2.7931 on 5 degrees of freedom

Notes for solution on the R output.

Here we are fitting the model Yi ∼ Po(µi), independent, with Yi as the total for yeari and we
assume that

ω : log(µi) = µ+ β × yeari

for i = 1, . . . , 7. The log-link is of course the default link for the Poisson, since it is the canonical
link.
The null deviance, which is the deviance when we fit ω with β = 0, is 20.77: refer this to χ2 with
6 df (and recalling that this distribution has expectation = its df), we see that this is a terrible fit.
But, the deviance when fitting ω is only 2.7931, which is well below the expected value (2) of χ2

with 2 df, so we infer that ω fits well.
β̂ = .2055(se = .04973) and so we compute the corresponding z-value as
.2055/.04973 = 4.133 and refer this to the N(0, 1) distribution: the p-value given in the table shows
us what we know already, that 4.133 is WAY out in the tail of N(0, 1). We reject the hypothesis
β = 0 in favour of β > 0, and conclude that the incidence of this illness has increased significantly
from 1994 to 2000. (We can also see that µ < 0, but that is less interesting.)
It would be very easy to predict the number of cases in say, 2001, as exp(µ+ β × 2001), replacing
the parameters by their estimates.
The reason why the output says
‘(Dispersion parameter for poisson family taken to be 1)’
is because, in the general glm formulation, we take φ = 1 for the Poisson. This has the effect that

E(Yi) = µi, var(Yi) = φµi

with φ = 1: we might prefer a less stringent model, in which we use the data to estimate φ, but in
fact that is not necessary for this particular dataset, since ω fits so well.
(I note that the separate figures for men and women, not given here, show a significant gender

effect (men have a higher incidence than women) but, in the interests of going for a quiet life, I
thought it politically inadvisable to include this in the examination question.)

Paper 4, number 14
The nave height, x and the nave length, y, for 16 Gothic-style cathedrals and 9 Romanesque-style
cathedrals, all in England, have been recorded, and the corresponding R output (slightly edited)
is given below.

> first.lm <- lm(y~x + Style); summary(first.lm)

Call:

lm(formula = y ~ x + Style)



P.M.E.Altham 22

Residuals:

Min 1Q Median 3Q Max

-172.67 -30.44 20.38 55.02 96.50

Coefficients:

Estimate Std.Error t-value Pr(>|t|)

(Intercept) 44.298 81.648 0.543 0.5929

x 4.712 1.058 4.452 0.0002

Style2 80.393 32.306 2.488 0.0209

Residual standard error: 77.53 on 22 degrees of freedom

Multiple R-Squared: 0.5384

You may assume that x, y are in suitable units, and that ‘Style’ has been set up as a factor with
levels 1, 2 corresponding to Gothic, Romanesque respectively.
(a) Explain carefully, with suitable graph(s) if necessary, the results of this analysis.
(b) Using the general model Y = Xβ+ε (in the conventional notation) explain carefully the theory
needed for (a).
[Standard theorems need not be proved.]

Notes for solution on the R output.

We are fitting the model
yij = µ+ βxij + θi + εij

where we take i = 1, 2 corresponding to Gothic, Romanesque, respectively,
j = 1, . . . , ni,
θ1 = 0 for parameter identifiability (the default constraint in R), and
εij ∼ N(0, σ2) independently, with σ2 unknown.
The R output shows us that
i) R2 = 0.5384: this is the (ss due to regression)/(”total” ss), and it would be 1 for a perfect fit.
So this model does not fit very well (and to investigate this further in practice we would look at
the residuals: note that
residual = observed value - fitted value.
It may be that the lack of fit is caused by one or two ‘anomalous’ cathedrals: this could be
interesting if so, but the question does not provide us with the data on this point, so we can’t tell.
ii) The parameter estimates are, say, µ̂, β̂, θ̂2 and these are
44.298(81.648), 4.712(1.058), 80.393(32.306)
(the corresponding standard error being given in brackets). To test, for example, whether
θ2 = 0 (ie no difference in the intercepts for the 2 Styles), we refer
80.393/32.306 = 2.488 to the t-distribution with 22 df. Note that 22= total number of observations
- 3, and we are fitting 3 parameters in the model. Conveniently, R tells us the corresponding 2-tail
probability: it is .0209, so well below .05, thus at level .05, we reject the hypothesis θ2 = 0.
The appropriate sketch graph is of y against x: two parallel lines, of slope 4.712, with the line for
Romanesque above that of Gothic. (Don’t ask me to explain this in terms of cathedral architecture,
but someone must know why this is.)
iii) Our estimate of σ2 is (residual ss)/df, and here this gives us
σ̂ = 77.53.
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Part IIA, June 2004.
Paper 2, q12
(i) Suppose we have independent observations Y1, . . . , Yn, and we assume that for i = 1, . . . , n, Yi
is Poisson with mean µi, and log(µi) = βTxi, where x1, . . . , xi are given covariate vectors each of
dimension p, where β is an unknown vector of dimension p, and p < n. Assuming that {x1, . . . , xn}

span Rp, find the equation for β̂, the maximum likelihood estimator of β, and write down the large-
sample distribution of β̂.
(ii) A long-term agricultural experiment had 90 grassland plots, each 25m × 25m, differing in
biomass, soil pH, and species richness (the count of species in the whole plot). While it was
well-known that species richness declines with increasing biomass, it was not known how this
relationship depends on soil pH, which for the given study has possible values ‘low’, ‘medium’ or
‘high’, each taken 30 times. Explain the commands input, and interpret the resulting output in
the (slightly edited) R output below, in which ‘species’ represents the species count.
(The first and last 2 line of the data are reproduced here as an aid. You may assume that the
factor pH has been correctly set up.)

> species

pH Biomass Species

1 high 0.46929722 30

2 high 1.73087043 39

.......................

.......................

89 low 4.36454121 7

90 low 4.87050789 3

> summary(glm(Species ~Biomass, family = poisson))

Call:

glm(formula = Species ~ Biomass, family = poisson)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.184094 0.039159 81.31 < 2e-16

Biomass -0.064441 0.009838 -6.55 5.74e-11

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 452.35 on 89 degrees of freedom

Residual deviance: 407.67 on 88 degrees of freedom

Number of Fisher Scoring iterations: 4

> summary(glm(Species ~pH*Biomass, family = poisson))

Call:

glm(formula = Species ~ pH * Biomass, family = poisson)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.76812 0.06153 61.240 < 2e-16

pHlow -0.81557 0.10284 -7.931 2.18e-15

pHmid -0.33146 0.09217 -3.596 0.000323

Biomass -0.10713 0.01249 -8.577 < 2e-16

pHlow:Biomass -0.15503 0.04003 -3.873 0.000108

pHmid:Biomass -0.03189 0.02308 -1.382 0.166954

(Dispersion parameter for poisson family taken to be 1)
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Null deviance: 452.346 on 89 degrees of freedom

Residual deviance: 83.201 on 84 degrees of freedom

Number of Fisher Scoring iterations: 4


