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Preface

These three Examples Sheets, and their solutions, have been built up from
1992, when I first gave this lecture course, to 2005, when I gave it for the
last time. I am grateful to many users, particularly undergraduates, for their
comments and questions. There is some overlap between these examples and
the examples in my lecture notes. An expanded version of these notes may be
seen at http://www.statslab.cam.ac.uk/~pat/All.pdf
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Chapter 1

Example Sheet 1

1.1 Example Sheet 1: questions

(This is meant to be a very easy sheet, to get you started.)

1. Suppose X1, . . . , Xn are i.i.d. Poisson random variables with parameter µ.
Show that µ̂ = ΣXi/n, and var (µ̂) = µ/n.
What is

E(−∂
2L

∂µ2
)?

What is the exact distribution of (nµ̂)? What is the asymptotic distribution of
µ̂?
2. Suppose we have n independent trials, and the outcome of each trial is
Red with probability θ1,
or White with probability θ2,
or Blue with probability θ3,
where θ1 + θ2 + θ3 = 1.
Let (X,Y, Z) be the total number of (Red, White, Blue) trials in the sequence
of n; write X =

∑n
1 Xi, Y =

∑n
1 Yi for suitably defined (Xi, Yi).

Find E(X), var (X), and show that

cov (X,Y ) = −nθ1θ2.

Find
(θ̂1
θ̂2

)
, and find the mean vector, and covariance matrix, of its asymptotic

distribution (which is of course bivariate normal).
3. Suppose Yi independent Poisson, mean µi, and our model is

H : log(µi) = α+ βxi

where (xi) are given.
Write down the log likelihood log f(y|α, β) and hence find
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(i) the sufficient statistics for (α, β);

(ii) equations for (α̂, β̂), the maximum likelihood estimator (mle), and
(iii) an expression for

max
β=0

f(y|α, β).

Show how you would use this, together with Wilks’ theorem, to test
H0 : β = 0.
4. Suppose

f(yi|β) = (1/2) exp−|yi − β|, −∞ < yi <∞.

Let L(β) =
∑n

1 log f(yi|β). Sketch this as a function of β, and hence find an ex-

pression for β̂, the mle, given that the ordered observations are y(1) < . . . < y(n).

What is ∂L
∂β ?

5. Suppose f(yi|θ) = θe−θyi , yi > 0, 1 ≤ i ≤ n.
Show that this is an exponential family form distribution, with natural param-
eter π = −θ. Find the sufficient statistic and its distribution, and find the mle
for each of π, θ.
6. Suppose f(yi|α, β) is the pdf of N(α + βxi, σ

2), where σ2 is known, and
x1, . . . , xn are known. Show that the loglikelihood function Ln(α, β) is a con-
cave function of (α, β).
7. Suppose

f(yi|θ) =
1√
2πθ

exp−y2i /2θ,

for i = 1, . . . , n. Show that the mle of θ is θ̂ = 1/n
∑n

1 y
2
i , and that nθ̂

θ ∼ χ
2
n.

Find the exact mean and variance of θ̂, and compare these with the asymptotic
mean and variance obtained from general likelihood theory.
8. Suppose Yi ∼ Bi(1, πi) independent, (i = 1, . . . , n) (i.e. P (Yi = 1) = πi,
P (Yi = 0) = 1− πi). Suppose also log(πi/(1− πi)) = α+ βxi, where x1, . . . , xn
are given.
Write down Ln(α, β), the loglikelihood function, and find equations for (α̂, β̂)
the mle of (α, β).
9. Suppose Yi ∼ NID(β1 + β2xi + β3P2(xi), σ

2), 1 ≤ i ≤ n, where Σxi = 0 and
P2(xi) is a given quadratic function of xi such that

ΣP2(xi) = ΣxiP2(xi) = 0.

Find
∂`

∂β
,

∂2`

∂β∂βT
and E

∂2`

∂β∂βT
.

Find β̂3 and var (β̂3), and show how you would test H0 : β3 = 0, when σ2 is
known.
If P2(xi) = x2i + axi + b, find expressions for a, b in terms of (xi). Can you see
any advantages in fitting the model with

E(Yi) = β1 + β2xi + β3P2(xi)
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as above rather than the model written as

E(Yi) = β1 + β2xi + γx2i

say?
(The purpose of this question is to introduce you to ORTHOGONAL polyno-
mials.)
10. Suppose Yi ∼ Bi(ni, pi), 1 ≤ i ≤ k, independent, and g(pi) = α+βxi where
g(·) is a known link function. Write down

∂`

∂α
,
∂`

∂β
.

Write down the sufficient statistics for (α, β)
(i) if g(p) = log(p/(1− p)) (link=logit)
(ii) if g(p) = log(− log(1− p)) (link= cloglog).

1.2 Solutions to Example Sheet 1

1. The likelihood is
f(x|µ) = Πe−µ µxi/xi!

giving the loglikelihood as

L = log(f(x|µ)) = −nµ+ Σxi log(µ) + constant.

Hence
∂L

∂µ
= −n+ Σxi/µ

and
∂2L

∂µ2
= −Σ xi/µ

2 ( < 0)

so that L is maximised at
µ̂ = Σxi/n.

Clearly E(Xi) = µ = var(Xi). Thus E(µ̂) = µ

and var(µ̂) = µ/n, and

−E∂
2L

∂µ2
= n/µ.

The exact distribution of µ̂n = ΣXi is Po(nµ).
The asymptotic distribution of µ̂, by the Central Limit Theorem, is N(µ, µ/n).
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2. (This is the 3-cell multinomial distribution). With

f(x, y, z|θ) = n!
θx1θ

y
2θ
z
3

x!y!z!

for x, y, z = 0, 1, 2..., and x + y + z = n , we have X = ΣXi say, where Xi=1
if ith trial results in a Red, and Xi =0, otherwise, Y = ΣYi, and Yi = 1 if ith
trial results in a White, Yi=0 otherwise.
Clearly, P (Xi = 1) = θ1, and X is Bi(n,θ1)
so that var(X)= nθ1(1− θ1), E(X) = nθ1.
Further

cov(X,Y ) = Σcov(XiYi) = n(E(X1Y1)− E(X1)E(Y1)).

Clearly, E(X1Y1) = 0, so cov(X,Y ) = −nθ1θ2.
Now

L = logf(x, y|θ) = xlog(θ1) + ylog(θ2) + zlog(θ3) + constant

which is maximised subject to θ1 + θ2 + θ3 =1 (use a Lagrange multiplier)

by θ̂1 = x/n, θ̂2 = y/n, θ̂3 = z/n.

Hence E(θ̂i) = θi for i = 1, 2, 3 . Now

∂L(θ)

∂θ1
= (x/θ1)− (z/θ3)

∂L(θ)

∂θ2
= (y/θ2)− (z/θ3).

Hence minus the matrix of 2nd derivatives of L is(
x/θ21 + z/θ23 z/θ23

z/θ23 y/θ22 + z/θ23

)
Substituting for E(x),E(y),E(z), we see that the expectation of the above matrix
is (

n(1− θ2)/θ1θ3 n/θ3
n/θ3 n(1− θ1)/θ2θ3

)
.

It now remains for you to check that the inverse of this 2× 2 matrix is(
θ1(1− θ1)/n −θ1θ2/n
−θ1θ2/n θ2(1− θ2)/n

)
.

This is what the general formula for the asymptotic covariance matrix gives
us. In this case, it agrees exactly with the exact covariance matrix.

3.(i)
With f(yi|µi) proportional to e−µiµi

yi

and µi = exp(α+ βxi) we see that the likelihood for (α, β) is proportional to

[exp− Σeα+βxi ]exp [α t1 + β t2]
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where t1 is defined as Σyi , and t2 as Σxiyi.
Hence, by the factorisation theorem, (t1, t2) are sufficient for (α, β).
The log likelihood is

L(α, β) = −Σeα+βxi + α t1 + β t2 + constant.

ii)Thus
∂L

∂α
= 0 for t1 = Σeα+βxi

∂L

∂β
= 0 for t2 = Σxie

α+βxi .

These are the equations for (α̂, β̂). To verify that this is indeed the max-
imum, we should check that (minus the matrix of 2nd derivatives) is

positive- definite at (α̂, β̂).

The equations for (α̂, β̂) do not have an explicit solution, but we could solve

them iteratively to find (α̂, β̂), and hence we could evaluate the maximum of L.
iii) Now, if β = 0, L(α, β) = −Σeα + α t1 . It is easily seen that this is max-
imised with respect to α by α∗ say, where α∗ = log(t1/n).
We know, by Wilks’ theorem,that to test H0 : β = 0 against H1 : β arbitrary,
we should refer

2[L(α̂, β̂)− L(α∗, 0)] to χ2
1.

4.(An example of how things can be tricky when we are not in the glm family).

logf(y|β) = −
∑
|yi − β|+ constant = −g(β) + constant say.

Defining y(1), ..., y(n) as the ordered sample values, as instructed in the question,
we see that

g(β) =
∑

(y(i) − β) for β < y(1)

(this is a straight line of slope − n)

g(β) = −(y(1) − β) +
∑
2

n
(y(i) − β) for y(1) < β < y(2)

(this is a straight line of slope − (n+ 2))
and so on....
Finally,

g(β) =
∑
1

n
(β − y(i)), for β > y(n)

This is a straight line of slope n. Thus, sketching −g(β) we see that the log-
likelihood function is concave in shape, consisting of straight line segments, and

if n is odd, say n = 2m+ 1, then β̂ = y(m+1),

if n is even, say n = 2m, then β̂ is anywhere between y(m) and y(m+1) .
∂L/∂β is of course not defined at y(1), ..., y(n) .
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Otherwise it is the slope of the appropriate linear segment.
In this example we could find the asymptotic distribution of β̂ by going back

to first principles (it would make for quite a tough exercise). But we CANNOT
find it by quoting the general theorem for the asymptotic distribution of mle’s:
the appropriate regularity conditions do not hold.

5. f(y|θ) = θnexp−θ Σyi
which is of exponential family form, with
t(y) = Σyi as our sufficient statistic, having gamma(n, θ) distribution,
and loglikelihood L = n logθ − θΣyi. Thus
∂L/∂θ = n/θ − t(y).

Hence θ̂ = n/t(y), and π̂ = −n/t(y) .

6. logf(y|α, β) = −Σ(yi − α− β xi)2/2σ2 + constant = Ln(α, β) say.
Now find [minus the matrix of 2nd derivatives] : show that it is positive-definite.
Hence Ln(α, β) is a concave function.

7. Ln(θ) = −(n/2)log(θ)− Σy2i /(2θ) + constant.
Thus

∂L/∂θ = −(n/2θ) + Σy2i /(2θ
2)

Hence
θ̂ = Σy2i /n

and
nθ̂/θ = Σy2i /θ,

where yi/
√
θ are NID(0, 1).

Hence nθ̂/θ is dist’d as χ2
n hence has mean n, variance 2n.

Thus E(θ̂) = θ, as we would hope.
Now,

∂2L

∂θ2
= n/(2θ2)− Σ(y2i /θ

3)

giving

E(−∂
2L

∂θ2
) = n/(2θ2).

So the asymptotic variance of θ̂ is (2θ2)/n, which is the same as the exact
variance.

8. With Yi independent Bi(1, πi) as given, we see that

f(y|α, β) = Ππi
yi(1− πi)1−yi
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Hence,
Ln(α, β) = Σyi log(πi/(1− πi))− Σlog(1− πi)

Substituting for (πi) gives

Ln(α, β) = Σ(α+ β xi)yi − Σlog(1 + eα+β xi)

thus,
Ln(α, β) = α y+ + β Σxiyi − Σlog(1 + eα+β xi)

Hence we can write down the equations

∂Ln/∂α = 0, ∂Ln/∂β = 0.

Observe that there is no closed form solution to these equations. We can only
find the mle’s by an iterative solution.

9. With Yi distributed as NID(β1 + β2xi + β3P2(xi), σ
2)

where Σxi = 0,ΣP2(xi) = 0,ΣxiP2(xi) = 0
we see that the loglikelihood is l(β) + constant, where

l(β) = −Σ(yi − β1 − β2 xi − β3 P2(xi))
2/2σ2.

This gives

∂l/∂β1 = Σ(yi − β1 − β2 xi − β3 P2(xi))/σ
2 = Σ(yi − β1)/σ2.

Similarly,
∂l/∂β2 = Σxi(yi − β2xi)/σ2

∂l/∂β3 = ΣP2(xi) (yi − β3P2(xi))/σ
2.

Hence
∂2l

∂β∂βT
= (−1/σ2) diag(n,Σx2i ,Σ(P2(xi))

2)

= E(∂2l/∂β∂βT ).

Solving ∂l/∂β = 0, gives β̂, in particular

β̂3 = Σyi P2(xi)/Σ(P2(xi))
2.

Now, since E(Yi) = β1 + β2xi + β3P2(xi), we can see that

E(β̂3) = β3.
Further, Yi are NID, each with variance σ2, hence
β̂3 has variance σ2/Σ(P2(xi))

2, and is normally distributed.
We can test H0 : β3 = 0 , by referring
β̂3/
√

(its variance) to N(0, 1) .
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Given P2(xi) = xi
2 + a xi + b, we find a, b by solving the pair of equations

Σ(xi
2 + a xi + b) = 0,Σ(xi

2 + a xi + b)xi = 0

giving
Σx2i + n b = 0,Σx3i + a Σx2i = 0.

The advantage of parametrising the model in ths way is that the parameters
β1, β2, β3 are orthogonal. Thus for example, if we want to fit

E(Yi) = β1 + β2 xi

we find that the least squares estimators for β1, β2 are the same as in the full
model, ie the same as they were when we included the term β3 .

10. We may write

l(α, β) = Σyilog(pi/(1− pi)) + Σnilog(1− pi)

from which we may find the expressions for the partial derivatives; for general
link function g( ) these do not simplify.
i) The sufficient statistics for (α, β) for the logit link are

(Σyi,Σyixi).

The logit link is of course the canonical link for the binomial distribution.
ii) For the complementary log log link, there is no reduction in dimensionality
from n for the sufficient statistics: we will still need the original data (yi, xi) to
construct the likelihood function.



Chapter 2

Example Sheet 2

2.1 Example Sheet 2: questions

1. If Yi are independent Poisson, means expβTxi, 1 ≤ i ≤ n, how would you
evaluate β̂ and its asymptotic covariance matrix? What does ‘scale parameter
taken as 1.000’ mean in the corresponding glm output?
2 * If the loglikelihood can be written

`(β) = (βT t− ψ(β))/φ where φ > 0,

and t = t(y) is a p-dimensional vector, show that the covariance matrix of t(y)
is

φ

(
+∂2ψ

∂β∂βT

)
and hence that `(β) is a strictly concave function of β. What is the practical
application of this result in estimation of β? Illustrate your answer for either
the binomial or the Poisson distribution.
3. We can say that an asymptotic 90 % confidence region for β̂ is derived from

(β̂ − β)T (V (β̂))−1(β̂ − β) ∼ χ2
p (approximately).

Show that if p = 2, the resulting region is an ellipse, and finds its equation in
the case where

∂2`

∂β1∂β2
≡ 0 .

Why is the remark
∫∞
c
e−xdx = e−c relevant in this context?

4. In the least-squares fit of the model

yij = µ+ θi + εij , 1 ≤ j ≤ ni, 1 ≤ i ≤ t

with θ1 = 0 (i.e. the glm constraint), and the usual assumption that εij are
NID(0, σ2), show that

µ̂ = y1+/n1, θ̂i = −y1+/n1 + yi+/ni (i 6= 1)

11
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and

var (θ̂i) = σ2

(
1

n1
+

1

ni

)
(i 6= 1).

Find cov (θ̂i, θ̂`) for i 6= `, (i, ` 6= 1). (Here yi+ is defined as
∑ni

j=1 yij).
Show that the ‘fitted value’ of yij is yi+/ni, for i = 1, . . . , t.
Hint: it’s easier to do the algebra with the ‘sum to zero’ constraint,
and then transform back to the ‘corner-point’ constraint’.
5. In the least-squares fit of the model

yijk = µ+ αi + βj + εijk, 1 ≤ k ≤ r, 1 ≤ i ≤ I, 1 ≤ j ≤ J

with α1 = 0, β1 = 0, and the usual assumption that εijk are NID(0, σ2), show
that, for i 6= 1,

α̂i =
1

Jr
(
∑
j,k

yijk −
∑
j,k

y1jk),

with the corresponding expression for β̂j . How is your answer affected if the
condition 1 ≤ k ≤ r is replaced by the condition 1 ≤ k ≤ rij?
6. Why would you expect, in an experiment with IJ observations, that the
model

yij = µ+ αi + βj + γij + εij ,

where
εij ∼ NID(0, σ2), 1 ≤ i ≤ I, 1 ≤ j ≤ J

gives a perfect fit to the data (i.e. zero deviance)?
7. In the usual model

Y = Xβ + ε

with εi ∼ NID(0, σ2) explain why displaying the estimated covariance matrix

of β̂ is a method of finding out about (XTX)−1.
8. The data-set below is taken from the Minitab student Handbook(1976) by
Ryan,T., Joiner, B. and Ryan, B. and is also discussed in the book by Aitkin et
al. (See Chapter 3 of the book.) For the 31 cherry trees, the table below shows
d, h, v. These are defined by d is the diameter (in inches), at a height of 4.5 feet
from the ground, h is the height (in feet) of the trees, v is the volume of useable
wood, in cubic feet.

Reminder: 1 foot= 12 inches.
This is one of the datasets already in R: try

data(trees); attach(trees); trees[1,]

(but you need to take ‘Girth’ as d, which is confusing, I know).
The order is (d, h, v).

8.3 70 10.3, 8.6 65 10.3, 8.8 63 10.2, 10.5 72 16.4,

10.7 81 18.8, 10.8 83 19.7, 11.0 66 15.6, 11.0 75 18.2,

11.1 80 22.6, 11.2 75 19.9, 11.3 79 24.2, 11.4 76 21.0,



P.M.E.Altham 13

11.4 76 21.4, 11.7 69 21.3, 12.0 75 19.1, 12.9 74 22.2,

12.9 85 33.8, 13.3 86 27.4, 13.7 71 25.7, 13.8 64 24.9,

14.0 78 34.5, 14.2 80 31.7, 14.5 74 36.3, 16.0 72 38.3,

16.3 77 42.6, 17.3 81 55.4, 17.5 82 55.7, 17.9 80 58.3,

18.0 80 51.5, 18.0 80 51.0, 20.6 87 77.0.

Take lv = log(v), with ld, lh defined similarly.
Verify that the following models give the estimates (with se’s) and deviances
below, and discuss the fit of these models.

M0 : E(lv) = µ

for which
µ̂ = 3.273(0.0945)

and deviance = 8.3087(df = 30);

M1 : E(lv) = µ+ β ld

for which
µ̂ = −2.353(0.2307), β̂ = 2.200(0.0898)

and deviance= 0.38324(df = 29);

M2 : E(lv) = µ+ β ld+ γ lh

for which

µ̂ = −6.632(0.7998), β̂ = 1.983(0.0750), γ̂ = 1.117(0.2044)

and deviance= 0.18546(df = 28);

M3 : E(lv) = µ+ γ lh

for which
µ̂ = −13.96(3.755), γ̂ = 3.982(0.8677)

and deviance= 4.8130(df = 29).
What are the numerical consequences of the non-orthogonality of the parameters
β, γ?
The volume of a cylinder of length `, diameter d, is (πd2`)/4, and the volume
of a cone of height ` and base diameter d is (πd2`)/12. Are these cherry trees
more like cylinders than cones?
9. ‘The Independent’ (21/12/88) gave the ‘League Table of football-related
arrests’, printed in the table below. This list details a total of 6147 football-
related arrests in the 1987-8 season, and is compiled by the Association of Chief
Constables. It does not differentiate between Home-fans and Away-fans.
There are 4 Divisions (with Division 1 containing the best clubs) and these have
21, 23, 24 and 24 clubs respectively, each Division corresponding to a pair of
columns in the Table below.
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The columns below give (a, n) where
a= attendance, in thousands, and
n= number of arrests,
for each of the 4 soccer divisions, with the order (reading across the rows) being
(a, n) for Division 1, (a, n) for Division 2, (a, n) for Division 3, (a, n) for Division
4.
YOU ARE NOT INTENDED TO TYPE IN THIS DATA: ASK ME TO EMAIL
THE SET TO YOU.

a1 n1 a2 n2 a3 n3 a4 n4

325 282 404 308 116 99 71 145

409 271 286 197 401 80 227 132

291 208 443 184 105 72 145 90

350 194 169 149 77 66 56 83

598 153 222 132 63 62 77 53

420 149 150 126 145 50 74 46

396 149 321 110 84 47 102 43

385 130 189 101 128 47 39 38

219 105 258 99 71 39 40 35

266 91 223 81 97 36 45 32

396 90 211 79 205 34 53 29

343 86 215 78 106 32 51 28

518 74 108 68 43 28 51 27

160 49 210 67 59 22 115 21

291 43 224 60 88 22 52 21

783 38 211 57 226 21 67 21

792 33 168 55 61 21 52 17

314 32 185 44 91 21 52 17

556 24 158 38 140 20 72 15

174 14 429 35 85 18 49 12

162 1 226 29 127 11 101 10

NA NA 150 20 59 5 90 8

NA NA 148 19 87 4 50 5

NA NA NA NA 79 3 41 0

Let (nij , aij) be the observations for the ith club of the jth Division, for j =
1, ..., 4.
Making the standard assumption that the errors are NID(0, σ2) consider how
to fit the following models in R or Splus, and sketch graphs to show what these
models represent:
a) E(nij) = µ,
b) E(nij) = µ+ α aij ,
c) E(nij) = µ+ βj + α aij ,
d) E(nij) = µ+ βj + αj aij .
You will find that the deviances for these 4 models are, respectively
371056(91df), 296672(90df), 272973(87df), 241225(84df).
Now plot n against a. What do you conclude about your assumption of constant
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error variances?
Now repeat the model-fitting exercise with n, a replaced by log(n), log(a).
Can you now think of a way of identifying certain clubs as ‘rogues’, or indeed
as ‘saints’ within their Division?
10. The data-set below which is also discussed by Agresti (1995, p101) is based
on a study of British doctors by R.Doll and A.B.Hill(1966) and gives the number
of coronary deaths for smokers and non-smokers, for each of 5 different age-
groups, with the corresponding ‘person-years’, ie the total time at risk. Thus
for example, in the youngest age-group, in the non-smoking category, the total
time at risk was 18793 years, and during this time there were 2 coronary deaths
in this particular class. The age-groups are 35-44, 45-54, 55-64, 65-74, 75-84
years.
Define dij as the number of deaths in age group i, smoking group j, where
i = 1, . . . , 5, j = 1, 2 with j = 1 for non-smokers, j = 2 for smokers. Assume
that (dij) are distributed as independent Poisson variables, with E(dij) = µij
and µij = θijpij where pij = total person-years at risk, for age i, smoking group
j. Hence log(µij) = log(θij) + log(pij) for all i, j. This is why we take log(pij)
as the ‘offset’ in the glm analysis below. We model log(θij), the parameter of
interest.
Verify and interpret the results from the models fitted below.

pyears <- scan()

18793 52407

10673 43248

5710 28612

2585 12663

1462 5317

# BLANK LINE

deaths <- scan()

2 32

12 104

28 206

28 186

31 102

# BLANK LINE

sm <-rep(c(1,2),times=5)

age <- c(1,1,2,2,3,3,4,4,5,5)

#these are crude but easy-to-understand ways of setting up the factor levels

sm <- factor(sm) ; age <- factor(age)

prop <- deaths/pyears ; tapply(prop,list(age,sm),mean) <- log(pyears)

summary(glm(deaths ~ age + offset(l),poisson),cor=F)

summary(glm(deaths ~ age + sm + offset(l),poisson),cor=F)

It should now be obvious to you that
(i) smoking is bad for you and
(ii) so is getting old.
But you will also see that this final model does not fit well (its deviance is
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12.134, with 4 df). Can you suggest a way of improving the fit?
11. With y1, . . . , yn independent observations, and yi having pdf from the usual
glm family, with g(µi) = βTxi as usual, find the expectation of the second
derivative of the log-likelihod function with respect to β, φ, and hence show
that β̂, φ̂ are asymptotically independent.
12. New for 2005: introduction to the inverse Gaussian distribution.
Consider the density

f(y|θ, φ) = exp[(yθ − b(θ))/φ+ c(y, φ)], y > 0,

where
φ = σ2, b(θ) = −(−2θ)1/2 ,

and
−2c(y, φ) = log(2πφy3) + (1/φy).

Show that E(Y ) = (−2θ)−1/2 = µ, say. Check that 1/µ2 is the canonical link
function for this glm, and that var(Y ) = µ3σ2. nb, no fancy integration
required, at all.

2.2 Solutions to Example Sheet 2

1. Here Yi are distributed as independent Po(µi), with log(µi) = βTxi. Thus

f(yi|β) ∝ (exp−µi) (µi)
yi

so that

log f(y|β) =

n∑
1

[− exp(βTxi) + yiβ
Txi] + constant

ie Ln = −
∑n

1 [exp(βTxi)] + βT
∑n

1 yixi + constant.
Thus

∂Ln
∂β

=

n∑
i

[−xi exp(βTxi) + yixi]

and minus the matrix of second derivatives of Ln is say J , where

J = +

n∑
1

xix
T
i exp(βTxi).

This is +
∑n

1 xix
T
i µi,where µi > 0.

Hence J is a positive definite matrix, and so β̂ (the mle) is the solution of

∂Ln
∂β

= 0,

which we may write as ∑
xiµi =

∑
xiyi
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ie the observed and the expected values of the sufficient statistics
∑
xiyi agree

exactly at β = β̂.
The equation ∂Ln

∂β = 0 has to be solved iteratively. The asymptotic covariance

matrix of β̂ is the inverse of E(J), which here is

n∑
1

µixix
T
i .

(There is no simple formula for the inverse.)
“Scale parameter taken as 1.000 ” means that in writing the pdf in glm formu-
lation, ie as

f(yi|θi, φ) = exp [(yiθi − b(θi))/φ+ c(yi, φ)]

then we take φ as 1.

2. The loglikelihood is

l(β) = (βT t− ψ(β))/φ where φ > 0.

Thus
∂

∂β
l(β) = (t− ∂

∂β
ψ(β))/φ

and as always

E(
∂l

∂β
) = 0.

so that E(t) = ∂
∂βψ(β). Further the matrix of 2nd derivatives of the loglikelihood

is - φ−1 times the matrix of 2nd derivatives of ψ and, using∫
f(y|β)dy = 1 for all β

again, we have

E(−matrix of 2nd derivatives of l) = E(UUT ), where U =
∂

∂β
l

Thus covariance matrix of t(y) is

φ× matrix of 2nd derivatives of ψ

which must therefore be a positive definite matrix, so that l(β) is a STRICTLY

CONCAVE function. Thus any solution β̂ say, of ∂
∂β l = 0 must be THE MAX-

IMUM of l(β). Thus, eg if we solve U = 0 by the Newton-Raphson algorithm,
we will unerringly home in on the right solution, rather than something nasty
and irrelevant like a local minimum.
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3. We know (using ∼ to mean “approximately distributed as”)

β̂ ∼ N(β, V (β))

and so
(β̂ − β)T (V (β))−1(β̂ − β) ∼ χ2

p

and hence
(β̂ − β)T (V (β̂))−1(β̂ − β) ∼ χ2

p.

Hence from χ2 tables we can choose c, given α, such that

Pr[(β̂ − β)T (V (β̂))−1(β̂ − β) ≤ c] ' 1− α.

Write V = V (β̂)) for short; our (1− α)− confidence region is

(β̂ − β)V −1(β̂ − β) ≤ c

which (because V −1 is positive-definite) is an ELLIPSE, centred on β̂. For

∂2`

∂β1∂β2
= 0

we have V a diagonal matrix, with diagonal entries v1, v2 say and the ellipse is

(β1 − β̂1)2/v1 + (β2 − β̂2)2/v2 = c.

The relevance of the final remark is that χ2
p has, for p = 2 the probability density

function
(1/2)exp(−x/2), x > 0.

4. Given
yij = µ+ θi + εij ,

for i = 1 . . . t, j = 1 . . . ni with θ1 = 0
equivalently

yij = µi + εij

with µ1 = µ, and µi = µ+ θi for i > 1. We see that

ΣΣ(yij − µ− θi)2

is minimised, equivalently ΣΣ(yij − µi)2 is minimised with respect to (µi) by

µ̂i =
yi+
ni

.

giving

µ̂ =
y1+
n1

and
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θ̂i = −y1+
n1

+
yi+
ni

for i > 1,

as required. Clearly, since εij are NID(0,σ2),

var(
yi+
ni

) =
σ2

ni

and
cov(y1+, yi+) = 0 for i > 1

hence var(θ̂i) is as given, and

cov(θ̂i, θ̂l) = var(
y1+
n1

) for i 6= l.

The fitted value of yij is µ̂i, ie yi+/ni.

5.
yijk = µ+ αi + βj + εijk, k = 1 . . . r, i = 1 . . . I, j = 1, . . . J.

We can reparametrise this as

yijk = m+ ai + bj + εijk ,

with Σai = 0,Σbj = 0. Then µ = m+ a1 + b1, µ+ αi = m+ ai + b1, µ+ βj =
m+ a1 + bj , so that
αi = ai − a1 , and βj = bj − b1 .
Straightforward minimisation of

ΣΣΣ(yijk −m− ai − bj)2

subject to the constraints Σai = 0 ,Σbj = 0 gives

m̂ = ȳ, âi =
yi++

ni
− ȳ , etc.

Hence, returning to the original model, we see that

α̂i =
yi++

ni
− y1++

n1
.

If now yijk = µ+ αi + βj + εijk, with

k = 1 . . . rij , i = 1, . . . , I, j = 1, . . . , J

then we find that α̂i is no longer given by the above simple formula .
This is best seen by the following simple example. Suppose the observations
(yijk) are

23.9 , 7.2 for (i, j) = (1, 1),
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3.6 for (i, j) = (1, 2),
10.4 for (i, j) = (2, 1),
29.7 for (i, j) = (2, 2).
Note that you will different estimates for, say αi, depending on whether or

not βj is in the model, because the design is unbalanced.
6. Here the model is

yij = µ+ αi + βj + (αβ)ij + εij

for i = 1 . . . I, j = 1 . . . J, which is equivalent to

yij = µij + εij ,

and the lse(=mle) of (µij) are obtained by minimising

ΣΣ(yij − µij)2

with respect to µij . This gives µij = yij so that the minimised residual sum of
squares is 0, trivially.
Further, we have no degrees of freedom left to estimate σ2. This is called a
“saturated” model: it is saturated with parameters.
7.

Y = Xβ + ε,

with ε distributed as N(0, σ2I), gives

(Y −Xβ)T (Y −Xβ)

is minimised by β̂ such that XTXβ̂ = XTY

ie β̂ = (XTX)−1XTY.

Hence β̂ is distributed as N(0, σ2(XTX)−1).

If we display the the estimated covariance matrix of β̂ it is of course

s2(XTX)−1

where s2 = deviance/df . Since s2 is therefore known, we can evaluate (XTX)−1.
8. Using an obvious notation, you need to try

lm(lv ~ 1) ; lm(lv ~ lh) ; lm(lv ~ ld) ; lm(lv~lh + ld)

Observe that we never expected M0 to fit: we always start by fitting it as our
“baseline”. Observe also that M1 fits much better than M0, as we would expect,
and that β̂ is clearly significant. (The ratio 2.2/.0898 is much greater than 2).
Observe that the estimate of β changes between M1 and M2 because β and
γ are not mutually orthogonal. [There is a non-zero correlation between the
vectors (ld),(lh)].

The coefficients β̂ andγ̂ in M2 are clearly both significant.
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Observe: the reduction in deviance in moving from M0 to M1 the “ss due to γ”
is different from the reduction in deviance in moving from M1 to M2 , the “ss
due to γ, allowing for β ”.
This is another consequence of the non-orthogonality of these 2 parameters.
Our final model is thus

lvi = −6.632(.7998) + 1.117(.2044) lhi + 1.983(.07501) ldi

Observe that both a cylinder & a cone would give

lvi = C + 1 log(hi) + 2 log(di/12)

where C = log(π/4) for a cylinder, log(π/12) for a cone. [warning : di is actually
measured in inches. Do today’s metric students know about feet and inches? ]
The rest of the solution is up to you. Not surprisingly, trees do turn out to be
more like cones than cylinders.
9. Note that the linear regression of n, the number of arrests on a, the atten-
dance, although having a significant positive slope (as we would expect) is really
rather a poor fit: it has R2, the proportion of the total deviance “explained by”
the regression as only 0.2005. (By definition, R2 lies between 0 and 1, with
R2=1 for a perfect fit.)
If we plot the residuals = (observed−fitted values) against the corresponding
fitted values, we get a very pronounced ‘fanning-out’ effect, suggesting that
var(ni) increases as E(ni) increases, which is what we would expect, since ni
might well be Poisson-like in its behaviour. Thus the analysis presented, which
fails to START by doing some simple plots, is not very sensible. Its big draw-
back is that it relies on the assumption that var(ni) is constant over i.
This is what the analysis does. First fit

nij = µ+ εij , for j = 1 . . . 4, i = 1 . . . nj .

with the usual assumption that εij is NID(0, σ2).
Then fit

nij = µ+ α aij + εij

ie the same line for all 4 divisions. Then fit

nij = µ+ βj + α aij + εij

ie parallel lines for all 4 divisions. Lastly try

nij = µ+ βj + αj aij + εij .

There isn’t any appreciable improvement in fit after the second model.
And, as we have already said, the assumption of homogeneity of error variance
looks very implausible.
However, if we try

log(nij) = µ+ α log(aij) + εij
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it does now seem reasonable to assume var(εij) is constant. It seems that the
same line will fit all 4 divisions, namely

log(nij) = −0.01365(.6475) + 0.7506(.1285)log(aij)

which has R2 = .2748 (just a little better than before). Indeed the constant can
be dropped, to show that a straight line through the origin fits quite well.
The question about ‘rogues and saints’ clearly relates to picking out those clubs
with high (positive or negative ) standardised residuals.
10. Let pij =‘pyears’ = person-years at risk, and let dij= the number of deaths,
for i = 1, . . . , 5, where i corresponds to age, j = 1(for non-smoker), j = 2 (for
smoker).
We assume dij is distributed as indep. Po(µij), with the default link for µ,
which is log( ). Further, we take µij = θij pij , so that

log(µij) = log(θij) + log(pij).

This is the interpretation of log(pij) as the offset. We try various models for
log(θij).
The table suggests that θij increases with i, for each fixed j.
The first model fitted is in effect

log(θij) = µ+ αi, for i = 1 . . . 5, j = 1, 2

with α1 =0. This model includes an age effect but not a smoking effect. This
model has deviance= 23.99(df = 5), but the fit is not good enough.
But clearly this model shows that α̂i increases with i: this makes sense.
Next we try the model

log(θij) = µ+ αi + βj .

In this model, both smoking and age effects are present, but they operate
additively (thus the difference between smokers and non-smokers is constant
over all 5 ages). The fit is now much improved, and shows a clear effect of

smoking( β̂2/(its se) > 0 ), but the fit is still not acceptable (refer 12.13 to
χ2

4).
The model corresponding to

glm(deaths ~ age:sm + offset(l), poisson)

would give a perfect fit (since it is the saturated model) so therefore to improve
the fit, we include an interaction term in a ‘weaker’ way as our final model. We
have
log(θij) = µ+ αi for sm =1, ie non-smoker,
log(θij) = µ+ αi + βj + γ i for sm=2, ie smoker.
This model fits very well (compare the deviance of 1.54 with χ2

3 ). It shows that
although smoking is bad for you (compute 1.445/.3729), there is an interaction
between smoking and age: the discrepancy between the mortality rates for
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smokers and non-smokers DECLINES with age.
11. Write down `(β, φ), and find

∂2`

∂β∂φ
.

It is easy to show that this has expectation zero.
12. Use the glm facts that E(Y ) = b′(θ) = µ and var(Y ) = φb′′(θ). (Note added
November 2007: Wikipedia is also aware of this example.)



Chapter 3

Example Sheet 3

3.1 Example Sheet 3: questions

(Warning: somehow most people find questions 2, 3 to be hard. There is a
practical point behind these 2 questions – and the others too!)

1. The observed waiting times t1, . . . , tn are independent, with Ti having pdf

f(ti | α, β) = (ti/µi)
ν−1

e−ti/µi
1

µi

1

Γ(ν)
,

for ti > 0, where ν is a known parameter, and µi depends linearly on a known
covariate xi through the following link function:

1

µi
= α+ βxi, for µi > 0.

Let a1 = Σθi, a2 = Σxiθi. Show that (a1, a2) are sufficient for (α, β).
The observations t1, . . . , tm are times between consecutive earthquakes in Mex-
ico City, and the observations tm+1, . . . , tn are the times between consecutive
earthquakes in Turkey. Take x1 = . . . = xm = 0 and xm+1 = . . . = xn = 1, and
discuss the estimation of β when m,n are large, quoting any general asymptotic
likelihood results needed for your solution.
This introduces you to another ‘error distribution’ available in glm: the gamma.
2. Your client gives you data

(yij , xij , 1 ≤ j ≤ ni, 1 ≤ i ≤ t)

and asks you to fit the model

yij = α+ βxij + εij ,

24
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with εij ∼ NID(0, σ2), σ2 unknown. He has arranged the experiment so that

xij = xi, 1 ≤ j ≤ ni, 1 ≤ i ≤ t.

Find expressions for (α̂, β̂), the least squares estimators.
Your client now observes that a consequence of the model above is that

E(yi) = α+ βxi, 1 ≤ i ≤ t,

where yi =
∑
j yij/ni).

He suggests that some of your (highly paid) time could be saved by reading in
the data as the t pairs (yi, xi), 1 ≤ i ≤ t instead of the original (n1 + · · ·+ nt)
pairs of points. How do you advise him? Give reasons for your answer.

[Hint: write down the likelihood given by
a) the full set of data (yij , xij), and
b) the reduced set of data (yi, xi).
Show that the maximum likelihood estimates of (α, β) are the same for a)

and for b).]
3. Another client gives you data for binary regression, consisting of observations
(y, x) with the following structure:

(0, x1), (1, x1), (0, x1), (1, x2), (1, x2),

(1, x2), (0, x2), (1, x3), (1, x3), (0, x3),

(1, x4), (1, x4), (1, x4), (1, x4), (0, x4).

Thus there are 15 independent observations, with the first digit of each pair
being 1 or 0 with probabilities p(x), q(x) respectively. She asks you to fit the
model:

log(p(x)/q(x)) = α+ βx

and to use the appropriate difference in deviances to test the hypothesis β = 0.
You observe that the data can in fact be compressed and read in as four inde-
pendent values

(1, 3, x1), (3, 4, x2), (2, 3, x3), (4, 5, x4).

(eg (1, 3, x1) means that of the 3 readings at x = x1, exactly 1 has value 1.)
Would this approach result in misleading your client? Give reasons for your
answer.

[Hint: think LIKELIHOODS, as in question 2 above.]

4. Suppose
Y = Xβ + ε, ε ∼ N(0, σ2I)

where Y is n × 1, X is n × p and of rank p, and β is the unknown vector of
parameters.
(a) Show that β̂ = (XTX)−1XTY is the lse of β.
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(b) Show that Ŷ = Xβ̂ = HY say, where H = HT and HH = H (Ŷ is the
vector of ‘fitted’ values).
(c) Suppose e = Y − Ŷ (the vector of residuals). Show that

e ∼ N(0, σ2(I −H))

and hence that
ei ∼ N(0, σ2(1− hi)), 1 ≤ i ≤ n

where hi is the ith diagonal element of H.
(d) Show that if λ is an eigenvalue of H, then λ is either 1 or 0. Hence show∑n

1 hi = p. (The quantity hi is called the ‘influence’ or ‘leverage’ of the ith data
point xi where yi = βTxi + εi, 1 ≤ i ≤ n.)
(e) Show that 0 ≤ hi ≤ 1, and find hi for simple linear regression, i.e. for

yi = β1 + β2(xi − x) + εi.

(f) How do you interpret the statement “Values of xi corresponding to large
leverage exert a pronounced effect on the fit of the linear model at (xi, yi)”?
(g) Use R to construct leverages (also called ‘influence values’) and qqplots for
simple (y, x) data-sets.

5. (a) Suppose (yi) ∼Mn(n, (pi)),
∑k

1 pi = 1. Consider testing

H0 : log pi = µ+ βxi, 1 ≤ i ≤ k

where (xi) is given, and µ is such that Σpi = 1, thus

eµ = 1/Σeβxi .

Show that β̂ is the solution of

(∗) Σyixi = nΣxje
βxj/Σeβxj .

Let ei = npi(β̂) (‘expected values under the null hypothesis’).
(b) Now suppose instead that

yi ∼ independent Poisson(µi),with µi ≥ 0.

Consider testing
HP0 : logµi = µ′ + βxi, 1 ≤ i ≤ k.

Find `(β, µ′) the loglikelihood function, and hence show that the mle for β is

given by β̂, as in equation ∗ above. Show also that

k∑
1

µi(β̂, µ̂
′) = y+

(i.e. the observed and expected values of y+ agree exactly at the mle). Com-
ment on the glm application of the Poisson distribution for problem (a).
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S=1 D=1 89 2 4 1
S=1 D=2 8 4 3 1
S=2 D=1 70 6 2 0
S=2 D=2 1 0 1 1

A=1 A=2 A=1 A=2
B=1 B=1 B=2 B=2

Table 3.1: A 4-way contingency table

6. A random sample of 193 individuals, classified according to four 2-level fac-
tors, S,D,A,B respectively, gave the following 2× 2× 2× 2 contingency table
as Table 3.1.
Let pijk` denote the corresponding underlying cell probabilities where i, j, k, `

correspond to the factors S, D, B and A respectively. With the Poisson dis-
tribution for n, the cell frequencies, and log link, glm (in S-Plus) finds, in the
following order,
(a)n ∼ S ∗D ∗A ∗B gives deviance = 0, df = 0,
(b)n ∼ (S +D +A+B) ∧ 3 gives deviance 2.72, df = 1,
(c) n ∼ (S+D+A+B)∧ 3−S : A : B−D : A : B gives deviance 3.42, df = 3,
(d) n ∼ (S +A+B) ∗D gives deviance 8.48, df = 8.
Write down the model for pijk` for each of (a), (b), (c) and (d), give an inter-
pretation of the deviance at each stage, and give an interpretation in terms of
conditional independence for the model in (d).
How would you check the fit of the model S,D,A,B mutually independent?
7. Which? (August 1980, p. 436) gives the data in Table 3.2 on lager (available
to you on catam stats). The columns are price per half pint, o.g. (original grav-
ity), percent alcohol, calories per half pint, and ‘experts’ rating’. The original
gravity is described by Which? as “another guide to strength; it’s a measure
of what has gone into the beer besides water, and is used to calculate the duty
payable”. The ‘experts’ rating’ column contains entries 3, 4, 5 for lagers actually
tasted (5 being the most liked and 3 the least liked), and an entry 0 for lagers
not actually tasted. Reading the data provided on file, use

lm()

to answer the following questions:
(a) Does the price depend on o.g., percent alcohol, and calories per half pint,
and if so, how?
(b) Is the price of those lagers tasted significantly different from the price of
those not tasted?

8. In a study on the possible relationship between the psychological well-being
of mothers and that of their children, the psychiatrist Prof I. Goodyer collected
data, some of which is summarised below. Table 3.3 shows, for the 200 children
in the study, how many in each of eight categories were ‘cases’, i.e. anxious or
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Price og percent cal rating
17.5 1031 3.1 76 3
20.5 1032 3.2 79 3
22.5 1031 3.3 76 3
22.5 1032 3.3 78 0
18.5 1035 3.4 83 4
22.5 1033 3.5 78 3

23 1031 3.6 76 3
22 1033 3.6 82 3

19.5 1033 3.6 81 0
18.5 1033 3.6 81 0
22.5 1036 3.7 88 0

22 1034 3.7 83 3
24 1036 3.8 87 5
24 1036 3.8 87 0

18.5 1037 3.8 91 4
19.5 1038 3.9 91 5

25 1041 4.0 100 3
26 1036 4.0 84 3
20 1037 4.0 90 5
27 1037 4.0 91 5

22.5 1037 4.1 89 3
20.5 1038 4.1 92 0
43.5 1045 4.7 110 4
27.5 1045 4.8 109 4

29 1046 4.8 110 4
26.5 1047 4.9 116 3

29 1046 4.9 112 0
24.5 1047 4.9 116 0
18.5 1034 3.5 81 3

31 1045 5.0 109 0
32 1047 5.0 117 3
24 1046 5.0 111 4
29 1046 5.1 111 3
33 1046 5.1 110 0
29 1048 5.2 119 0

33.5 1050 5.4 121 0
26 1051 5.5 125 5
43 1058 6.0 146 0

31.5 1079 8.9 197 0
31.5 1081 8.9 204 0

Table 3.2: Lager data table



P.M.E.Altham 29

depressed, and the total number in each category. Those who are not cases
are ‘controls’, assumed well. The eight categories are defined by three binary
factors:
(a) ‘rmq’, which corresponds to a particular measure of the mother’s psycholog-
ical well-being;
(b) ‘mcr’, which indicates whether or not the mother has good ‘confiding’ rela-
tions with other adults;
(c) ‘events’, which indicates whether or not the child has experienced recent
stressful life events in the 12 months prior to the study.
In each case a value of 1 for the factor corresponds to its status being ‘good’ or
‘normal’, and a value of 2 corresponds to its being ‘poor’.
Assuming that the number of cases in a given category is binomial, given the
total in that category, find a model relating the probability that a child is a
case rather than a control to the three factors given. Discuss carefully how to
interpret your best-fitting model, and its estimates, to the psychiatrist.
Table 3.4 shows the result of separating the cases into two categories, ‘anx-
ious’ or ‘depressed’ (defined to be mutually exclusive), and the eight further
categories are defined by the same three factors as before. Does the particular
diagnosis of a case (i.e. anxious rather than depressed) depend at all on any of
the factors?
[This illustrates the use of binomial regression.]

Case Total rmq mcr events
19 81 1 1 1
5 9 2 1 1
1 4 1 2 1
4 4 2 2 1

38 66 1 1 2
14 15 2 1 2
12 13 1 2 2
7 8 2 2 2

Table 3.3: Prof I.Goodyer’s first dataset

anxious depressed Case rmq mcr events
13 6 19 1 1 1
5 0 5 2 1 1
0 1 1 1 2 1
2 2 4 2 2 1

28 10 38 1 1 2
7 7 14 2 1 2
9 3 12 1 2 2
4 3 7 2 2 2

Table 3.4: Prof I.Goodyer’s second dataset
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9. Agresti (1990) Categorical Data Analysis, p. 377, gives the Table 3.5 below,
relating mother’s education to father’s education for a sample of eminent black
Americans (defined as persons having a biographical sketch in the publication
Who’s Who Among Black Americans). Here, for education,

Mother Father=1 Father=2 Father=3 Father=4
1 81 3 9 11
2 14 8 9 6
3 43 7 43 18
4 21 6 24 87

Table 3.5: Eminent Black Americans: educational levels of Mothers and Fathers

1 = 8th grade or less, 2 = Part High School, 3 = High School, 4 = College.
Let pij = Pr(mother’s education is i, father’s education is j), 1 ≤ i, j ≤ 4.
Consider the model

ω : pij = θφi + (1− θ)αiβj , i = j

pij = (1− θ)αiβj , i 6= j.

where Σφi = 1,Σαi = 1,Σβj = 1, and 0 < θ < 1.
Can you interpret ω to a sociologist?
Show that, under ω,

log pij = ai + bj , i 6= j,

for suitably defined ai, bj .
With n, the cell frequencies, declared as Poisson variables, with the default link
function, and with the two factors M.Ed and F.Ed each with the 4 given values,
glm finds that
n ∼M.Ed+ F.Ed has deviance 159.25, with 9 df.
Why should you expect this deviance to be so large?
But if we omit the 4 diagonal entries of the table, and fit
n ∼M.Ed+ F.Ed, we find that the deviance is 4.6199, with 5 df. How do you
interpret this?
Find the fitted frequencies for this latter model.

10. You see below the results of using glm to analyse data from Agresti(1996,
p247) on tennis matches between 5 top women tennis players (1989-90). Let (rij)
be the number of wins of player i against player j, and let nij be the total number
of matches of i against j, for 1 ≤ i < j ≤ 5. Thus we have 10 observations, which
we will assume are independent binomial, with E(rij) = nijpij .
The model we will fit is

log(pij/(1− pij) = αi − αj , with α5 = 0.

equivalently
pij = πi/(πi + πj)
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where πi = eαi .
The data can be read in (read.table(“ ”, header=T)) as the table

wins tot sel graf saba navr sanc

2 5 1 -1 0 0 0

1 1 1 0 -1 0 0

3 6 1 0 0 -1 0

2 2 1 0 0 0 -1

6 9 0 1 -1 0 0

3 3 0 1 0 -1 0

7 8 0 1 0 0 -1

1 3 0 0 1 -1 0

3 5 0 0 1 0 -1

3 4 0 0 0 1 -1

Thus for example, the first row of numbers tells us that ‘sel’ played ‘graf’ for a
total of 5 matches, and ‘sel’ won 2 of these.
The result of

glm(wins/tot~ sel+graf+saba+navr-1, binomial, weights=tot)

is deviance 4.6493, with 6 df.
The parameter estimates are

sel = 1.533(0.7870),

graf = 1.933(0.6783),

saba = 0.731(0.6770),

navr = 1.087( 0.7236),

with sanc =0 by assumption.

(i) Why do we impose a constraint on α1, α2, α3, α4, α5?
(ii) Can we confidently say that Graf is better than Sanchez?
(iii) Can we confidently say that Graf is better than Seles?
(iv) What is your estimate of the probability that Sabatini beats Sanchez, in a
single match? (Answer: 0.6750)
(v) Table 3.6 gives corresponding data for 5 top men tennis players during 1989–
90, taken from Agresti (1996, p255). Analyse them, fitting a model of the same
form as above.

11. The purpose of this example is to introduce you to the topic of overdispersion
in the context of the Poisson distribution.
Suppose now that the observations Y1, ..., Yn are independent, with
E(Yi) = µi, and var(Yi) = φµi, and log(µi) = βxi,
for some unknown φ and unknown scalar parameter β.
Let β0 be the true value of this unknown parameter.
Our aim is to estimate β, but φ is an unknown ‘dispersion’ parameter. Clearly
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Loser
Winner Edberg Lendl Agassi Sampras Becker
Edberg – 5 3 2 4

Lendl 4 – 3 1 2
Agassi 2 0 – 1 3

Sampras 0 1 2 – 0
Becker 6 4 2 1 –

Table 3.6: The 5 top men tennis players in 1989-90

φ > 1 will correspond to over-dispersion relative to the Poisson. In the absence
of knowledge of φ, we choose our estimator β̂ to maximise the function lp(β),
where

lp(β) = −Σµi + βΣxiyi + constant.

(Thus lp() is in general not the ‘correct’ loglikelihood function: we work out
below whether this is a serious problem.)
By expanding

∂lp(β)

∂β

evaluated at β̂, about β0, show that (β̂−β0) is approximately equal to (I(β0))−1U(β0),
where

U(β) =
∂lp(β)

∂β
,

and
I(β) = Σx2i expβxi,

and hence show that, approximately,

E(β̂) = β0, and var(β̂) = φ(I(β0))−1.

Thus if φ > 1, the true variance of the β̂ will be greater than the value given by
software which assumes the Poisson distribution.
R allows you to make this simple correction for overdispersion, by

summary(glm(y~x, poisson), dispersion =3.21))

where, for example, the ‘dispersion’ φ has been estimated as (deviance/df), here
3.21. (A better estimate for φ may be obtained by replacing the deviance in
this formula by the chi-squared statistic, Σ(o − e)2/e, following the standard
notation.) Experiment with this.
Generalise your result to the case where β, xi are vectors of dimension p.

3.2 Solutions to Example Sheet 3

1. Clearly log(f(ti|α, β)) = −νlog(µi)− ti/µi+ constant .
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Hence loglikelihood is

L(α, β) = Σνlog(α+ βxi)− αΣti − βΣxiti + constant

where Σ runs from i = 1 to i = n.
Hence, by the factorisation theorem, (a1, a2) is sufficient for (α, β).
Take xi = 0 for i=1,...,m, and xi=1 for i = m+ 1, ..., n.
Then

L(α, β) = νmlog(α) + ν(n−m)log(α+ β)− α(T1 + T2)− βT2 + constant

where T1 = t1 + ...+ tm, T2 = tm+1 + ...+ tn.
To estimate β, solve ∂L/∂α = 0, ∂L/ ∂β = 0 for (α̂, β̂).

We know that the asymptotic distribution of (α̂, β̂) is bivariate normal, with
mean (α, β), and covariance matrix V , say, where −V −1 is the expectation of
the matrix of 2nd partial derivatives of L.
Now

∂L/∂α = (νm/α) + ν(n−m)/(α+ β)− (T1 + T2)

∂L/∂β = ν(n−m)/(α+ β) + T2

Hence, after evaluating the matrix of 2nd derivatives of L, (whose elements turn
out not to be random variables), we see that V −1 is of the form(

a b
b c

)
(where you will find the values of a, b, c).

Hence, inverting V shows us that β̂ is approximately N(β, a/(ac− b2)).

Thus the approximate confidence interval for β will be β̂ ± 2
√

(a/(ac− b2)).

2. With the given model, we see that the mle’s of (α, β) minimise

ΣΣ(yij − α− βxij)2

where in ΣΣ, j = 1, ..., ni, i = 1, ..., t.
But xij = xi, for all i, j so that the mle’s of (α, β) minimise

ΣΣ(yij − α− βxi)2

giving β̂ = Sxy/Sxx where Sxy = ΣΣ(yij − ȳ)xi and Sxx is defined similarly.
Now it is true that

ȳi = α+ βxi + ηi say

where ηi is dist’d as NID(0, σ2/ni).
If we choose (α, β) to minimise Σ(ȳi − α − βxi)2, we will obtain less accurate

estimators of (α, β) than (α̂, β̂). You can check that the estimators thus obtained



P.M.E.Altham 34

will still be unbiased, but will have larger variances.
However, if we choose (α, β) to minimise

Σ(ȳi − α− βxi)2ni

then we will obtain (α̂, β̂) as above, ie the correct estimators. So using only the
reduced data set (xi, ȳi, ni) in this way will be fine, as long as σ2 is known.
If σ2 is unknown, as is almost always the case in practice, then we will get a
more accurate estimator of it by using the ORIGINAL data set(and estimating
it as usual by (residual ss)/df) than by using the corresponding expression
when we have “condensed” the data down to (xi, ȳi, ni), namely

1

(t− 2)
Σ(ȳi − α̂− β̂xi)2ni.

Furthermore, if we only have the “condensed” dataset, we are much less likely
to be able to do an adequate job of checking the validity of the original linear
model with constant error variance (Sketch some simple examples with t = 3).

3. Write Yij for the (i, j)th binary observation. We will assume that Yij are
distributed independently as Bi(1, p(xi)) for j = 1, ..., ni, i = 1, ..., t.
Thus the loglikelihood of the data is

L(α, β) = ΣΣ[yij logp(xi) + (1− yij)log(1− p(xi))]

where log(p(xi)/(1− p(xi)) = logit(p(xi)) = α+ βxi. Hence

L(α, β) = Σ(yi+log(p(xi)) + (ni − yi+)log(1− p(xi)).

Clearly, the loglikelihood is the same whether we enter the data as
(0, x1), (1, x1), (0, x1), .... ie 15 separate cases,
or as (1, 3, x1), .... ie 4 separate cases.

Thus, since (α̂, β̂), and its asymptotic covariance matrix, are obtained purely
from the loglikelihood function, we will get the same answers for these whichever
of the 2 ways we choose to enter the data.
(But try a simple numerical example. Why do you get different expressions for
the deviances and their df’s ?)

4.a) Minimising (Y −Xβ)T (Y −Xβ) in β gives

(XTX)β̂ = XTY

Hence, if X is of full rank, β̂ = (XTX)−1XTY so that

b) Ŷ = Xβ̂ = HY say, where
H = X(XTX)−1XT .
It is easy to check that H = HT and HH = H,(ie H is a projection matrix).
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c) e = Y −Xβ̂ = (I −H)Y = (I −H)ε.
Now, ε dist’d as N(0, σ2I). Thus, using (I −H)(I −H)T = (I −H) we see that
e is distributed as N(0, σ2(I −H))
giving ei as N(0, σ2(1− hi)) as required.
d) Suppose u is an eigen vector of H corresponding to eigen value λ .
Then Hu = λu, thus HHu = λHu thus Hu = λHu thus
Hu = 0 or λ = 1, so that λ = 0 or 1.
Hence h1 + ... + hn = trace(H) = λ1 + λ2 + ... + λn where (λi) are the eigen
values of H. Hence

(h1 + ...+ hn) = rank(H) = rank(X) = p.

e) Clearly, var(ei) = (1− hi)σ2, hence hi ≤ 1.
Further, Ŷ = HY = H(Xβ + ε),
hence var(Ŷi) = hiσ

2 hence hi ≥ 0.
For the case of simple linear regression, the first column of X is 1 (the vector of
1’s) and the second column of X is say x′, where xi

′ = xi − x̄ .
Hence XTX is diag(n, Sxx) where Sxx = Σ(xi − x̄)2.
Evaluating H from this shows that

hi = 1/n+ (xi − x̄)2/Sxx

f) We see from e) above that xi distant from x̄ will give rise to relatively large
hi.(Sketch graphs of various possible configurations to get a feel for (hi)) .

5. The solution to this is in the lecture notes.
The practical importance is of course that there is no need for a multinomial
distribution within glm(): so long as we are fitting log-linear models we can
use the Poisson distribution and log-linear models, provided that we include the
‘intercept’ term.

6. This example arose from some psychiatry data provided by Professor I.Goodyer
of Cambridge University. The 4 factors were
S = 1, 2 for girls,boys
D = 1, 2 for depression no or yes
A = 1, 2 for anxiety symptoms no or yes
B = 1, 2 for behavioural symptoms no or yes.
Thus the table is in fact rather sparse for the large sample theory to be realistic,
but we give this analysis as an illustrative example of the glm( ) modelling.

Sat : log(pijkl) = µ+ αi + ...+ (αβ)ij + ...+ (αβγ)ijk + ...+ (αβγδ)ijkl

is the saturated model (we assume the usual glm() constraints α1 = 0 etc.
a) fits the saturated model (ie 24 parameters for 24 observations) so that we
expect to get deviance 0 with df = 0.
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However a quick glance at the parameter estimates and their se’s for this model
will usually suggest to us which of the high-order interactions(if any) can be
dropped. Our object is to fit the simplest possible model which is consistent
with the data, and of course we want to interpret this model to the scientist
who provided the data.
b) fits Sat with

H0 : (αβγδ)ijkl = 0

ie no 4th order interaction. Refer the increase in deviance (2.72) to χ2
1 to test

H0 (applying Wilks’ theorem). The result is non-significant, so we accept H0.
c) fits Sat with H0 and H1 : (αγδ)ikl = 0, (βγδ)jkl = 0.
Refer the resulting increase in deviance (ie 3.42−2.72 ) to χ2

2 to test H1 assuming
H0 true. You find that you accept H1.
d) fits

H2 : log(pijkl) = µ+ αi + βj + γk + δl + (αβ)ij + (βγ)jk + (βδ)jl

so we have dropped yet more parameters in moving from c) to d). The increase
in deviance is (8.48 − 3.42) which is non-significant when referred to χ2

5 so
dropping these extra parameters was permissible.
Furthermore, we can assess the fit of the model H2 by referring 8.48 to χ2

8. In
fact 8.48 is almost the same as E(χ2

8), so you see that H2 is a good fit. You
could check that no further parameters can safely be dropped.
The final model is therefore pijkl = aijbjkcjl for some a, b, c. We will rewrite
this in a more enlightening way as

Pr(A,B,D|S) = Pr(A|D)Pr(B|D)Pr(D|S).

(We choose to write it in this asymmetric form this since S is clearly not a
‘response’ variable.) We can express this in words as
‘D depends directly on S, but B and A only depend on S through D. Further-
more, conditional on the level of D, the variables B and A are independent.’
This is a simple example of a graphical model of conditional independence.
Draw a graph in which the 4 points S,D,B,A are connected only by the arcs
SD,DB,DA, as in Figure 3.1.
Finally, the model in which S,D,B,A are independent corresponds to a graph

with no links at all between the 4 points, and in glm terms it is

HI : log(pijkl) = µ+ αi + βj + γk + δl.

7. a) As with most regression problems, it is best to START by doing some sim-
ple plots: in this case all possible pairwise plots of the 4 variable concerned.This
reveals that price is positively related to each of og, percent and calories, but
also, as a student doing this problem in an examination wrote,
“as any experienced lager-drinker knows”, the 3 variables og, percent and calo-
ries are all measuring more or less the same thing, so we could not reasonably



P.M.E.Altham 37

S D

A

B

Figure 3.1: The graph showing the interdependence of the S, D, A, B data

expect 2 or 3 of them to give a much better prediction of price than just one of
them.(Were teetotal students at a disadvantage in this examination?)
Linear regression of price on these 3 “explanatory” variables bears out this ob-
servation. In fact, og is the best single predictor. Inspection of the residuals
reveals that some lagers are priced at a ridiculously high level, but perhaps they
are connoisseurs’ lagers, ie not aimed at those interested only in the alcohol
content.
b) This question is asking the student to set up a 2-level factor (tasted/not
tasted) and to do the regression of price on og, percent, calories and this new
2-level factor.
The SPlus6 output and corresponding graph are given at the end of these solu-
tions. (You could use R to the same effect.)

8. Setting up the 3 factors rmq, mcr, events, each with 2 levels (level 2 being
the “bad” one ) with binomial regression of case on these 3, and the logistic link
function, and “total” as the binomial denominator, gives

log(P (case)/P (control))

= −1.248(.253)+1.716(.514)rmq(2)+1.257(.561)mcr(2)+1.620(.330)events(2)

with deviance 5.053, df = 4.
Thus this model fits well, and none of the 3 factors can be dropped from the
model. Either compare each estimate with its se, or compare the increase in
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deviance with χ2
1 when each factor is dropped from the model in turn.

Note: having rmq at level 2 rather than level 1 increases the odds in favour of
being a case by a factor of exp(1.716). Having all of rmq, mcr, events at the
“bad” level rather than the “good”level increases the odds of being a case by
a factor of exp(1.716 + 1.257 + 1.620). We could use the covariance matrix of
these estimates to find the corresponding confidence interval for this odds ratio.
Table 2 is analysed similarly.

9. Let M be the Mother’s educational level and F the Father’s. Under ω,
(M,F ) = (M1, F1) with probability θ, where M1 = F1 and P (M1 = i) = φi.
(M,F ) = (M2, F2) with probability 1− θ, where M2, F2 are independent, with
P (M2 = i) = αi, P (F2 = j) = βj ,
ie, with probability θ, the mother’s education MUST be identical to the father’s,
and with probability 1− θ, they are independent (in which case there is still a
chance that they are identical).
It is easily seen that ω is equivalent to the model
log pij = ai + bj for i 6= j.
If we set up ma, pa as the 4-level factors corresponding respectively to mother’s,
father’s educational level, then using the Poisson family and log link function the
glm of n(the frequency) on (ma+pa), gives a deviance of 159.25,which is clearly
hugely significant compared with χ2

9. This tests the hypothesis of independence
of the factors ma, pa, so common-sense suggests that this hypothesis is unlikely
to hold: in any case, a glance at the 4 × 4 contingency table shows that the
diagonal entries are much too large for the independence hypothesis to be plau-
sible.
Now omit the entries of the table for which i = j (use

subset= (i!=j)

in glm() command). Now the deviance is much the same as its expected value,

showing that ω is a good fit. From the table of “fitted values” we could find θ̂,
and so on.
This model is what sociologists call a “mover-stayer” model; it is also an example
of a “quasi-independence” model for a contingency table.

10. These data on women’s and men’s tennis matches are taken from “An intro-
duction to categorical data analysis ” by Alan Agresti (1996) and their analysis
is discussed in Agresti’s Chapter 9.
i) The model being fitted is:
wij (the number of wins) is dist’d as independent Bi(tij , pij) for1 ≤ i < j ≤ 5
with logit(p12) = µ+ sel − graf, logit(p13) = µ+ sel − sab etc
but the import of the −1 term in the glm statement is that we set µ= 0.
Hence our model is logit(pij) = αi − αj for 1 ≤ i < j ≤ 5.
But note that with this model we could replace eg, α5 by α5 + 13, and then
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replace α4 by α4 + 13 and so on, without changing the formula for logit(pij).
So we impose a constraint, without loss of generality α5 = 0, to ensure param-
eter identifiability .
(If we include a term + sanc in our fitting, glm( ) will estimate sel, graf, saba,
navr as given, but will obligingly tell us, in effect, that sanc is aliased, mean-
ing that it cannot be estimated if the previous 4 parameters are already in the
model.)
This is an example of the Bradley-Terry model for paired comparisons.
ii) Can we confidently say that Graf is better than Sanchez?
YES, because the model fits well (refer its deviance of 4.65 to χ2

6) and α̂2/se(α̂2)
= 2.854: refer this to N(0, 1).
iii) Can we confidently say that Graf is better than Seles?
Now α̂2 − α̂1 = 1.933− 1.533.
and the estimated variance of (α̂2 − α̂1) = (.6687)2

(Use the parameter estimate correlation matrix)
Referring (α̂2 − α̂1)/.6687 = 0.5982 to N(0, 1), we see that the difference is not
significant.
(this small correction made March 17, 2014, thanks to Dr R.Shah.)
iv) Our estimate of the probability that Sabatini beats Sanchez, in one match,
is

e.7308/(1 + e.7308) = 1/(1 + e−.7308) = .675

and note that using .7308± 1.96× .6764
we could attach a confidence interval to this probability
ie 1/(1 + exp(−.7308± 1.96× .6764)).
v) The dataset for the men’s tennis doesn’t fit the Bradley-Terry model so well.
Note that our underlying model contains the assumption
wij distributed independently as Bi(tij , pij).
This may not be reasonable. For example, if Graf beats Sanchez in the first
match, then this result may affect the probability that Graf beats Sanchez in
their next match, and so on. Further, we should perhaps take account of the
surface on which the match is played (grass, clay, etc). But we do not have the
data to be able to take account of such factors in our modelling.

11. Take β0 as the true value of β. The usual Taylor series expansion of the first
derivative of lp(β) at β̂ about β0 shows that, to first order,

0 = U(β0)− (β̂ − β0)I(β0)

which gives the required approximation for (β̂ − β0).

Now, as usual, E(U(β0)) = 0, giving us the required expression for E(β̂). Fur-
ther, by noting that

var(β̂) = var(ΣxiYi)/(I(β0))2
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and substituting var(Yi) = φµi, we obtain the required expression for var(β̂).

..........................

For number 7 (lager data), Figure 3.2 gives the corresponding ‘pairs-plot’. Here
is the corresponding code and output.

>lager <- read.table("lager", header=T)

>summary(lager)

>pairs(lager)

>attach(lager)

> first.lm <- lm(Price ~ og + percent + cal)

>summary(first.lm,cor=F)

Call: lm(formula = Price ~ og + percent + cal)

Residuals:

Min 1Q Median 3Q Max

-6.953 -3.217 -0.2989 1.827 16.53

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -1430.4215 1487.7819 -0.9614 0.3427

og 1.4393 1.4849 0.9693 0.3389

percent -2.4402 5.0846 -0.4799 0.6342

cal -0.3201 0.5135 -0.6233 0.5370

Residual standard error: 4.856 on 36 degrees of freedom

Multiple R-Squared: 0.4136

F-statistic: 8.465 on 3 and 36 degrees of freedom,

the p-value is 0.0002186

>summary(first.lm,cor=T)

Call: lm(formula = Price ~ og + percent + cal)

Residuals:

Min 1Q Median 3Q Max

-6.953 -3.217 -0.2989 1.827 16.53

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -1430.4215 1487.7819 -0.9614 0.3427

og 1.4393 1.4849 0.9693 0.3389

percent -2.4402 5.0846 -0.4799 0.6342

cal -0.3201 0.5135 -0.6233 0.5370

Residual standard error: 4.856 on 36 degrees of freedom

Multiple R-Squared: 0.4136

F-statistic: 8.465 on 3 and 36 degrees of freedom,
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the p-value is 0.0002186

Correlation of Coefficients:

(Intercept) og percent

og -1.0000

percent 0.4782 -0.4781

cal 0.9217 -0.9218 0.1035

>next.lm <- lm(Price ~ og); summary(next.lm)

Call: lm(formula = Price ~ og)

Residuals:

Min 1Q Median 3Q Max

-7.617 -3.135 -0.3271 2.045 16.89

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -336.5331 71.2697 -4.7220 0.0000

og 0.3475 0.0684 5.0802 0.0000

Residual standard error: 4.763 on 38 degrees of freedom

Multiple R-Squared: 0.4045

F-statistic: 25.81 on 1 and 38 degrees of freedom,

the p-value is 1.033e-05

>rat <- (rating>0)*1 ; Rat <- factor(rat)

>third.lm <- lm(Price ~ og + Rat); summary(third.lm)

Call: lm(formula = Price ~ og + Rat)

Residuals:

Min 1Q Median 3Q Max

-7.609 -3.343 -0.22 1.934 17.05

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) -330.0376 78.3167 -4.2141 0.0002

og 0.3415 0.0748 4.5667 0.0001

Rat -0.3635 1.7006 -0.2138 0.8319

Residual standard error: 4.824 on 37 degrees of freedom

Multiple R-Squared: 0.4052

F-statistic: 12.6 on 2 and 37 degrees of freedom,

the p-value is 6.696e-05

>last.lm <- lm(Price ~ Rat); summary(last.lm)

Call: lm(formula = Price ~ Rat)

Residuals:

Min 1Q Median 3Q Max

-9.067 -4.405 -0.78 3.273 19.22
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Figure 3.2: The pairs plot for the lager data

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 27.5667 1.5370 17.9359 0.0000

Rat -3.2867 1.9441 -1.6906 0.0991

Residual standard error: 5.953 on 38 degrees of freedom

Multiple R-Squared: 0.06995

F-statistic: 2.858 on 1 and 38 degrees of freedom,

the p-value is 0.09911

>tapply(Price,Rat,mean)

0 1

27.56667 24.28
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