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Preface

Preliminary statement. When I first wrote my lecture notes for the Part II course, Sarah
Shea–Simonds very kindly typed the core notes in TeX, and I added to them bit by bit,
again in TeX. However, my style was still rather like a telegram, partly as I was trying
to save on paper. Now that I am retired, I have time to retype the notes in LaTeX.
I have tried to make the style rather more ‘flowing’, and have included more various
graphs, exercises, Tripos questions and solutions. This editing process is quite enjoyable
but rather slow. I’ll put the revisions on my webpage from time to time, and of course
would appreciate comments and suggestions. Special thanks are due to Professor Yuri
Suhov for his comments and suggestions.

There are already several excellent books on this topic. For example McCullagh and
Nelder(1989) have written the classic research monograph, and Aitkin et al. (1989) have
an invaluable introduction to the pioneering software GLIM. Although I was very glad
to learn a great deal by using GLIM, that particular software was superseded some years
ago by excellent and powerful languages such as S-Plus and R.
Students will naturally gain a much deeper understanding of the theory by putting it into
practice on real (if small) datasets. An excellent text book to help them to do this in
Splus and/or R is the one by Venables and Ripley (2002), particularly their Chapters 6
and 7.
Dobson (1990) has written a very full and clear introduction, which is not linked to any
one particular software package. Agresti (2002) in a very clearly written text with many
interesting data-sets, introduces Generalized Linear Modelling with particular reference
to categorical data analysis.
The notes presented here are designed as a SHORT course for mathematically able stu-
dents, typically third-year undergraduates at a UK university, studying for a degree
in mathematics or mathematics with statistics. The text is designed to cover a to-
tal of about 20 student contact hours, of which 10 hours would be lectures, 6 hours
would be computer practicals, and the remaining 4 are classes or small-group tutori-
als doing the problem sheets, for which the solutions are available at the end of the
book. It is assumed that the students have already had an introductory course on
statistics. While my notes are not dependent on any one particular statistical soft-
ware, I wrote ‘worksheets’ to serve as computer practicals to introduce the students
to (S-plus or) R. These worksheets (now extended somewhat) may be seen on http:

//www.statslab.cam.ac.uk/~pat/redwsheets.pdf

Both the practical sessions and the problem sheets are designed to challenge the students
and deepen their understanding of the material of the course. These notes do not have a
separate section as an introduction to R and its properties. My experience of computer
practicals with students is that they learn to use R or S-plus quite fast by the ‘plunge-in’

3

 http://www.statslab.cam.ac.uk/~pat/redwsheets.pdf
 http://www.statslab.cam.ac.uk/~pat/redwsheets.pdf


P.M.E.Altham, University of Cambridge 4

method (as if being taught to swim). Of course this is now aided by the very full on-line
help system available in R and S-plus.
R.W.M.Wedderburn, who took the Cambridge Diploma in Mathematical Statistics in
1968-9, having graduated from Trinity Hall, was with J.A.Nelder, the originator of Gen-
eralized Linear Modelling. Nelder and Wedderburn published the first paper on the topic
in 1972, while working as statisticians at the AFRC Rothamsted Institute of Arable Crops
Research (as it is now called). Robert Wedderburn died tragically young, aged only 28.
But his original ideas were extensively developed, both in terms of mathematical theory,
particularly by McCullagh and Nelder, and computational methods, so that now every
major statistical package, eg SAS, Genstat, R, S-plus has a generalized linear modelling
(glm) component.



Chapter 1

The asymptotic likelihood theory
needed for glm

1.1 Set-up and notation

Take x1, . . . , xn a r.s. (random sample) from the pdf (probability density function) f(x|θ).
Define

exp[Ln(θ)] =
n∏
1

f(xi|θ)

as the likelihood function of θ, given the data x. Then

Ln(θ) =
n∑
1

log f(xi|θ)

is the loglikelihood function.
Note: {log f(Xi|θ)} form a set of i.i.d. (independent and identically distributed) random
variables. (The capital letter Xi denotes a random variable.)

1.2 The two key results of this chapter

Preamble. Suppose θ̂n maximises Ln(θ), that is θ̂n is the m.l.e. (maximum likelihood
estimator) of θ. How good is θ̂n as an estimator of the unknown parameter(s) θ as the
sample size n→∞? Clearly we hope that, in some sense,

θ̂ → θ as n→∞ .

Write x = (x1, ..., xn). Then we know that for t(x) an unbiased estimator of θ , and θ
a scalar parameter,

var(t(X)) ≥ 1
/

E
(
−∂2

∂θ2
Ln(θ)

)
≡ vCRLB(θ).

This is the Cramèr Rao lower bound (CRLB) for the variance of an unbiased estimator
of θ. There is a corresponding matrix inequality if t, θ are vectors.
Result 1. For θ real,

θ̂n
approx∼ N

(
θ, vCRLB(θ)

)
for n large.
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The vector version of this result, which is of great practical use, is the following.
For θ a k-dimensional parameter,

θ̂n
approx∼ Nk

(
θ,Σn(θ)

)
for large n.

This says that θ̂n, which is a random vector, by virtue of its dependence on X1, . . . , Xn,
is asymptotically k-variate normal, with mean vector = θ (which of course is the true
parameter value) and covariance matrix is Σn(θ), where Σn(θ) is given by(

Σn(θ)
)−1

has as its (i, j)thelement

E
(
−∂2

∂θi∂θj
Ln(θ)

)
.

Thus you can see, at least for the scalar version, that the asymptotic variance of θ̂n is
indeed the CRLB.
Remarks on Result 1 :

(0) One obvious consequence of Result 1 is that any component of θ̂n, e.g. (θ̂n)1 is
asymptotically Normal.

(1) We have omitted any mention of the necessary regularity conditions. This omission
is appropriate for the robust ‘coal-face’ approach of this course. But we stress here
that k must be fixed (and finite).

(2) Σn(θ), since it depends on θ, is generally unknown. However, to use this result, for
example in constructing a confidence interval for a component of θ, we may replace

Σn(θ) by Σn(θ̂),

i.e. replace

E
−∂2

∂θi∂θj
Ln(θ)

by its value at θ = θ̂. In fact, we can often replace it by

−∂2

∂θi∂θj
Ln(θ) evaluated at θ = θ̂.

In some cases it may turn out that two of these three quantities, or even all three quan-
tities, are the same thing.
Result 2. Suppose we wish to test

H0 : θ ∈ ω against

H1 : θ ∈ Ω

where ω ⊂ Ω, and ω is of lower dimension than Ω. Now the Neyman–Pearson lemma tells
us that the most powerful size α test of

H0 : θ = θ0 against H1 : θ = θ1
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is of the form : reject H0 in favour of H1 if

exp(Ln(θ1))/exp(Ln(θ0)) > a constant

where the constant is chosen to arrange that

P (reject H0 | H0 true) = α.

Leading on from the ideas of the Neyman–Pearson lemma, it is natural to consider as test
statistic the ratio of maximised likelihoods, defined as

Rn ≡ max
θ∈Ω

(expLn(θ))

/
max
θ∈ω

(expLn(θ))

where we reject θ ∈ ω if and only if the above ratio is too large. But how large is ‘too
large’?
We want, if possible, to control the SIZE of the test, say to arrange that

P (reject ω | θ) ≤ α

for all θ ∈ ω, where we might choose α = .05 (for a 5% significance test). We may be able
to find the exact distribution of the ratio Rn, for any θ ∈ ω, and hence achieve this. But
in general this is an impossible task, so in practice we need to appeal to
Result 2: Wilks’ Theorem.
For large n, if ω true,

2 logRn
approx∼ χ2

p where p = dim(Ω)− dim(ω).

i.e. 2 logRn is approximately distributed as chi-squared, with p degrees of freedom (df).
Hence for a test of ω having approximate size α, we reject ω if 2 logRn > c, where c is
found from tables as

Pr(U > c) = α, where U ∼ χ2
p.

1.3 The maximum likelihood estimator (mle)

Write θ̂n(X) as the value of θ that maximises

Ln(θ) =
n∑
1

log f(Xi | θ)

or θ̂n for short; it is a r.v. through its dependence on the sample X. Usually we are able
to find θ̂n as follows: θ̂n is the solution of

∂

∂θj
Ln(θ) = 0, 1 ≤ j ≤ k

(θ being assumed to be of dimension k, say). These equations are conventionally called
the likelihood equations .
Warning
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Figure 1.1: A perspective plot of a concave function

(a) As usual in maximising any function, we have to take care to check that these
equations do indeed correspond to the maximum, rather than just a local maximum,
or perhaps a minimum or even a saddlepoint. So, we must check that minus the
matrix of 2nd derivatives is positive-definite to ensure that the log-likelihood
surface is CONCAVE. As an example, we show the perspective plot and the contour
plot of a particular concave function in Figure 1.1 and Figure 1.2. (This particular
function is actually a constant −(x2 − 2ρxy + y2)/2(1− ρ2) with ρ = .7, computed
as the log of the corresponding bivariate normal density function. It thus has a
unique stationary point. In this particular case this point is at x = 0, y = 0, which
is the maximum of the function.

(b) We may need to use iterative techniques to solve them for a wide class of problems.

1.4 Basic properties of the maximum likelihood esti-

mator (mle)

(a) We use the Factorisation Theorem to relate the mle to sufficient statistics.
Suppose t(x) is a sufficient statistic for θ. Then

n∏
1

f(xi | θ) = g(t(x), θ)h(x)

say. Thus θ̂(x) depends on x only through t(x), the sufficient statistic.
But in general, θ̂(x) itself is not necessarily sufficient for θ.
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Figure 1.2: The contour plot of the same concave function

Example. Take x1, . . . , xn a r.s. from f(x | θ), the pdf of N(µ, σ2). Thus

θ =

(
µ
σ2

)
, and

t(x) = (x̄,Σ
(
xi − x̄)2

)
is sufficient for θ.

Show that µ̂ = x̄, σ̂2 =
1

n
Σ(xi − x̄)2

and hence θ̂ depends on x only through t(x).
Proof The log-likelihood, `(µ, σ2) is a constant +

−(n/2) log(σ2)− Σ(xi − µ)2/2σ2.

Write x̄ = Σxi/n and rewrite

Σ(xi − µ)2 = Σ((xi − x̄)− (µ− x̄))2 = Σ(xi − x̄)2 + n(µ− x̄)2.

Now find ∂`/∂µ, ∂`/∂σ2 and set this vector to (0, 0). This gives

µ̂ = x̄, σ̂2 = Σ(xi − x̄)2/n.

You should also compute the matrix of second-derivatives of −` at this point, and show
that it is positive-definite, in order to show that the stationary point is indeed the maxi-
mum of `.
Thus (µ̂, σ̂2) depends on the data x only through the sufficient statistic t(x) = (x̄,Σ(xi − x̄)2).
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(b) Suppose θ is scalar, and there exists t(x) an unbiased estimator of θ, and var
(
t(X)

)
attains the CRLB. Then t(x) is the mle of θ.

Proof. First we prove the CRLB, by way of useful review. Consider the random variables
A,B, defined by

A = t(X), B =
∂Ln(θ)

∂θ
.

Then we know that from the Cauchy-Schwarz inequality that

(cov(A,B))2 ≤ var(A)var(B)

with = if and only if B is a linear function of A.
But we can easily show, as follows, that for this particular A,B,

E(B) = 0 and cov(A,B) = 1.

Firstly,

B =
∂Ln
∂θ

=
∂ log f(x | θ)

∂θ

where x is the whole sample.
(**) Thus

E(B) = E(
∂Ln
∂θ

) =

∫
x

∂Ln
∂θ

f(x|θ)dx

=

∫
x

1

f(x|θ)
∂f(x|θ)
∂θ

f(x|θ)dx

=
∂

∂θ

∫
x

f(x|θ)dx =
∂

∂θ
1 = 0.

Here we made use of the fact that that f(x|θ) is a pdf, and so will integrate over x to
1 for all θ. Hence we see that

cov

(
t(X),

∂Ln
∂θ

)
= E

(
t(X)

∂Ln
∂θ

)
=

∫
t(x)

∂

∂θ
f(x | θ)dx

=
∂

∂θ

∫
t(x)f(x | θ)dx =

∂

∂θ
θ = 1

since t is known to be an unbiased estimator of θ.
Thus

var (t(X)) ≥ 1

/
E
(
∂Ln
∂θ

)2

= vn(θ) say,

with = if and only if
∂Ln
∂θ

= a(θ)(t(X)− θ) + b(θ) say.

[But, taking E of this equation, we see that b(θ) = 0.] Thus, if t(X) is unbiased with
variance attaining the CRLB, then

∂Ln
∂θ

= a(θ)(t(x)− θ),
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and so

E
(
∂Ln
∂θ

)2

= (a(θ))2 vn(θ),

i.e. 1/vn(θ) = (a(θ))2vn(θ), hence vn(θ) = [a(θ)]−1 We know that a(θ) > 0, since
cov

(
t(X), ∂Ln

∂θ

)
= 1).

Thus if t(x) is an unbiased estimator of θ, and its variance attains the CRLB, then

∂Ln
∂θ

= [vn(θ)]
−1(t(x)− θ) where vn(θ) > 0,

and so Ln(θ) has a unique maximum, at its stationary point, θ̂ = t(x).
Exercise (1) Using

∫
x
f(x | θ)dx = 1 for all θ, show

E
(
∂Ln
∂θ

)2

= E
(
−∂2

∂θ2
Ln

)
.

Exercise (2) Take
f(xi | θ) = θxi(1− θ)1−xi

where xi = 0 or 1, that is x1, . . . , xn is a r.s. from Bi(1, θ). Show that

∂Ln
∂θ

=
n

θ(1− θ)
(x̄− θ),

and hence θ̂n = x̄. Show directly that E(θ̂n) = θ, var (θ̂) = θ(1 − θ)/n and use the CLT
(Central Limit Theorem) to show that, for large n,

θ̂n
approx∼ N

(
θ,
θ(1− θ)

n

)
.

1.5 Outline Proof of Result 1

i.e. that

θ̂n
approx∼ N

(
θ, 1

/
E
(
∂Ln
∂θ

)2
)

for large n.

Proof. For clarity we will suppose that θ0 is the true value of the parameter θ. We know
that θ̂n maximises Ln(θ) =

∑n
1 log f(Xj | θ) =

∑n
j=1 Sj(θ) say. We assume that we are

dealing, exclusively, with the totally straightforward case where

θ̂n is the solution of
∂Ln
∂θ

(θ) = 0.

∗ Now
∂

∂θ
Ln(θ)

∣∣∣∣
θ̂n

' ∂

∂θ
Ln(θ)|θ0 + (θ̂n − θ0)

∂2

∂θ2
Ln(θ)|θ0
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assuming the remainder is negligible. The left hand side of ∗ = 0, by definition of θ̂n.
Hence

√
n(θ̂n − θ0) '

{
1√
n

n∑
1

∂Sj
∂θ

∣∣∣∣∣
θ0

}/{
− 1

n

n∑
1

∂2Sj
∂θ2

∣∣∣∣∣
θ0

}
.

Write

Uj =
∂

∂θ
log f(Xj | θ)

∣∣∣∣
θ0

(this is a r.v.).

Now, as already proved, Eθ0(Uj) = 0 . Furthermore,

varθ0(Uj) = Eθ0(U
2
j ) =

∫ (
∂

∂θ
log f(xj|θ)

)2

f(xj|θ)dxj

evaluated at θ = θ0

=

∫ (
−∂2

∂θ2
log f(xj|θ)

)
f(xj|θ)dxj

evaluated at θ = θ0

Write varθ0(Uj) = i(θ0). Hence 1√
n

∑n
1 Uj has mean 0, variance i(θ0). Thus, by the

Central Limit Theorem (CLT), the distribution of 1√
n

∑
Uj tends to the distribution of

N(0, i(θ0)). But, for large n, we may use the Strong Law of Large Numbers (SLLN) to
show that

−1

n

n∑
1

∂2Sj
∂θ2

∣∣∣∣
θ=θ0

' −1

n

n∑
1

E
(
∂2Sj
∂θ2

) ∣∣∣∣
θ=θ0

= i(θ0).

Hence, for large n,
√
n(θ̂n−θ0) has approximately the same distribution as Z/i(θ0), where

Z ∼ N(0, i(θ0)), i.e.

√
n(θ̂n − θ0) is approximately N(0, 1/i(θ0)).

The statistician’s way of writing this is,

for large n, θ̂n
approx∼ N

(
θ0,

1

ni(θ0)

)
.

Comments
(i) The basic steps used in the above are the Taylor series expansion about θ0, and the
applications of the CLT, and of the SLLN.
(ii) The result generalises immediately to vector θ, giving

θ̂n
approx∼ N

(
θ0,

1

n

(
i(θ0)

)−1
)
,

the matrix i(θ0) having (i, j)th element

E
(
−∂2

∂θi∂θj
log f(X1 | θ)

) ∣∣∣∣
θ0

.

(iii) The result also generalises to the case where X1, . . . , Xn are independent but not
identically distributed. For example, we may take Xi independent Po(µi), ie Poisson
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with mean µi) where log µi = βT zi, and zi is a given covariate and β is the unknown
parameter of interest. Hence

Thus f(xi | β) ∝ e−µiµxi
i

giving log f(xi | β) = − exp(βT zi) + (zTi β)xi + constant.

Define Sj(β) =
∂

∂β
log f(xj | β),

so that E
(
Sj(β)

)
= 0. Then it can be shown, by applying a suitable variant of the CLT

to S1(β), . . . , Sn(β), that if

β̂ is the solution of
∂Ln
∂β

(β) = 0,

then, for large n, β̂ is approximately normal, with mean vector β, and covariance matrix(
E
(−∂2Ln
∂β∂βT

))−1

.

The asymptotic normality of the mle, for n independent observations, is used repeatedly
in our application of glm.

1.6 Result 2: Wilks’ Theorem

We state it again (slightly differently): let

x1, . . . , xn be a r.s. from f(x | θ), θ ∈ Θ where Θ ⊂ Rr.

Procedure. To test H0 : θ ∈ ω against H1 : θ ∈ Ω where ω ⊂ Ω ⊂ Θ, and ω,Ω,Θ are
given sets, we reject ω in favour of Ω if and only if

2 logRn ≡ 2

[
max
θ∈Ω

Ln(θ)−max
θ∈ω

Ln(θ)

]
is too large, and we find the appropriate critical value by using
the asymptotic result: For large n, if ω true,

2 logRn
approx∼ χ2

p

where p = dim Ω − dimω . (As for the mle, this result also holds for the more general
case where X1, . . . , Xn are independent, but not identically distributed).
We prove this very important theorem only for the following special case:
ω = {θ = θ0}, i.e. ω a point, hence of dimension 0, and Θ = Ω, assumed to be of dimension
r.
Thus p = r.
(Even an outline proof of the theorem, in the case of general ω,Ω, takes several pages:
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see for example Cox and Hinkley(1974).)
In the special case of ω a point,

2 logRn = 2
[
Ln(θ̂n)− Ln(θ0)

]
,

where θ̂n maximises Ln(θ) subject to θ ∈ Θ, i.e. is the usual mle. Thus

Ln(θ0) ' Ln(θ̂n) + (θ0 − θ̂n)
Ta(θ̂n) + 1

2
(θ0 − θ̂n)

T b(θ̂n)(θ0 − θ̂n)

where
a(θ̂n) = vector of first derivatives of Ln(θ) at θ̂n
b(θ̂n) = matrix of second derivatives of Ln(θ) at θ̂n.

By definition of θ̂n as the mle, a(θ̂n) = 0 (subject to the usual regularity conditions) and

−b(θ̂n) '
(

E
(
−∂2Ln
∂θi∂θj

))
at θ0

= ni(θ0)

giving 2
(
Ln(θ0)− Ln(θ̂n)

)
' −(θ0 − θ̂n)

T
(
ni(θ0)

)
(θ0 − θ̂n)

i.e. 2 logRn = 2
(
Ln(θ̂n)− Ln(θ0)

)
' (θ̂n − θ0)

T
(
ni(θ0)

)
(θ̂n − θ0).

But, if θ = θ0, we know that

(θ̂n − θ0)
approx∼ N

(
0,
(
ni(θ0)

)−1
)
.

Hence, for θ ∈ ω,
2 logRn

approx∼ χ2
p,

For this last step we have made use of the following lemma.
Lemma. If

Z ∼ Nr(0,Σ), then ZTΣ−1Z ∼ χ2
r

r × 1 (provided that Σ is of full rank).

Proof. By definition, Σ = E(ZZT ), the covariance matrix of Z. For any fixed r× r matrix
L,

LZ ∼ Nr(0, LΣLT ).

[recall that E(LZ) = LE(Z) = 0, E(LZ)(LZ)T = L[E(ZZT )]LT .]
But, Σ is an r × r positive-definite matrix, so we may choose L real, non-singular, such
that LΣLT = Ir, the identity matrix, i.e. Σ = L−1(L−1)T .
Then LZ ∼ Nr(0, Ir), so that (LZ)1, . . . , (LZ)r are NID(0, 1) r.v.s. So, by definition of
χ2
r, the sum of squares of these ∼ χ2

r. But this sum of squares is just

(LZ)T (LZ), i.e. ZTLTLZ
i.e ZTΣ−1Z.

Hence ZTΣ−1Z ∼ χ2
r as required.

You can thus prove that it has mean r, variance 2r.
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1.7 Exponential Family Distributions

If the pdf of a single observation Y may be written in the form

f(y | θ) = a(θ)b(y) exp
(
τ(y)π(θ)

)
for y ∈ E

where E, the sample space, is free of θ, and a(·) is such that∫
y∈E

f(y | θ)dy = 1,

we say that Y has an exponential family distribution. In this case, if y1, . . . , yn is the r.s.
from f(y | θ), the likelihood of the sample is

f(y1, . . . , yn | θ) =
(
a(θ)

)n
b(y1), . . . , b(yn) exp

(
π(θ)

n∑
1

τ(yi)
)

and so
∑n

1 τ(yi) ≡ t(y) is a sufficient statistic for θ. If, for y ∈ E,

f(y | π) = a(π)b(y) exp
(
τ(y)π

)
,

∫
y∈E

f(y | π)dy = 1,

we say that Y has an exponential family distribution,with natural parameter π.
The k-parameter generalisation of this is

f(y | π1, . . . , πk) = a(π)b(y) exp
( k∑

1

πiτi(y)
)
,

in which case (π1, . . . , πk) are the natural parameters, and by writing down

n∏
1

f(yj | π),

you will see that (
t1 ≡

n∑
1

τ1(yj), . . . , tk ≡
n∑
1

τk(yj)
)

is a set of sufficient statistics for (π1, . . . , πk).
Exponential families have many nice properties. Several well-known distributions, for
example normal (ie Gaussian), Poisson and binomial, are of exponential family form. Here
is one nice property.

1.8 Maximum likelihood estimation and exponential

families

Assume f(y | π) is as defined above, with π a scalar parameter. Then, if y1, . . . , yn is a
random sample from f(y | π), we see that

Ln(π) = n log a(π) + πt(y) + constant, where t(y) ≡
n∑
1

τ(yi).
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(**) Hence
∂Ln
∂π

=
na′(π)

a(π)
+ t(y).

But
(
a(π)

)−1
=
∫
y∈E b(y)e

πτ(y)dy since f(y | π) is a pdf. Differentiate with respect to π.

(∗)Thus
−a′

a2
=
∫
τ(y)b(y)eπτ(y)dy

so
−a′

a
=
∫
a(π)τ(y)b(y)eπτ(y)dy = E(τ(Y )).

Further, from (**)
∂2L

∂π2
= n

∂

∂π

(
a′(π)

a(π)

)

= n

[
a′′

a
−
(
a′

a

)2
]
.

But, differentiating (*) gives

−a′′

a2
+

2(a′)2

a3
=

∫ (
τ(y)

)2
b(y)eπτ(y)dy

so
−a′′

a
+

2(a′)2

a2
= E

(
τ(Y )

)2
giving

−a′′

a
+

(
a′

a

)2

= var
(
τ(Y )

)
.

Hence for all π
∂2L

∂π2
= −nvar

(
τ(Y )

)
< 0.

Hence, if π̂ is a solution of ∂L
∂π

= 0, it is the maximum of L(π). Furthermore, we may
rewrite

∂L

∂π

∣∣∣∣
π̂

= 0

as

t(y) = E
(
t(Y )

)∣∣∣∣
π=π̂

that is, at the mle, the observed and expected values of t(y) agree exactly.
The multiparameter version of this result, which is proved similarly, is the follow-
ing :

If f(yi | π) = a(π)b(yi) exp

( k∑
1

πjτj(yi)

)
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is the pdf of Yi, where π is now a k−dimensional vector, then(
−∂2Ln
∂πj∂πj′

)
is a positive-definite matrix, i.e. Ln(π) is a CONCAVE function of π. This nice property
of the shape of the loglikelihood function makes parameter estimation for exponential
families relatively straightforward.



Chapter 2

The Generalised Linear Model

2.1 Introduction to glm

Our methods are suitable for the following types of statistical problem, all of which have
n independent observations, and some regression structure:
(i) The usual linear regression model

Yi ∼ NID(µi, σ
2), 1 ≤ i ≤ n

where µi = βTxi and xi a given covariate of dimension p, and β, σ2 are both unknown.
For example, µi = β1 + β2xi, where xi is scalar, and so β is of dimension 2, and we might
want to estimate β2, β1, to test β2 = 0, and so on.
(ii) Poisson regression

Yi independent Po(µi), log µi = βTxi, 1 ≤ i ≤ n

(note that µi > 0, by definition).
More generally, we might suppose that

g(µi) = βTxi,

where g(·) is a known function, β is an unknown vector, and xi is a known covariate
vector.
(iii) Binomial regression

Yi independent Bi(ri, πi)

where πi depends on xi, a known covariate, for 1 ≤ i ≤ n. For example, in a pharma-
ceutical experiment, we may have data (Yi, ri, xi) where ri =number of patients given a
dose xi of a new drug, and Yi =number of these giving positive response to this drug (e.g.
cured).
Suppose that we observe that Yi/ri tends to increase with xi and we want to model this
relationship,
For example we may wish to find the x which will give E(Y/r) = .90, that is the dose
which gives a 90% cure rate. Additionally, we may seek to compare the performance of
this drug with a well-established drug. We might find that a simple plot of Y/r against
dose for each of the old and the new drugs suggests that the old drug is better than the
new at low doses, but the new drug better than the old at higher doses.

18
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Figure 2.1: An example of a logistic function

Thus we seek a model in which πi is a function of xi, but we must take account of the
constraint 0 < πi < 1. This means that πi = β1 + β2xi is not a suitable model, but

log
πi

1− πi
= β1 + β2xi

a logistic model, often works well. Thus we take

g
(
E(Yi/ri)

)
= a linear function of xi, 1 ≤ i ≤ n

where

g(πi) = log

(
πi

1− πi

)
is the ‘link function’, so-called because it links the expected value of the response variable
Yi to the explanatory covariates xi.
Verify that this particular choice of g( ) gives

πi =
(
exp(β1 + β2xi)

)/(
1 + exp(β1 + β2xi)

)
so that πi ↑ as xi ↑ for β2 > 0).
An example of such a function, here with p = π and β1 = 3, β2 = 2 is given in Figure 2.1.
(iv) Contingency tables (a less obvious application of glm).

For example, suppose (Nij) ∼Mn
(
n; (pij)

)
, where

∑∑
pij = 1 ie (Nij) has the multino-

mial distribution, with parameters n, (pij).
For example, Nij might be number of people of ethnic group i voting for political party j
in a sample of size n, for 1 ≤ i ≤ I, 1 ≤ j ≤ J .
Suppose that the problem of interest is to test H0 : pij = αiβj for all (i, j), where (αi), (βj)
unknown and

∑
αi =

∑
βj = 1,
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that is, to test the hypothesis that ethnic group and party are independent.
Note that E(Nij) = npij, so that

log E(Nij/n) = log pij,

and thus, under H0,
log pij = logαi + log βj,

equivalently
log E(Nij) = const + ai + bj for some a, b.

Thus, in terms of log E(Nij), testing H0 is equivalent to testing a hypothesis which is
linear in the unknown parameters.

All of the above problems fall within the same general class, and we can exploit this fact
to do the following:
(a) We use the same algorithm to evaluate the maximum likelihood estimates of the pa-
rameters, and their (asymptotic) standard errors.
From now on we use the abbreviation se to denote standard error. The se is the square
root of the estimated variance.
(b) We test the adequacy of our models, usually by Wilks’ theorem.

2.2 Exponential families revisited

We will need to be able to work with the case where Y1, . . . , Yn are independent but
not identically distributed, so we study the following general form for the distribution of
Y1, . . . , Yn.
Here we use standard glm notation, see for example Aitkin et al., p. 322.
Take Y1, . . . , Yn independent and assume that Yi has pdf

f(yi | θi, φ) = exp

[
yiθi − b(θi)

φ

]
× exp c(yi, φ).

Thus

log f(yi | θi) =
yiθi − b(θi)

φ
+ c(yi, φ).

Assume further that E(Yi) = µi (we will see that µi is a function of θi only), and that
there exists a known function g(·) such that

g(µi) = βTxi

where xi is known, and β is unknown.
Our problem, in general, is the estimation of β. This naturally includes finding the se
of the estimator. The parameter φ, which in general is also unknown, is called the scale
parameter.
First we use simple calculus to find expressions for the mean and variance of Y . For
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convenience we drop the suffix i for this Lemma.
Lemma 1. If Y has pdf

f(y | θ, φ) = exp

[
yθ − b(θ)

φ
+ c(y, φ)

]
then for all θ, φ,

E(Y ) = b′(θ), var(Y ) = φb′′(θ).

Proof.
log f(y | θ, φ) =

(
yθ − b(θ)

)
/φ+ c(y, φ).

Hence
∂

∂θ
log f(y | θ, φ) =

(
y − b′(θ)

)
/φ,

and so
∂2

∂θ2
log f(y | θ, φ) = −b′′(θ)/φ.

But for all θ, φ ∫
y

f(y | θ, φ)dy = 1.

Thus, asssuming that we can interchange
∫
y

and ∂
∂θ

, we see that

E
(
∂

∂θ
log f(Y | θ, φ)

)
= 0

thus E(Y ) = b′(θ). Similarly,

0 =

∫
∂2

∂θ2
f(y | θ, φ)dy =

∫ {(
∂2

∂θ2
log f

)
f +

(
∂

∂θ
log f

)2

f

}
dy

giving

0 = E
(
∂2

∂θ2
log f

)
+ E

(
∂

∂θ
log f

)2

giving

E
(
Y − b′(θ)

φ

)2

=
b′′(θ)

φ

i.e.
var(Y ) = φb′′(θ).

Hence, returning to data y1, . . . , yn, we see that the loglikelihood function is, say,

`(β) =
n∑
i=1

(
yiθi − b(θi)

)
/φ+

n∑
i=1

c(yi, φ).

(This is in fact `(β, φ), but for the present we suppress φ.) Thus

∂`

∂β
≡ s(β) (say) =

n∑
i=1

(
yi − b′(θi)

)
φ

∂θi
∂β
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where we have used the chain rule of differentiation, viz.

∂

∂β
(·) =

∂

∂θi
(·) ∂θi

∂β
for each i.

But g(µi) = βTxi, and so we see that, because µi = b′(θi),

g
(
b′(θi)

)
= βTxi,

hence, on taking ∂
∂β

, we see that

g′
(
b′(θi)

)
b′′(θi)

∂θi
∂β

= xi

that is

g′(µi)b
′′(θi)

∂θi
∂β

= xi.

∂`

∂β
= s(β) =

n∑
i=1

(yi − µi)xi
φg′(µi)b′′(θi)

∂`

∂β
= s(β) =

n∑
1

(yi − µi)

g′(µi)Vi
xi

where Vi = var(Yi) = φb′′(θi); see Lemma 1.
The vector s(β) is called the score vector for the sample, and β̂ is found as the solution
of ∂`

∂β
= 0, i.e. s(β) = 0.

In general this set of equations needs to be solved iteratively, so we will need ∂2`
∂β∂βT ,the

matrix of second derivatives of the loglikelihood. In fact glm works with E
(

∂2`
∂β∂βT

)
: to

find this we use
Lemma 2.

E
(

∂2`

∂β∂βT

)
= −E

(
∂`

∂β

∂`

∂βT

)
.

Proof. Write `(β) = log f(y | β, φ). Then for all β (and all φ)∫
y

f(y | β)dy = 1

Thus
∂

∂β

∫
y

f(y | β)dy = 0

E
(
∂

∂β
`(β)

)
= 0 (a vector)

and
∂2

∂β∂βT

∫
y

f(y | β)dy = 0 (a matrix).

But ∫
∂2

∂β∂βT
f(y | β)dy = E

(
∂2

∂β∂βT
log f(y | β)

)
+ E

(
∂

∂β
`(β)

∂

∂βT
`(β)

)
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hence

E
(

∂2`

∂β∂βT

)
= −E

(
∂`

∂β

∂`

∂βT

)
.

This concludes the proof of Lemma 2.
We may apply this Lemma to obtain a simple expression for the expected value of the
matrix of second derivatives. Now

∂`

∂β
=

n∑
i=1

(yi − µi)xi
g′(µi)Vi

and E(yi − µi) = 0, and y1, . . . , yn are independent. Hence

E
(

∂2`

∂β∂βT

)
= −E

(
n∑
1

(yi − µi)
2(

g′(µi)Vi
)2 xixTi

)

= −
n∑
1

Vi(
g′(µi)

)2
V 2
i

xix
T
i

= −
n∑
1

wixix
T
i say, wi ≡ 1/

(
Vi
(
g′(µi)

)2)
.

We write W as the diagonal matrix
w1 0 0 · · · 0
0 w2 0 · · · 0

0 0
. . . wn−1 0

0 0 · · · 0 wn


and thus we see

E
(

∂2`

∂β∂βT

)
= −XTWX .................Expectation.

where X is the n× p matrix defined by

X =

 xT1
...
xTn

 .

Hence we can say that if β̂ is the solution of s(β) = 0, then β̂ is asymptotically normal,
with mean β and covariance matrix having as inverse

−E
(

∂2`

∂β∂βT

)
= XTWX.
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2.3 Reminder: The Newton-Raphson algorithm

This is how we solve
∂`(β)

∂β
= 0.

Take β0 as the ‘starting value’. Expanding about β = β0, we note that

∂`(β)

∂β

∣∣∣∣
β1

' ∂`

∂β

∣∣∣∣
β0

+
∂2`

∂β∂βT

∣∣∣∣
β0

(β1 − β0).

Set the left hand side = 0 (because we seek β̂ such that ∂`
∂β

= 0 at β = β̂).
Then find β1 from β0 by

0 =
∂`

∂β

∣∣∣∣
β0

+

(
∂2`

∂β∂βT

) ∣∣∣∣
β0

(β1 − β0) ............Iteration.

giving β1 as a linear function of β0.
Now find β2 from β1 by

0 =
∂`

∂β

∣∣∣∣
β1

+

(
∂2`

∂β∂βT

) ∣∣∣∣
β1

(β2 − β1)

giving β2 as linear function of β1, and so on.
This process gives βν → β̂. Convergence for glm examples is usually remarkably quick: in
practice we stop the iteration when `(βν) and `(βν−1) are sufficiently close, and this may
only require 4 or 5 iterations. (But note that some extreme configurations of data, for
example zero frequencies in binomial regression, may have the effect that the loglikelihood
function does not have a finite maximum. In this case the glm algorithm should report
the failure to converge, and may give strangely large parameter estimates with very large
standard errors.)
In the glm algorithm the matrix ∂2`

∂β∂βT is replaced in Iteration by its expectation, from
Expectation.
The inverse covariance matrix

−E
(

∂2`

∂β∂βT

)
of β̂ is estimated by replacing β by β̂. In addition, φ is replaced by φ̂, but in any case
φ = 1 for the binomial and Poisson distributions. The estimation of φ for the normal
distribution will be discussed further below.
Example 1. Yi ∼ NID(βTxi, σ

2), 1 ≤ i ≤ n. Take the special case βTxi = βxi, i.e.
linear regression through the origin. Thus

f(yi | β) =
1√

2πσ2
exp− 1

2σ2
(yi − βxi)

2

giving

log f(yi | β) = +
1

σ2

(
βyixi −

β2

2
x2
i

)
− y2

i

2σ2
− log

√
2πσ2

which is of the form (
yiθi − b(θi)

)
/φ+ c(yi, φ)
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with
b′(θi) = µi = βxi, g(µi) = µi, φ = σ2

and
θi = βxi, b(θi) = θ2

i /2.

[Hence b′′(θi) = 1, var(Yi) = φb′′(θi) : check .]
In this case, it is trivial to show directly that β̂ =

∑
xiYi/

∑
x2
i .

What does the glm algorithm do? If we substitute in

∂`

∂β
=
∑ (yi − µi)xi

g′(µi)Vi
where Vi = var(Yi)

and

E
(
∂2`

∂β2

)
= −

∑
wix

2
i , where w−1

i = Vi
(
g′(µi)

)2
we see that here

∂`

∂β
=
∑

(yi − βxi)xi/σ
2

and

E
(
∂2`

∂β2

)
= −

∑
x2
i /σ

2

so the glm iteration evaluates β1 from β0 by

0 =

∑
(yi − β0xi)xi

σ2
− (β1 − β0)

∑
x2
i

σ2

(thus the precise choice of β0 is irrelevant), giving

β1 =
∑

xiyi/
∑

x2
i = β̂.

Hence only one iteration is needed to attain the mle. (One iteration will always be enough
to maximise a quadratic loglikelihood function.)
Furthermore, from the fact that β̂ =

∑
xiYi/

∑
x2
i , where Yi are independent, each with

variance σ2, it is easy to see directly that the exact distribution of β̂ is normal, mean
β, and var(β̂) = σ2/

∑
x2
i , (agreeing, of course, with the asymptotic distribution). The

general glm formula gives us

E
(
∂2`

∂β2

)
= −

∑
wix

2
i = −

∑
x2
i /σ

2,

and hence the general glm formula gives us

var(β̂) ' σ2/
∑

x2
i

(consistent with the above exact variance, of course).
Example. Repeat the above, but now taking

Yi ∼ NID(β1 + β2xi, σ
2) 1 ≤ i ≤ n
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i.e. the usual linear regression, with
∑
xi = 0 (without loss of generality). Thus now you

are maximising a function of 2 parameters, so you will you need to find ∂`
∂β1

, ∂`
∂β2

, and so
on.
You should find, again, that the glm algorithm needs only one iteration to reach the
well-known mle

β̂1 = ȳ, β̂2 =
∑

xiyi/
∑

x2
i ,

regardless of the position of the starting point (β10, β20).

Example 2. Assume that

Yi independent Bi(1, µi), 1 ≤ i ≤ n

and
log
(
µi/(1− µi)

)
= βxi say,

ie
g(µi) = βxi,

thus defining g(·) as the link function. Then

P (Yi = yi | µi) = f(yi | µi) = µyi

i (1− µi)
1−yi

giving

log f(yi | µi) = yi log
µi

1− µi
+ log(1− µi)

which we can rewrite in the general glm form as

log f(yi | µi) =
(
yiθi − b(θi)

)
/φ where φ = 1

and
θi = log

(
µi/(1− µi)

)
, b(θi) = − log(1− µi).

Thus
µi = eθi/(1 + eθi), b(θi) = + log(1 + eθi)

giving

b′(θi) =
eθi

1 + eθi
, b′′(θi) =

eθi

(1 + eθi)2
= µi(1− µi)

all of which, of course, agrees with what we already know, that Yi ∼ Bi(1, µi) implies
that E(Yi) = µi, var(Yi) = µi(1− µi).
Furthermore,

`(β) =
∑

yiβxi −
∑

log(1 + eβxi)

(remembering that g(µ) = log
(
µ/(1− µ)

)
). Hence

∂`

∂β
=
∑

xiyi −
∑

xi
eβxi

1 + eβxi
.
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So we can see at once that the only way to solve ∂`
∂β

= 0 is by iteration. Now

∂`

∂β
=
∑

xiyi −
∑

xi

(
1− 1

1 + eβxi

)
Thus

∂2`

∂β2
= −

∑
x2
i

eβxi

(1 + eβxi)2
= E

(
∂2`

∂β2

)
i.e.

E
(
∂2`

∂β2

)
= −

∑
wix

2
i , wi =

1

Vi
(
g′(µi)

)2
where

Vi = µi(1− µi), g(µi) = log
(
µi/(1− µi)

)
.

You should now check this.
This time, to compute β̂, we find β1 from β0 by

0 =
∂`

∂β

∣∣∣∣
β0

+

(
∂2`

∂β2

) ∣∣∣∣
β0

(β1 − β0)

and so on. This process converges to β̂, where

β̂
approx∼ N

(
β, vn(β)

)
where vn(β) = 1/

∑
wix

2
i ,

wi =
eβxi

(1 + eβxi)2

which may be estimated by replacing β by β̂.
Exercise. Repeat the above with Yi ∼ Po(µi), log µi = βxi, i.e. the Poisson distribution
and the log link function. (You will find this gives φ = 1 again.)

2.4 The Canonical Link functions

In general in glm models, E(Yi) = µi, g(µi) = βTxi and the matrix ∂2`
∂β∂βT may be different

from the matrix E
(

∂2`
∂β∂βT

)
. But for a given exponential family f(·), there is a ‘canonical

link function’ g(·) such that these two matrices are the same.
If g(·) is such that we can write the loglikelihood `(β) as

`(β) =
( p∑

1

βνtν(y)− ψ(β)
)
/φ+ constant

where ψ(β) is free of y [and t1(y), . . . , tp(y) are of course the sufficient statistics], then
g(·) is said to be the canonical link function. In this case

∂`

∂β
=

[t(y)− ∂ψ
∂β

]

φ
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and
∂2`

∂β∂βT
= −1

φ

∂2ψ

∂β∂βT

which is not a random variable. Hence

E
(

∂2`

∂β∂βT

)
=

∂2`

∂β∂βT
for all y.

Verify: If Yi ∼ Po(µi), g(µi) = β1 + β2xi, then g(µ) = log µ is a canonical link function.
What are (t1(y), t2(y)) in this case?
Exercise (1) Take Yi ∼ Bi(1, µi), thus µi ∈ [0, 1]. Take as link g(µi) = Φ−1(µi), the
probit link, where Φ is the distribution function of N(0, 1). (Take g(µi) = βxi.) Show this
is not the canonical link function.
Exercise (2) Suppose, for simplicity, that β is of dimension 1, and the loglikelihood

`(β) =
(
βt(y)− ψ(β)

)
/φ.

Prove that

var t(Y ) = φ

(
∂2ψ

∂β2

)
.

and hence that
∂2`

∂β2
< 0 for all β.

Hence any stationary point of `(β) is the unique maximum of β. Generalise this result to
the case of vector β.
Solution.

∂`

∂β
=

1

φ

(
t(y)− ∂ψ

∂β

)
and we know that this has expectation 0. Similarly

∂2`

∂β2
= −1

φ

∂2ψ

∂β2

and this is free of the random quantity Y . Further, we can quote the general result that

E
( ∂`
∂β

∂`

∂β

)
= E

(
− ∂2`

∂β2

)
.

In this case this expectation is just (
− ∂2`

∂β2

)
,

since we know that this is free of Y . Hence

var(t(Y )) = φ
∂2ψ

∂β2

and we know that because this expression is a variance, it must be > 0. Thus

− ∂2`

∂β2
> 0,
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hence `(β) is a strictly concave function. Thus if it has a stationary point, ie a solution
of ∂`/∂β = 0, then this point must be the unique maximum of `(β).
The generalization of this result to the matrix version uses the facts that

E
( ∂`
∂β

)
= 0,

and the covariance matrix of the vector ∂`
∂β

is

E
(
− ∂2`

∂β∂βT
)
.

Now apply the fact that a covariance matrix must be positive definite, and hence show
that `(β) is a strictly concave function of the vector β.

2.5 Testing hypotheses about β, and a measure of the

goodness of fit

Returning to our original glm model, with loglikelihood for observations Y1, . . . , Yn as

`(β, φ) =
n∑
1

{
yiθi − b(θi)

φ
+ c(yi, φ)

}
(glm)

with E(Yi) = µi, g(µi) = βTxi, where xi given, we proceed to work out ways of testing
hypotheses about the components of β.
(i) If, for example, we just want to test β1 = 0 where

β =

 β1
...
βp


then we can find β̂1 , and se(β̂1) its standard error, and refer |β̂1|/se(β̂1) to N(0, 1). We
reject β1 = 0 if this is too large. The quantity se(β̂1) is of course obtained as the square
root of the (1, 1)th element of the inverse of the matrix

−∂2`

∂β∂βT

∣∣∣∣
β̂

.

So here we are using the asymptotic normality of the mle β̂, together with the formula
for its asymptotic covariance matrix.
(ii) If we want to test β = 0, we can use the fact that, asymptotically, β̂ ∼ N

(
β, V (β)

)
,

say. Hence

(β̂ − β)T
(
V (β̂)

)−1
(β̂ − β) ∼ χ2

p,

approximately, so that to test β = 0, just refer β̂T
(
V (β̂)

)−1
β̂ to χ2

p.
Similarly we could find an approximate (1−α)-confidence region for β by observing that,
with c defined in the obvious way from the χ2

p distribution,

P
[
(β̂ − β)T

(
V (β̂)

)−1
(β̂ − β) ≤ c

]
' 1− α
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giving an ellipsoidal confidence region for β centred on β̂. This procedure can be adapted,
in an obvious way, to give a (1− α)-confidence region for, say,

(
β1

β2

)
.

(iii) But we are more likely to want to test hypotheses about (vector) components of β;
for example with

Yi ∼ NID(µ+ β1xi + β2x
2
i + β3x

3
i , σ

2)

we may wish to test
(
β2

β3

)
=
(
0
0

)
, or, if

Yij ∼ Po(µij), 1 ≤ i ≤ r, 1 ≤ j ≤ s,

with
log µij = θ + αi + βj + γij, 1 ≤ i ≤ r, 1 ≤ j ≤ s,

we may wish to test γij = 0 for all i, j.
In general, with `(β) as in (glm) above, suppose that we wish to test β ∈ ωc (the
‘current model’) against β ∈ ωf (the ‘full model’), where ωc ⊂ ωf (and ωc, ωf are linear
hypotheses). Assume that φ is known. Define S(ωc, ωf ) = 2(Lf − Lc), where Lf , Lc are
loglikelihoods maximised on ωf , ωc respectively. Then

S(ωc, ωf ) = 2
∑[

yi(θ̃i − θ̂i)−
(
b(θ̃i)− b(θ̂i)

)]
/φ

where θ̂i = mle under ωc, θ̃i = mle under ωf . Define D(ωc, ωf ) = φS(ωc, ωf ). Then
D(ωc, ωf ) is termed the deviance of ωc relative to ωf ,
and S(ωc, ωf ) is termed the scaled deviance of ωc relative to ωf .

2.6 Distribution of the scaled deviance

If ωc is true, then

S(ωc, ωf )
approx∼ χ2

t1−t2 , where t1 = dim(ωf ), and t2 = dim(ωc).

This result is exact for normal distributions with g(µ) = µ.
A practical difficulty, and how to solve it. In practice, for normal distributions, φ
is generally unknown (for binomial and Poisson, φ = 1). In this case we replace φ by its
estimate under the full model, and for the normal distribution we would then use the F
distribution for our test of ωc against ωf .
This is discussed in greater detail (but still without a complete proof) below.

A highly important special case of a generalised linear model is that of the linear model
with normal errors. This model, and its analysis, have been extensively studied, and there
are many excellent text-books devoted to this one subject, demonstrating it to be both
useful and beautiful. In this brief text, we introduce the reader to this topic in the next
Chapter.
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2.7 From recent Mathematical Tripos questions

Mathematical Tripos Part IIA, 1997 4/13
This is the ‘Essay’ question for 1997, designed to take the well-prepared candidate about
40 minutes.
Suppose that Y1, ..., Yn are independent random variables, and that Yi has probability
density function

f(yi|θi, φ) = exp[(yiθi − b(θi))/φ+ c(yi, φ)].

Assume that E(Yi) = µi, and that there is a known link function g such that

g(µi) = βTxi,where xi is known and β is unknown.

Show that
(a) E(Yi) = b′(θi),
(b) var(Yi) = φb′′(θi) = Vi say, and hence
(c) if `(β, φ) is the log-likelihood function from the observations (y1, ..., yn) then

∂`(β, φ)

∂β
=

n∑
1

(yi − µi)xi
g′(µi)Vi

.

Describe briefly how glm finds the maximum likelihood estimator β̂, and discuss its ap-
plication for Yi independent Poisson random variables, with mean µi, and

log µi = βTxi, 1 ≤ i ≤ n.

——————————————————————————-
Solution
This is ‘the calculus at the heart of glm’: see your lecture notes for the full story.

(Incidentally, this makes it a rather easy question for the diligent candidate.)
The example has φ = 1 and

`(β) = −
∑

exp(βTxi) + βT
∑

xiyi + constant

so that glm will solve, by iteration, the simultaneous equations

∂`

∂β
= 0.

——————————————————————————–
Mathematical Tripos 2000 Part IIA 2/12

(i) Suppose that Y1, · · · , Yn are independent observations, with E(Yi) = µi, g(µi) = βTxi,
where g(·) is the known “link” function, β is an unknown vector of dimension p, and
x1, ..., xn are given covariate vectors. Suppose further that the log-likelihood for these
data is `(β), where we may write

`(β) =
(Σp

1βνtν(y)− ψ(β))

φ
+ constant,
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for some function ψ(β). Here t1(y), ..., tp(y) are given functions of the data y = (y1, · · · , yn),
and φ is a known positive parameter.
(a) What are the sufficient statistics for β?
(b) Show that E(tν(Y )) = ∂ψ

∂βν
, for ν = 1, ..., p.

(ii) With the same notation as in Part (i), find an expression for the covariance matrix
of (t1(Y ), ..., tp(Y )), and hence show that `(β) is a concave function. Why is this result

useful in the evaluation of β̂, the maximum likelihood estimator of β?
Illustrate your solution by the example

Yi ∼ Bi(1, µi) where 0 < µi < 1,

log
µi

(1− µi)
= βxi, 1 ≤ i ≤ n,

with x1, ..., xn known covariate values, each of dimension 1. Your solution should include
a statement of the large-sample distribution of β̂.

SOLUTION
(i)
a) Since

`(β) =
(Σp

1βνtν(y)− ψ(β))

φ
+ constant,

it follows that the likelihood function is exp `(β), and so by the Factorisation Theorem,
(t1(Y ), ..., tp(Y )) is sufficient for the vector β.
b) Now we know that in general

E
( ∂`
∂β

)
= 0.

Here, we see that
∂`

∂β
= (1/φ)

(
t(y)− ∂ψ

∂β

)
.

Hence,

E(tν(Y )) =
∂ψ

∂βν

as required.
ii) We also know that in general

E
(
− ∂2`

∂β∂βT
)

= E
( ∂`
∂β

∂`

∂βT
)
.

Here

− ∂2`

∂β∂βT
=

1

φ

( ∂2ψ

∂β∂βT
)
,

which in fact is free of Y , the random vector. Hence

1

φ2
cov(t(Y )) =

1

φ

∂2ψ

∂β∂βT
,
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giving the equation

cov(t(Y )) = φ
∂2ψ

∂β∂βT
.

Since this is a covariance matrix, and we are told that φ > 0, it follows that

− ∂2`

∂β∂βT

is a positive-definite matrix. Thus the function `(β) is a concave function. This has the
useful practical consequence that if we can find a solution of ∂`

∂β
= 0, we know it must be

the unique maximum of the function `(β).
(Much of this is already familiar to students from the lecture notes given above.)
The binary logistic regression example requires us to compute the term `(β), and its first
and second derivative. We must also state that for large n, the approximate distribution
of β̂ is N(β, vn(β)), say, where

1/vn(β) = E
(
− ∂2`

∂β2

)
.

(This is relatively easy to work out as we are told that β is scalar.)



Chapter 3

Regression for normal errors

3.1 Basic set-up and distributional results

Assume that
Yi ∼ NID(βTxi, σ

2)

where each of β, x1, . . . , xn is of dimension p. Assume further that x1, . . . , xn are linearly
independent. Then we may rewrite our model in the following matrix form

Y ∼ Nn(Xβ, σ
2In)

X being called the ‘design’ matrix, which has rank p, since x1, . . . , xn are linearly inde-
pendent.
We now write our model in the form E(Y ) ∈ ωf where ωf is the linear subspace of
vectors of the form Xβ, for some β. For the present, we will assume that σ2 is known.
First we find the maximum likelihood estimator of β for E(Y ) ∈ ωf . In this case

f(y | β, σ2) =
1

(
√

2πσ2)n
exp−1

2

n∑
1

(yi − βTxi)
2/σ2,

equivalently,

f(y | β, σ2) ∝ 1

(σn)
exp− 1

2σ2
(y −Xβ)T (y −Xβ).

Thus β̃, the mle of β under ωf , minimises (y −Xβ)T (y −Xβ). Now

∂

∂β
(y −Xβ)T (y −Xβ) =

∂

∂β
(yTy − 2(XTy)Tβ + βT (XTX)β)

= −2(XTy) + 2(XTX)β.

The matrix of second derivatives is easily seen to be 2(XTX). For any vector u, uT (XTX)u =
(Xu)T (Xu) ≥ 0, with equality if and only if u = 0, thus (XTX) is is a positive definite
matrix.
Thus we can say that the quadratic form (y −Xβ)T (y −Xβ) attains its minimum at its
stationary point, which in this case is given by

(XTy) = (XTX)β̃.

34
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Further, since X is of rank p, so also is XTX, and thus this matrix has a unique inverse
(XTX)−1. Hence the mle of β, which is also the least squares estimator, is given by

β̃ = (XTX)−1XTy,

We now obtain the expression for the corresponding fitted value of y under ωf . This is ỹ,
where

ỹ = Xβ̃ = X(XTX)−1XTy.

We rewrite this equation as
ỹ = Pfy,

thus defining Pf as X(XTX)−1XT . A very important property of Pf is that it is a
projection matrix. This means that it satisfies Pf = P T

f and PfPf = Pf ; it is easy to
check these two equations. You may also check that since X is of rank p, then so also is
Pf . Furthermore, for any n-dimensional vector v say, vTPfv = (Pfv)

T (Pfv) ≥ 0, hence
Pf is a positive-semidefinite matrix.
Exercises.
i) Show that β̃ has the distribution N(β, σ2(XTX)−1).
This follows easily by writing β̃ = (XTX)−1XT (Xβ+ε), where ε ∼ N(0, σ2I). Now recall
that the distribution of a linear transform of a multivariate normal is again multivariate
normal. (See Appendix 1.)
ii) Verify that

max
ωf

f(y | β, σ2) =
const

σn
exp−(y − ỹ)T (y − ỹ)/2σ2.

In a typical statistical modelling situation we are only interested in fitting the model
ωf : E(Y ) = Xβ for some β as our ‘baseline’ model. We will almost certainly want to
compare ωf , the ‘full’ model, with say ωc, a ‘constrained’ model, where ωc is a given
linear subspace of ωf . If we can ‘explain’ our data y with a simpler model (ie one using
fewer parameters) then generally we will gain in two respects. Not only do we find that to
interpret the simpler model gives us more insight than trying to interpret an unnecessarily
complicated model, but also we will find that estimation for fewer parameters, loosely
speaking, will be more accurate than the corresponding estimation in the larger model.
In this sense, it pays to ‘declutter’ our statistical model whenever possible. We do this
within the formal framework of linear models, building on the results given above.
First we must introduce suitable notation.

PartitionX, β as (X1
...X2),

(
β1

β2

)
respectively, so thatXβ = X1β1+X2β2. Assume that β1, β2

are of dimensions p1, p2 respectively, and that X1, X2 are of ranks p1, p2 respectively, with
p1 + p2 = p. Then, suppose we wish to test the hypothesis H0 : β2 = 0.
We see that H0 can be rewritten as H0 : E(Y ) ∈ ωc where ωc is a linear subspace of ωf ,
which is Rp. Now we know from our derivation of β̃ given above, that the least squares
estimator of β1 under ωc is say β̂1, where

β̂1 = (XT
1 X1)

−1XT
1 y.

Further, we can see that the ‘fitted’ value of y under ωc must be

ŷ = Pcy,
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0   

Y   

Z 

W   

Figure 3.1: Projecting the vector Y down to the space ωf , (blue arrow), and also to the
subspace ωc (red arrow).

where Pc is the projection of y onto ωc. It is then easy to check that

max
ωc

f(y | β, σ2) =
const

σn
exp−(y − ŷ)T (y − ŷ)/2σ2.

Now since Pc = X1(X
T
1 X1)

−1XT
1 , it is a projection matrix of rank p1. You can verify that

the scaled deviance is

S(ωc, ωf ) =
[
−(y − ỹ)T (y − ỹ) + (y − ŷ)T (y − ŷ)

]/
σ2.

We can illustrate this for ourselves with a sketch in which Y is of dimension 3, ωf is
a plane, ωc is a line within ωf ,and all of Y, ωf , ωc pass through the point 0. (A vector
subspace always passes through the origin.) This is shown in Figure 3.1 with Z = PfY
and W = PcY . Observe from your picture that

Qc ≡ (y − ŷ)T (y − ŷ) ≥ (y − ỹ)T (y − ỹ) ≡ Qf ,

Qc, Qf being the deviances in fitting ωc, ωf respectively.
The quantities Qc, Qf are very important. Here we are dealing with the normal linear
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model, and Qc, Qf are usually referred to as the residual sums of squares fitting
ωc, ωf respectively. We rewrite the equation

S(ωc, ωf ) =
[
(y − Pcy)

T (y − Pcy)− (y − Pfy)
T (y − Pfy)

]/
σ2

as
S = [yTy − yTPcy − yTy + yTPfy]/σ

2

giving (using P T
c Pc = Pc, etc.)

S = yT (Pf − Pc)y/σ
2.

But
(Pf − Pc)(Pf − Pc) = Pf − 2Pc + Pc = Pf − Pc ,

since PfPc = PcPf = Pc, (using the fact that ωc ⊂ ωf ). Hence

S = yTPy/σ2

where P is the projection matrix, Pf − Pc. At this point we quote, without proof: If
y ∼ N(µ, σ2I) and Pµ = 0, then yTPy/σ2 ∼ χ2

r, where r = rank P . Check that if
E(Y ) ∈ ωc, then

(Pf − Pc)E(Y ) = 0.

Hence, to test µ ∈ ωc against µ ∈ ωf , we refer

yTPy/σ2 to χ2
r,

i.e. we refer [residual ss under ωc− residual ss under ωf ]/σ
2 to χ2

r, where r = dimωf −
dimωc. But in practice this result is not directly useful, because

σ2 is unknown .

It is not difficult for you to show that under ωf , the mle of σ2 is

(y − Pf )
T (y − Pf )/n.

This mle is not quite what we use for testing hypotheses about β. However, consideration
of this mle leads us on to the following very important theorem.
Theorem. Suppose Y ∼ N(µ, σ2I), where µ ∈ the linear subspace ωf . Suppose the
linear subspace ωc ⊂ ωf . Let

µ̃ = PfY, µ̂ = PcY

where Pf is the projection onto ωf , Pc the projection onto ωc. As defined before, we take

Qf = (Y − µ̃)T (Y − µ̃)

and
Qc = (Y − µ̂)T (Y − µ̂),

as the residual sums of squares fitting ωf , and fitting ωc respectively, so that by definition
Qc ≥ Qf . Then
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Qf/σ
2 ∼ χ2

df

and
(Qc −Qf )/σ

2 ∼ χ2
r (noncentral),

and these two random variables are independent.
The second term is central χ2

r if and only if µ ∈ ωc. Here

df = degrees of freedom of Qf = n− dim(ωf ) = n− p

and
r = dim(ωf )− dim(ωc) = p2.

Corollaries
(1) E(Qf/df) = σ2

so that if µ ∈ ωf , then Qf/df (the ‘mean deviance’) is an unbiased estimate of σ2.
(2) To test µ ∈ ωc against µ ∈ ωf , we use

(Qc −Qf )/r

Qf/df

which we refer to Fr,df , rejecting ωc if this ratio is too large.
Exercise. Show that under ωc, PfY − PcY is normal, with mean 0 and covariance matrix

cov(PfY )− cov(PcY )

(this is a positive-definite matrix).

3.2 Proof of results about distributions of quadratic

forms

To prove the theorem you do need to ‘recall’ some algebraic results. Omit this section if
you do not have the necessary background in matrix algebra.
Proof of the above Theorem
We start by showing that

Qf/σ
2 ∼ χ2

df .

Here’s how to proceed.
Recall that under ωf , the random vector Y may be written Y = Xβ + ε, where ε ∼
N(0, σ2I). Now we require the distribution of the quadratic form Y T (I − Pf )Y , where
(I − Pf ) is clearly a projection matrix, of rank n− p = df in our previous notation. We
note that Y = Xβ + ε, and PfY = Xβ + Pfε. Thus

Y T (I − Pf )Y = εT (I − Pf )ε.

Now if B is any n by n projection matrix of rank df say, then it has eigen-values λ1, . . . , λn
say, and λ1 = 1, . . . , λdf = 1, with the remaining λi’s as zero. (It is easy to check that
any eigen value of B is either 1 or 0, and then we need to recall the fact that the rank of
a matrix is the number of its eigen-values that are non-zero.)
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Let u1, u2, . . . , un be the eigen vectors corresponding to λ1 = 1, . . . , λn respectively, so
that uTi ui = 1, uTi uj = 0 for i, j distinct. We may write B =

∑n
1 λiuiu

T
i . In this case we

see, by taking B = I − Pf , that

(I − Pf ) =

df∑
1

uiu
T
i

and so

εT (I − Pf )ε =

df∑
1

Z2
i

where Zi = uTi ε. It is thus easily checked that Z1, . . . , Zdf are NID(0, σ2) random vari-
ables, and so we see (from the definition of the χ2 distribution) that

Y T (I − Pf )Y/σ
2 ∼ χ2

df ,

which is the required result. We remind the reader that Y T (I−Pf )Y is called the ‘residual
sum of squares under ωf ’.
Observe that (Pf − Pc)Y and (I − Pf )Y are independent, since (Pf − Pc)(I − Pf )

T is an
n × n matrix with every element 0. (remember that PfPc = Pc). Hence the quadratic
forms

((Pf − Pc)Y )T (Pf − Pc)Y and ((I − Pf )Y )T (I − Pf )Y

are also independent, in other words

Y T (Pf − Pc)Y and Y T (I − Pf )Y

are independent. It only remains to show that

Y T (Pf − Pc)Y/σ
2 ∼ non− central χ2

r,

with parameter of non-centrality which vanishes if and only if E(Y ) ∈ ωc.
(This proof is very similar to the one given above for the distribution of Y T (I − Pf )Y .)
Observe that (Pf − Pc) is a projection matrix of rank r = p2: put P = (Pf − Pc) for
brevity.
Thus we may write

P =
r∑
1

viv
T
i

say, where v1, . . . , vr are the eigen-vectors of P corresponding to the its r eigen-values
1, . . . , 1. As usual vTi vj = 1 for i = j, vTi vj = 0 for i 6= j.
Hence, the quadratic form

Y TPY =
r∑
1

(vTi Y )2 =
r∑
1

W 2
i

say, where Wi = vTi Y . Now W1, . . . ,Wr are NID random variables, each with variance
σ2. Further, let E(Y ) = µ. Then we know from our model that µ ∈ ωf . Furthermore,
E(Wi) = vTi µ. You can therefore check that the sum of squares of E(Wi) is exactly µTPµ.
This vanishes if and only if Pµ = 0, that is Pcµ = Pfµ. But we know that µ ∈ ωf , hence
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it follows that Pfµ = µ, so that Pµ = 0 if and only if Pcµ = µ, in other words if and only
if µ ∈ ωc. Thus we have proved that

Y T (Pf − Pc)Y/σ
2 ∼ non− central χ2

r,

with parameter of non-centrality which vanishes if and only if E(Y ) ∈ ωc.

3.3 Inference about β when σ2 is unknown.

We have already shown that under ωf ,

β̃ ∼ N(β, σ2(XTX)−1).

In order to cope with the problem of unknown σ2, we need the following
Theorem
Under ωf , β̃ is distributed independently of the residual sum of squares Y T (I −Pf )Y/σ2.
Proof

β̃ = (XTX)−1XTY, and (I − Pf )Y = (I −X(XTX)−1XT )Y.

Now it is straightforward to show that the p× n matrix (XTX)−1XT (I − Pf ) has every
element 0. Thus β̃ is independent of (I − Pf )Y , and hence it is also independent of the
quadratic form ((I − Pf )Y )T (I − Pf )Y = Y T (I − Pf )Y , which of course is our required
result.
This Theorem enables us to use the Student’s t-distribution, for example to construct
confidence interval for a component of β.
An important special case is that of simple linear regression of y on the single covariate
x, for which the model may be written as

ωf : yi = β1 + β2xi + εi, 1 ≤ i ≤ n.

You may check that in terms of our previous notation, the design matrix X = (1n
...x),

where we have used 1n as the n-dimensional vector with every element 1. Hence

XTX =

(
1Tn1n 1Tnx
xT1n xTx

)
which is a 2× 2 matrix having determinant ∆ = n

∑
(xi − x̄)2. Thus

(XTX)−1 =

(
Sxx/∆ −Sx/∆
−Sx/∆ n/∆

)
where Sxx =

∑
x2
i , Sx =

∑
xi. Hence, applying the equation β̃ = (XTX)−1XTy, we see

for example that

β̃2 =
∑

(xi − x̄)(yi − ȳ)/
∑

(xi − x̄)2.

This is normally distributed, with mean β2 and variance σ2/
∑

(xi − x̄)2, and is indepen-
dent of the residual sum of squares, which is say s2(n − 2): this of course has the σ2χ2

df

distribution, where df = n− 2. Hence we can say that the ratio

(β̃2 − β2)

s
√

(
∑

(xi − x̄)2
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Figure 3.2: The pdf of t6

has the t-distribution with n − 2 degrees of freedom. Of course all of this derivation
could be carried out directly, without recourse to matrices and the general results. The
intention in working it out here from the matrix results is that of helpful illustration.
Figure 3.2 shows you the probability density function of a t6 distribution, together with
that of the N(0, 1) distribution for comparison. It is intuitively sensible that the former
is more ‘diffuse’ than the latter: if we do not know σ2 we will tend to get wider confidence
intervals for our parameter β2 than if we do know σ2.

3.4 Analyses of variance, and the definition of a fac-

tor

Example 1. One-way Analysis of Variance (anova)
Another important special case of our general linear model is used in the following simple
experimental set-up.
Suppose that we are comparing t different treatments. We take as the model for the data
(yij)

yij = µ+ θi + εij,

for 1 ≤ i ≤ t, 1 ≤ j ≤ ni. For example, in an agricultural experiment, yij might be the
yield in the jth observation on the ith type of fertiliser. We will assume that the design
of the experiment is such that εij ∼ NID(0, σ2), where yij = response of jth observation
on ith treatment. It is important to realise that our model may be rewritten in the form

Y = Xβ + ε,



P.M.E.Altham, University of Cambridge 42

provided that we ‘string out’ the observations (yij) into the n-dimensional vector Y , where
n =

∑
ni, β is the vector with elements µ, θ1, . . . , θt and so forth. (We could spell out

the matrix X if we wished, but there is no particular merit to that exercise.)
We want to test whether all the treaments are the same in their effect on y, or not. So
in this case our full hypothesis ωf is E(yij) = µ + θi for all i, j, and the ‘constrained’
hypothesis of interest ωc is E(yij) = µ for all i, j, i.e. ωc is the hypothesis that there is no
difference between treatments.
It is easy to check that the residual sum of squares (i.e. the deviance) fitting ωc is∑∑

(yij − ȳ)2 ≡ Qc.
When we come to fitting ωf , we need to pause for thought about the number of inde-
pendent parameters that we can fit.
First note that ‘treatments’ is a factor here: we wish to fit (θi) and not (θ× i). This will
necessitate a factor declaration in any glm package. Omitting such a declaration would
have serious and unwanted consequences. This is one of many instances in computational
statistics where we learn by making mistakes.
Next, to fit ωf , we must tackle the problem of lack of parameter identifiability in our
model. Since, for example,

E(yij) = µ+ θi = (µ+ 10) + (θi − 10),

we see that µ, (θi) and (µ + 10), (θi − 10) give identical models for the data. We resolve
this difficulty by imposing a linear constraint on the parameters (θi). The particular
constraint chosen has no statistical interpretation: it is merely a device to enable us to
obtain a unique solution to the likelihood equations.
The standard glm constraint is θ1 = 0. This is known as the ‘corner-point’ constraint.
This actually means that we can write our model ωf in the form

Y = Xβ + ε

withX of full rank, by taking the components of the t-dimensional vector β as µ, θ2, . . . , θt,
for example. Equivalently, we could impose the constraint

∑
niθi = 0. In any case, we

still get the same fitted values, which you can check are say,

ỹij =
∑
j

yij/ni ≡ ȳi

and the same deviance ∑
i,j

(yij − ỹij)
2 ≡ Qf .

This gives the Analysis of Variance Table 3.1. This is traditionally set out as a sum, to
show how Qc is partitioned into its components ST , Qf , with the corresponding degrees

of freedom partitioned accordingly. You should verify that Qf ≡ Qc −
[∑

ȳ2
i ni − cf

]
=

Qc − ST , where cf = correction factor =
(∑∑

yij
)2/

n. Then, to test ωc, we refer

ST/(t− 1)

Qf/(n− t)
to Ft−1,n−t.

Here ST = Qc −Qf = (deviance under ωc - deviance under ωf ).
N.B. In using glm, you don’t need to know the formulae for Qc, Qf etc, since glm works
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Due to sum of squares degrees of freedom
treatments ST =

∑
i ȳ

2
i ni − cf t− 1

residual ss Qf n− t
Total ss Qc =

∑∑
(yij − ȳ)2 n− 1

Table 3.1: A simple Analysis of Variance table

them out for you. You just need to know how to use Qc, Qf , ST etc. to construct an
Anova, and hence apply our Theorem which gives the distribution of Qc, Qf to construct
the F test of ωc against ωf .
Of course, because Anovas are of such everyday practical importance, many statistical
packages, eg SAS, Genstat, S-plus will have a single directive (eg aov() in R or S-plus)
which will set up the whole Anova table in one fell swoop. Furthermore, they will generally
use a more efficient way of computing the sums of squares than the glm method that we
use here, which takes no account of any special properties of the design matrix X. But
it’s good for you at this stage to have to think about exactly how this table is constructed
from differences in residual sums of squares.

Example 2. Two-way Anova.
Consider the dataset given in Table 3.2. This dataset was published in The Independent,

driver surgeon barrister MP country
86 85 82 86 Denmark
75 83 75 79 Netherlands
77 70 70 68 France
61 70 66 75 UK
67 66 64 67 Belgium
56 65 69 67 Spain
52 67 65 63 Portugal
57 55 59 64 W.Germany
47 58 60 62 Luxembourg
52 56 61 58 Greece
54 56 55 59 Italy
43 51 50 61 Ireland

Table 3.2: The percentage having equal confidence in both sexes, for 4 professions and 12
countries

on October 8, 1992, under the headline “Irish and Italians are the ‘sexists of Europe’ ”,
and it shows the percentage of people in each of 12 countries, having equal confidence in
the ability of males and females, to carry out any one of 4 professions. (Here ‘driver’ here
means ‘bus or train driver’). Clearly there are differences between the 4 professions, and
also between the 12 countries. Figure 3.3 shows how the mean percentage depends on the
profession, and also on the country. Note that the overall mean percentage is 64.46, and
that the means for Luxembourg and Greece coincide.
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Figure 3.3: A ‘factor’ plot for the 2-way design

We now work out whether these differences are significant.
Here we have two factors country and profession, having I = 12, J = 4 levels respectively,

and we have u = 1 observations on each of the IJ combinations of factor levels. We take
as our model for the responses (yijk)

yijk = µ+ αi + βj + εijk, where εijk ∼ NID(0, σ2)

with 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ u. Our ‘full’ hypothesis is

ωf : E(yijk) = µ+ αi + βj

and we might want to test any or all of the following linear hypotheses:
ω0 : α = 0, β = 0, ie no difference between countries, and no difference between profes-
sions,
ω1 : α = 0, ie no difference between countries,
ω2 : β = 0., ie no difference between professions.
Observe that

ω0 ⊂ ω1 ⊂ ωf , ω0 ⊂ ω2 ⊂ ωf .

Once again we need to impose constraints on the parameters to ensure identifiability. For
the exercises below, it is algebraically convenient to impose the symmetric constraints

Σαi = Σβj = 0

rather than the default glm constraints

α1 = β1 = 0.
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Of course, if
µ+ αi + βj = m+ ai + bj

for all i, j, where
Σαi = Σβj = 0, and a1 = b1 = 0,

then you can easily work out the relationships between the two sets of parameters µ, (αi), (βj)
and m, (ai), (bj).
Exercises
(i) Show that the residual ss fitting ω0 is

∑
i

∑
j

∑
k(yijk − ȳ)2.

(ii) Show (from the one-way Anova) that the residual ss fitting ω1 is∑
i

∑
j

∑
k

(yijk − ȳ+j+)2.

Note that ω1 : E(yijk) = µ+ βj (we define ȳ+j+ =
∑

i

∑
k yijk/Iu).

(iii) Show that ỹijk, the fitted value under ωf , may be written as

ỹijk = ȳi++ + ȳ+j+ − ȳ+++, 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ u.

(Hint on solution: we seek to minimise∑
i

∑
j

∑
k

(yijk − µ− αi − βj)
2

subject to the constraints ∑
i

αi = 0,
∑
j

βj = 0.

Thus we take as our Lagrangian∑
i

∑
j

∑
k

(yijk − µ− αi − βj)
2 + θ

∑
i

αi + φ
∑
j

βj

and find the partial derivatives with respect to µ, αi, βj in turn, set each of these to 0, and
evaluate the Lagrange multipliers θ, φ by applying the constraints

∑
i αi = 0,

∑
j βj = 0.

This is an example where it is much more efficient to find the formulae for the least
squares estimators directly, rather than by writing the model in the y = Xβ + ε form
and working out what (XTX)−1 must be.)
The residual ss fitting ωf =

∑∑∑
(yijk − ỹijk)

2.
Show that

the residual ss fitting ω2− the residual fitting ωf
= the residual ss fitting ω0−the residual ss fitting ω1.

For the dataset given in Table 3.2, you can fit the linear models ω2, ωf , ω0, ω1 in turn.
You can thus compute the resulting residual sums of squares (deviances). These are, in
the corresponding order,
fitting country only, residual sum of squares = 848.00(df = 36)
fitting country + profession, residual sum of squares = 556.250(df = 33)
fitting a constant, residual sum of squares = 5091.917(df = 47) and
fitting profession only, residual sum of squares = 4800.167(df = 44).
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Because of the balance of the design with respect to the two factors in question, these
four deviances obey the linear equation given above, that is

848.00− 556.250 = 5091.917− 4800.167(= 291.75, df = 3).

This leads us to our next important definition.

3.5 Orthogonality in the Linear Model

Definition of parameter orthogonality for a linear model
Suppose, we have the usual general linear model

Y = Xβ + ε, ε ∼ N(0, σ2I)

and the matrix X and the vector β are partitioned as before, so that

Xβ = (X1X2)

(
β1

β2

)
where β1, β2 are of dimensions p1, p2 respectively, and p1+p2 = p, where p is the dimension
of β. Then β1, β2 are said to be mutually orthogonal sets of parameters if and only if

XT
1 X2 = 0

↙ ↙ ↘
p1 × n n× p2 p1 × p2

that is, the first p1 columns of the n× p matrix X are orthogonal to the last p2 columns.
It is not always easy to check this condition directly. You may well find that an easier
way to check that the parameters β1, β2 are mutually orthogonal is to apply the Lemma
O1.
Lemma O1. β1, β2 are orthogonal if and only if

β̂1 ≡ β̃1

(nb: this is an an identity in Y ), where
β̂1 = lse of β1 in fitting Y = X1β1 + ε (i.e. assuming β2 = 0)

β̃ =
(β̃1

β̃2

)
= lse of β in fitting Y = Xβ + ε (i.e. the full model).

Here we use the abbreviation lse to denote Least Squares Estimator.
Proof. We have already seen that β̃ is the solution of

XTXβ̃ = XTY ;

similarly β̂1 is the solution of
XT

1 X1β̂1 = XT
1 Y.

The result follows from writing XTX as(
XT

1

XT
2

)(
X1 X2

)
=

(
XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

)
.
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Orthogonality between sets of parameters has an important consequence for residual sums
of squares, as shown in Lemmas O2 and O3.

Lemma O2. If β1, β2 are orthogonal, then
(residual ss fitting E(Y ) = X1β1)− (residual ss fitting E(Y ) = X1β1 +X2β2)
=(residual ss fitting E(Y ) = 0)− (residual ss fitting E(Y ) = X2β2).

Proof.
The residual ss fitting (E(Y ) = X1β1)) is (Y −X1β̂1)

T (Y −X1β̂1).
Further,
(residual ss fitting E(Y ) = Xβ) = (Y −Xβ̃)T (Y −Xβ̃),
and
(residual ss fitting E(Y ) = 0) = Y TY .
Lastly,
(residual ss fitting E(Y ) = X2β2) = (Y −X2β̂2)

T (Y −X2β̂2).
The result follows from writing XTX as a partitioned matrix, and then using the fact
that XT

1 X2 = 0.
Lemma 03. Suppose β1, β2 are orthogonal, then we may write
‘sum of squares due to β’ as
‘sum of squares due to β1’ + ‘sum of squares due to β2’
ie

Y TX(XTX)−1XTY = Y TX1(X
T
1 X1)

−1XT
1 Y + Y TX2(X

T
2 X2)

−1XT
2 Y

equivalently
Y TPY = Y TP1Y + Y TP2Y,

where P1P2 is the n×n matrix with every element 0. Hence Y TP1Y, Y
TP2Y are indepen-

dent quadratic forms, and each is independent of Y T (I − P )Y . We have already found
their distribution.
Proof.
This is a straightforward exercise. Note that P = P1 + P2.

If β1, β2 are not mutually orthogonal, then good software will remind you of this fact by
mentioning a phrase such as ‘terms added sequentially’ in the layout of the Analysis of
Variance. The numerical result of an anova will depend on the order in which the
model terms are written in the model.
Apply Lemma O1 to answer the following questions, in which the errors εi may be assumed
to have the usual distribution.

Exercise 1. In the model
Yi = β1 + β2xi + εi

with 1 ≤ i ≤ n, show that the parameters β1, β2 are mutually orthogonal if and only if
Σxi = 0.
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Exercise 2. In the model

Yij = µ+ θi + εij, 1 ≤ j ≤ u, 1 ≤ i ≤ t,

show that if we impose the constraint Σθi = 0, then µ is orthogonal to the set (θi).

In practice we are never interested in fitting the hypothesis E(Y ) = 0, but we are inter-
ested in fitting the model

E(Y ) = µ1n

as our ‘baseline’ model (1n here denoting the n-dimensional unit vector). For this reason
we need the following.
Extension of the definition of orthogonality
Suppose we rewrite our linear model as

Y = µ1n +Xβ + ε,

where µ, β are unknown, and dim(β) = p.
Let us now partition X, β as

X = (1n
...X1

...X2), β =

(
β1

β2

)
respectively, where β1, β2 are of dimensions p1, p2, and p1 + p2 = p. Thus we may rewrite
our model as say

yi = µ+ βT1 x1i + βT2 x2i + εi.

Then µ, β1, β2 are mutually orthogonal sets of parameters if

1TnX1 = 0, 1TnX2 = 0, XT
1 X2 = 0.

Consider the linear hypotheses

ω0 : E(Y ) = µ1n, ω1 : E(Y ) = µ1n +X2β2

and
ω2 : E(Y ) = µ1n +X1β1, ωf : E(Y ) = µ1n +Xβ.

Then, as in Lemma 02, we can show that if µ, β1, β2 are mutually orthogonal, then

residual ss fitting ω2 – residual ss fitting ωf ,
= residual ss fitting ω0 – residual ss fitting ω1.

The proof is left as an exercise:
note that the residual ss fitting ω0 is (Y − µ∗1n)

T (Y − µ∗1n)
where µ∗ =

∑
Yi/n = Ȳ .

For the dataset given in Table 3.2, with the model

ωf : E(yijk) = µ+ αi + βj,
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Due to degrees of freedom sum of squares Mean square F value p-value
country 11 4243.9 385.8 22.8885 2.438e-12
profession 3 291.7 97.2 5.7694 0.002752
Residuals 33 556.3 16.9
Total 47 5091.9

Table 3.3: A two-way Analysis of Variance table, for a balanced experiment

and identifiability constraints
∑
αi = 0,

∑
βj = 0, the three sets of parameters µ, (αi), (βj)

are mutually orthogonal. Because of this fact we can write the corresponding Analysis of
Variance as Table 3.3. We say that ‘the sum of squares due to (country, profession)’ has
been partitioned into its orthogonal components ‘sum of squares due to country’ and ‘sum
of squares due to profession’. The F− values in the anova show us that there are clearly
significant differences between the 12 countries, and also between the 4 professions, in
their effect on y. (You will have noticed the ridiculously accurate p− value of 2.438e− 12
which is given in the standard computer output. It is nothing to get excited about: for
our purposes we only need know that it is < .0001, for example.)
You should now be able to extend the definition to orthogonality between any number of
sets of parameters.
Exercise 1. In the model

Yi = β1 + β2xi + β3zi + εi

for i = 1, . . . , n show that the parameters β1, β2, β3 are mutually orthogonal if and only if
Σxi = Σzi = Σxizi = 0.
Solution

Just write the design matrix X as (1n
...x

...z), then you will see that for mutual orthogonality
of the parameters β1, β2, β3 we require the 3 × 3 matrix XTX to be a diagonal matrix:
this gives the required result.
Exercise 2. In the model for the response Y to factors A, B say

Yijk = µ+ αi + βj + εijk

with k = 1, . . . , u, i = 1, . . . , I, j = 1, . . . , J , and constraints Σαi = Σβj = 0, show that
µ, (αi), (βj) are mutually orthogonal sets of parameters.
Solution Let H0 be the hypothesis H0 : E(Yijk) = µ for k = 1, . . . , u, i = 1, . . . , I, j =
1, . . . , J . You may check that

∑
i

∑
j

∑
k((Yijk − µ)2 is minimised with respect to µ by

µ = Ȳ , the mean value of (Yijk).
Now let H1 be the hypothesis H1 : E(Yijk) = µ + αi for k = 1, . . . , u, i = 1, . . . , I, j =
1, . . . , J . Take

∑
i αi = 0. It is easily checked that

∑
i

∑
j

∑
k(Yijk−µ−αi)2 is minimised

with respect to µ and (αi) subject to
∑

i αi = 0 by

µ = Ȳ , αi = Ȳi.. − Ȳ ,

where Ȳi.. is the mean
∑

j

∑
k Yijk/(Ju). Hence our least squares estimator of µ under H0,

as a function of (Yijk), is identical to our least squares estimator of µ under H1. Thus, by
Lemma O1, we see that µ is orthogonal to the set of parameters (αi).
Let H2 be the hypothesis H1 : E(Yijk) = µ+ βj for k = 1, . . . , u, i = 1, . . . , I, j = 1, . . . , J .
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Take
∑
βj = 0, then it is easily seen by symmetry that the residual sum of squares is

minimised with respect to µ, βj such that
∑

j βj = 0 by

µ = Ȳ , βj = Ȳ.j. − Ȳ .

where Ȳ.j. is the mean
∑

i

∑
k Yijk/(Iu).

Once again our least squares estimator of µ is the same function of (Yijk) as for H0, and
so µ is orthogonal to the set of parameters (βj).
Finally, take H2 as the hypothesis H2 : E(Yijk) = µ + αi + βj for k = 1, . . . , u, i =
1, . . . , I, j = 1, . . . , J , with

∑
i αi = 0,

∑
βj = 0. You will see that now the residual sum

of squares is minimised subject to the constraints by the functions of (Yijk) which are
(respectively) identical to those given above, namely

µ = Ȳ , αi = Ȳi.. − Ȳ , βj = Ȳ.j. − Ȳ .

Thus µ, (αi)(βj) are mutually orthogonal sets of parameters.
Note, this argument was nice and straightforward because we had equal numbers of ob-
servations, say u, for each (i, j) combination. If instead we had had the basic model

Yijk = µ+ αi + βj + εijk, 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ uij

then in general we do not have this nice orthogonality property. Thus for example our
estimates of (αi) if (βj) is included in the model will in general be different from those of
(αi) if (βj) is not included in the model.
Exercise 3. The model in Ex. 2 above assumes that the effects of the two factors are
additive. We may want to check for the presence of an interaction between A, B, using
the model

Yijk = µ+ αi + βj + γij + εijk

with i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , u.
Show that with the constraints on (αi), (βj) as above, and also with the constraints
Σjγij = 0 for each i,Σiγij = 0 for each j, then the sets of parameters

µ, (αi), (βj), (γij)

are mutually orthogonal.
Solution Simply minimise∑

i

∑
j

∑
k

(Yijk − µ− αi − βj − γij)
2

subject to all the constraints on the three sets of parameters (αi), (βj), (γij) and you will
find that the least squares estimators of µ, (αi), (βj) are functions of (Yijk) identical to
those given above, and the least squares estimator of γij is

γij = Ȳij. − Ȳi.. − Ȳ.j. + Ȳ .

We emphasize that both the two orthogonality results given as Exercise 2, 3 above depend
on the fact that the experiment is ‘balanced’, that is we have equal numbers of observa-
tions for each (i, j) combination.
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3.6 Interaction between two factors: the interpreta-

tion

What does it mean to say that there is an interaction between two factors?
If an interaction γ is present, then the effect of one factor, say A, on the response Y
depends on the level of the second factor, say B. This is best illustrated by an example.
Consider a (fictitious) psychological experiment where A is the noise level , say ‘quiet’ or
‘loud’, here 0, 1 respectively, and B is the gender, female or male, of the subject. Let Y
be the response, which is a score in answer to the question ‘How much does this noise dis-
tress you?’ and suppose we have the data given in Table 3.4. (Incidentally, this dataset
is slightly ‘unbalanced’, that is the number of observations for each of the four factor
combinations are not quite the same.)
Then if for example males perceived a much larger difference between ‘quiet’ and ‘loud’
than the corresponding difference perceived by the females, we say that there is an inter-
action between A and B.
An interaction between two factors is almost always most easily explained by drawing a
graph, and for the current example this is shown in Figure 3.4, which shows the mean
value of Yijk against j, for each level of i.
Recall that our model is

Y noise gender
1 22.0 0 female
2 23.7 0 female
3 21.5 0 female
4 23.0 1 female
5 23.0 1 female
6 22.7 1 female
7 15.0 0 male
8 15.2 0 male
9 15.3 0 male

10 14.7 0 male
11 19.0 1 male
12 19.3 1 male
13 20.7 1 male

Table 3.4: A dataset invented to show an interaction between the factors noise and gender

Yijk = µ+ αi + βj + γij + εijk,

with i = 1, 2 for quiet, loud, respectively, j = 1, 2 for female, male respectively, and
k = 1, . . . , nij. Let us take the corner point constraints for the parameters, which as we
have noted will be the default constraints in R. These constraints are

α1 = 0, β1 = 0, γ1j = 0 for all j, γi1 = 0 for all i.

You may check that with these constraints, for the dataset given above, γ̂22 = 4.1167(.7973),
corresponding to a t−value of 5.163 which is clearly significant when referred to t9.
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Figure 3.4: A graph showing an interaction between the factors noise and gender

3.7 Collinearity

For convenience we restate our original model

Yi ∼ NID(βTxi, σ
2), i = 1, . . . , n

or equivalently
Y ∼ N(Xβ, σ2In).

We know that the Least Squares Equations are

XTXβ̂ = XTY.

The p× p matrix XTX is non-singular if and only if X is of full rank. If X is of less than
full rank, then there is an infinity of possible solutions to the Least Squares Equations.
(Of course, this is just another way of saying that the matrix XTX does not possess
an inverse.) The columns of X are then said to be collinear, in other words, they are
linearly dependent.
We have already seen that for certain models, for example

E(Yij) = µ+ θi

a constraint is needed on the parameters to ensure identifiability, and hence to find a
unique solution to the Least Squares Equations. In the case of factor levels, this constraint
will be automatically imposed for us by the glm package. Typically, this is θ1 = 0, etc.
What happens if we, perhaps by accident, try to fit a model E(Y ) = Xβ where X is
not of full rank, and where the problem is not automatically ‘fixed up’ for us by the glm
imposing its own constraints? For example, what happens if we ask the glm to fit

E(Yi) = µ+ β1xi + β2zi + β3wi,

where (for good or bad reasons) we have arranged that wi = 6 xi + 7 zi, say? Hence, we
have certainly arranged that the design matrix X is of less than full rank. A sophisticated
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glm package will report this to us right away, with some phrase involving ’singular’: this
enables us, if we so wish, to reduce the set of covariates to get a design matrix of full
rank. However, with almost all glm packages, we could just press on and insist on our
original choice of covariates. In this case, the glm package would work out for us that
not all the parameters can be estimated, and would consequently report in the list of
parameter estimates that some are aliased. In the example above, β3 would be reported
as aliased, since once the first 3 parameters are estimated, β3 cannot be estimated. Thus
the glm package will set β3 to zero.

Exercise 1. In the model
E(Yij) = µ+ θi + βxi,

where j = 1, . . . , u and i = 1, . . . , I and (xi) are given covariates, show that not all the
parameters (θi), β can be estimated. Experiment with this model with a small set of
fictitious data and your favourite glm package.
Exercise 2. Algebraically, we can see that given points (xi, Yi), i = 1, . . . , n where (xi)
is scalar, then we should be able to find a polynomial of degree (n− 1) which will give a
perfect fit:

Yi = β0 + β1xi + ...+ βn−1x
n−1
i .

In practice this approach is not useful and is not even numerically feasible, as the following
experiment will show you. Try generating a random sample of n points (n = 30 say) (xi)
from the rectangular distribution on [0, 1], and generate an independent random sample
of n points (Yi). What happens when you fit a straight line, a quadratic, a cubic. . . and so
on for the dependence of Y on x? You should find that when you get up to a polynomial
of degree more than about 6, the matrix XTX becomes effectively singular, so that the
coefficients of x7 and so on may be reported as ‘aliased’.

3.8 From recent Part II Mathematical Tripos ques-

tions

Mathematical Tripos, Part IIA 1997 1/12
i) This is the ‘easy’ part of the question
Assume that the n-dimensional observation vector Y may be written

Y = Xβ + ε,

where X is a given n× p matrix of rank p, β is an unknown vector, and

ε ∼ Nn(0, σ
2I).

Let Q(β) = (Y −Xβ)T (Y −Xβ). Find β̂, the least-squares estimator of β, and show that

Q(β̂) = Y T (I −H)Y

where H is a matrix that you should define.
If now Xβ is written as Xβ = X1β1 +X2β2, where X = (X1 : X2), β

T = (βT1 : βT2 ), and
β2 is of dimension p2, state without proof the form of the F−test for testing H0 : β2 = 0.
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ii) is currently omitted, as it was a GLIM-dependent analysis of a dataset.
Solution
i) With Q(β) = (Y − Xβ)T (Y − Xβ), we see that Q(β) is minimised with respect to β
by β̂, the solution to

∂Q(β)

∂β
= 0

ie XT (Y −Xβ) = 0.
Note that rank(X) = rank(XTX), hence the p × p matrix XTX is of full rank, hence
(XTX)−1 exists, hence β̂ is the unique solution to

β̂ = (XTX)−1XTY

and by simple manipulation, we see that

Q(β̂) = Y TY − Y THY.

H is of course the usual ‘hat’ matrix X(XTX)−1XT .
With Xβ = X1β1 +X2β2, let us write RΩ, Rω as the residual sums of squares fitting the
models

Ω : E(Y ) = Xβ, ω : E(Y ) = X1β1

respectively.
Note that ω ⊆ Ω, and dim(Ω)− dim(ω) = p2.
Facts: to be quoted without proof,
on Ω, RΩ/σ

2 ∼ χ2
n−p

and on ω, (Rω −RΩ)/σ2 ∼ χ2
p2

and these are independent random variables.
So to test ω against Ω, we refer

(Rω −RΩ)/p2

RΩ/(n− p)
to Fp2,n−p.

All of the above is standard book work.

Mathematical Tripos, Part IIA, 1998, 4/14 This is the Paper 4 ‘Essay’ question, designed
to take about 40 minutes by the well-prepared candidate.
Write an essay on fitting the model

ω : yi = βTxi + εi, 1 ≤ i ≤ n,

where ε1, . . . , εn are assumed to be independent normal, mean 0, variance σ2, and where
β, σ2 are unknown, and x1, . . . , xn are known covariates. Include in your essay discussion
of the following special cases of ω :

ω1 : yi = µ+ β1x1i + β2x2i + εi, 1 ≤ i ≤ n,

ω2 : yijk = µ+ αi + βj + εijk, 1 ≤ k ≤ nij, 1 ≤ i ≤ r, 1 ≤ j ≤ c,

where
∑∑

nij = n.
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[Any distribution results that you need may be quoted without proofs.]

SOLUTION
This model may be rewritten in matrix form

y = Xβ + ε

where ε ∼ N(0, σ2I).
Much of the solution is essentially contained in your lecture notes: here are points that
you should cover in your essay, possibly with appropriate sketch diagrams:
a) The estimation of β, σ2, the joint distribution of these estimates, and how to construct
confidence intervals for elements of β.
(Remember, you don’t need to prove any of the distributional results.)
b) What to do if Xβ = X1β1 +X2β2, and we want to test, say, β2 = 0.
c) The relevance of projections.
d) The relevance of (and of course the definition of) parameter orthogonality.
e) How to check the assumption ε ∼ N(0, σ2I). (ie what to do with residuals.)
The two hypotheses ω1, ω2 can be used to illustrate some of the above points. Note that
if nij = u say, for all i, j then we have a balanced two-way design, for which the standard
‘two-way anova’ is appropriate.

Mathematical Tripos, Part IIA, 1999 4/14
Consider the linear regression

Y = Xβ + ε,

where Y is an n-dimensional observation vector, X is an n × p matrix of rank p, and
ε is an n-dimensional vector with components ε1, · · · , εn, where ε1, · · · , εn are normally
and independently distributed, each with mean 0 and variance σ2. We write this as
ε ∼ Nn(0, σ

2In).
(a) Let β̂ be the least-squares estimator of β. Show that

β̂ = (XTX)−1XTY.

(b) Define Ŷ = Xβ̂ and ε̂ = Y − Ŷ . Show that Ŷ may be written

Ŷ = HY,

where H is a matrix to be defined.
(c) Show that Ŷ is distributed as Nn(Xβ,Hσ

2), and ε̂ is distributed as Nn(0, (In −
H)σ2).

(d) Show that if hi is defined as the ith diagonal element of H, then 0 ≤ hi ≤ 1, for
i = 1, · · · , n.

(e) Why is hi referred to as the “leverage” of the ith point? Sketch a graph as part
of your answer.

Hint: You may assume that if the n-dimensional vector Z has the multivariate
normal distribution, mean µ, and covariance matrix V, so that we may write

Z ∼ Nn(µ, V ),
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then for any constant q × n matrix A,

AZ ∼ Nq(Aµ,AV A
T ).

SOLUTION.
This is another ‘Essay’ question, and the solution is in effect contained in the Lecture
Notes.

Mathematical Tripos, Part IIA, 2000 1/13
(i) Consider the linear regression

Y = Xβ + ε,

where Y is an n-dimensional observation vector, X is an n × p matrix of rank p, and
ε is an n-dimensional vector with components ε1, · · · , εn. Here ε1, · · · , εn are normally
and independently distributed, each with mean 0 and variance σ2; we write this as ε ∼
Nn(0, σ

2In).
(a) Define R(β) = (Y − Xβ)T (Y − Xβ). Find an expression for β̂, the least squares
estimator of β, and state without proof the joint distribution of β̂ and R(β̂).
(b) Define ε̂ = Y −Xβ̂. Find the distribution of ε̂.
(ii) We wish to investigate the relationship between n, the number of arrests at football
matches in a given year, and a, the corresponding attendance (in thousands) at those
matches, for the First and Second Divisions clubs in England and Wales. Thus, we have
data

(nij, aij) j = 1, · · · , Ni, i = 1, 2,

where N1 = 21 and N2 = 23. We fit the model

H0 : log(nij) = µ+ βlog(aij) + θi + εij j = 1, · · · , Ni, i = 1, 2,

with θ1 = 0, and we assume that the εij are distributed as independent N(0, σ2) random
variables. We find the following estimates, with standard errors given in brackets:
µ̂ = −0.9946(2.1490)
β̂ = 0.8863(0.3647)
θ̂2 = 0.5261(0.3401)
with residual sum of squares = 37.89(41df). The residual sum of squares if we fit H0 with
β and θ2 each set to 0 is 43.45.

Give an interpretation of these results, using an appropriate sketch graph.
How could you check the assumptions about the distribution of (εij)? What linear

model would you try next?

SOLUTION.
(i) is the easy ‘bookwork’ part, and we have no need to repeat its solution.
(ii) The total number of observations is 44, so we see that the residual sum of squares
fitting the null model Hnull : E(log(nij)) = µ is 43.45 with 43 degrees of freedom. This
means that the ‘ss due to regression’ in fitting the given model H0 is only (43.45− 37.89)
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with 2 df (since the difference in dimension between H0 and Hnull is 2). So the first thing
that we see about the model H0 is that it is a pretty poor fit, we could find

R2 = (43.45− 37.89)/43.45.

For this point there is no need to do a formal calculation or a formal test (for which, in
any case, students in the examination would not have the wherewithal.)
The model H0 clearly corresponds to 2 parallel lines, each with slope β. The first one,
corresponding to First Division clubs, has intercept µ, and the second has intercept µ+θ2.
But, since we are given the corresponding estimates and their se’s, we can do a quick
‘by eye’ test for the signifiance of the 3 parameters in H0. For example, formally we
could refer β̂/se(β̂) to the t41 distribution. However, in practice we simply note that
β̂/se(β̂) = .8863/.3647 > 2, so that we will clearly reject the hypothesis that β = 0. (Here
we note that t41 will be very like N(0, 1).) Similarly, it appears that µ, θ2 can probably
be taken as zero, so the graph of 2 parallel lines with non-zero intercepts may possibly
be adequately replaced by a single line with zero intercept. This remark anticipates the
final question ‘What linear model would you try next’ to which the answer is to try

E(log(nij) = βlog(aij).

The response to the question ‘How would you check the assumptions about the distribution
of (εij) ?’ is intended to be brief remarks, with sketch graphs, about plots such as the
residuals against the fitted values, and the qqplot of the residuals as an approximate
‘normality’ check.

Mathematical Tripos, Part IIA, 2001 1/13
(i) Assume that the n-dimensional observation vector Y may be written as

Y = Xβ + ε ,

where X is a given n× p matrix of rank p, β is an unknown vector, and

ε ∼ Nn(0, σ
2I).

Let Q(β) = (Y −Xβ)T (Y −Xβ). Find β̂, the least-squares estimator of β, and show that

Q(β̂) = Y T (I −H)Y,

where H is a matrix that you should define.
(ii) Show that ΣiHii = p. Show further for the special case of

Yi = β1 + β2xi + β3zi + εi, 1 ≤ i ≤ n,

where Σxi = 0,Σzi = 0, that

H =
1

n
11T + axxT + b(xzT + zxT ) + czzT ;

here, 1 is a vector of which every element is one, and a, b, c, are constants that you should
derive.
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Hence show that, if Ŷ = Xβ̂ is the vector of fitted values, then

1

σ2
var(Ŷi) =

1

n
+ ax2

i + 2bxizi + cz2
i , 1 ≤ i ≤ n.

Solution
i) is all straightforward bookwork, with H = X(XTX)−1XT as usual.
ii) Since H is idempotent, and of rank p, it is easily seen that the eigen-values of H are
1, repeated p times, and 0, repeated n − p times. Further, since trace(H) is simply the
sum of the eigen values of H, it follows that∑

i

Hii = p,

as reqired. For the given special case, we have X = (1 x z), which is an n × 3 matrix.
Thus

XTX =

 1T1 0 0
0 xTx xT z
0 xT z zT z

 .

Find the elements a, b, c by inverting the 2× 2 matrix(
xTx xT z
xT z zT z

)
.

Hence a = zT z/∆, b = −xT z/∆, c = xTx/∆, where as usual ∆ = (xTx)(zT z)− (xT z)2.
Multiplying out, we derive H in the given form.
Finally, note that since Ŷ = HY , it follows that varŶi = Hiiσ

2, so for the final expression
we need only note that the given expression for H does indeed imply that its ith diagonal
element is

σ2
( 1

n
+ axi

2 + 2bxizi + cz2
i

)
, for 1 ≤ i ≤ n.

Your eyes do not deceive you: the 3rd year Cambridge undergraduates are indeed being
asked to invert a 2× 2 matrix! (The old skills are the best...)

Mathematical Tripos, Part IIA, 2002 4/14
Assume that the n−dimensional observation vector Y may be written as

Y = Xβ + ε

where X is a given n×p matrix of rank p, β is an unknown vector, with βT = (β1, . . . , βp),
and

ε ∼ Nn(0, σ
2I) ∗

where σ2 is unknown. Find β̂, the least-squares estimator of β, and describe (without
proof) how you would test

H0 : βν = 0

for a given ν.
Indicate briefly two plots that you could use as a check of the assumption *.
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Sulphur dioxide is one of the major air pollutants. A data-set presented by Sokal and
Rohlf (1981) was collected on 41 US cities in 1969-71, corresponding to the following
variables:
Y = Sulphur dioxide content in micrograms per cubic metre
X1 = average annual temperature in degrees Fahrenheit
X2 = number of manufacturing enterprises employing 20 or more workers
X3 = population size (1970 census) in thousands
X4 = Average annual wind speed in miles per hour
X5 = Average annual precipitation in inches
X6 = Average annual number of days with precipitation per year.
Interpret the R output that follows below, quoting any standard theorems that you need
to use.

>next.lm <- lm(log(Y) ~ X1 + X2 + X3 + X4 + X5 + X6)

>summary(next.lm)

Call:

lm(formula = log(Y) ~ X1 + X2 + X3 + X4 + X5 + X6)

Residuals:

Min 1Q Median 3Q Max

-0.79548 -0.25538 -0.01968 0.28328 0.98029

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.2532456 1.4483686 5.008 1.68e-05 ***

X1 -0.0599017 0.0190138 -3.150 0.00339 **

X2 0.0012639 0.0004820 2.622 0.01298 *

X3 -0.0007077 0.0004632 -1.528 0.13580

X4 -0.1697171 0.0555563 -3.055 0.00436 **

X5 0.0173723 0.0111036 1.565 0.12695

X6 0.0004347 0.0049591 0.088 0.93066

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

Residual standard error: 0.448 on 34 degrees of freedom

Multiple R-Squared: 0.6541

F-statistic: 10.72 on 6 and 34 degrees of freedom,

p-value: 1.126e-06

Solution
The first part of the question as standard bookwork that we have now seen several times,
so here we only give the solution to the ‘numbers’ part of the question.
Notes for solution on the R output.
Here, we are fitting

log(Yi) = µ+ β1X1i + . . .+ β6X6i + εi
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for i = 1, . . . , 41 with the usual assumption that εi ∼ NID(0, σ2).
We see that R2 = 0.6541 (not a bad fit, but still a lot of scatter). Note that R2 = (ss due
to regression)/(“total” ss),
and the F-statistic of 10.72 is closely related to this: specifically
F-statistic = [(ss due to regression)/6]/[(residual ss)/34],
and if the null hypothesis H : β1 = . . . = β6 = 0 is true, this quantity has the distribution
F , with 6, 34 degrees of freedom. Evidently 10.72 is well out in the right-hand tail of this
F− distribution, the corresponding p-value is tiny (1.126e−06 in fact, and we don’t need
this ridiculous accuracy, but that’s computers for you.)
We reject the hypothesis H.
More interestingly, we can assess the significance of each of the coefficients β1, . . . , β6 in
turn, from the corresponding t−values. For example, for β1,
the t-value is −0.0599017/0.0190138 = −3.150).
We see that β3, β5, β6 can probably be dropped from the model.
Note that because the parameters are almost certainly non-orthogonal, when we fit

lm(log(Y) ~ X1 + X2 + X4)

which would be the natural next step in the fitting process, our estimates for β1, β2, β4

may change quite markedly (and so too will their se’s, generally reducing a bit).
It appears that (back in 1969-71) the amount of pollution (sulphur dioxide)
decreased as the average annual temperature increased,
increased as the amount of industry increased,
and decreased as the wind speed increased.
When these 3 variables are taken into account, the other 3 variables (namely population
size, total rainful p.a., and total number of rainy days p.a.) have no significant effect.



Chapter 4

Regression for binomial data

4.1 Basic notation and distributional results

Suppose tha the random variables Ri are independent Bi(ni, pi), 1 ≤ i ≤ k and (r1, . . . , rk)
are the corresponding observed values. Our general hypothesis is

ωf : 0 ≤ pi ≤ 1, 1 ≤ i ≤ k,

and under ωf ,

loglikelihood (p) =
∑

[ri log pi + (ni − ri) log(1− pi)] + constant

which, as you can check, is maximised with respect to p ∈ ωf by pi = ri/ni.
Define logit(p) = log(p/(1 − p)) : we will work with this particular link function here.
(Later you may wish to try other choices for the link function.) We wish to fit

ωc : logit(pi) = βTxi, 1 ≤ i ≤ k

where xi are given covariates of dimension p, β is of dimension p and p < k. Under ωc,
as you can check,

loglikelihood = `(β) = βT
∑

rixi −
∑

ni log(1 + eβ
T xi) + const.

since
pi = eβ

T xi/(1 + eβ
T xi) = pi(β).

Thus `(β) is maximised by β̂, the solution to

∑
rixi =

∑
nixi

eβ
T xi

1 + eβT xi
.

Put ei = nipi(β̂), the ‘expected values’ under ωc. Verify that

2× [loglikelihood maximised under ωf − loglikelihood maximised under ωc]

= 2
∑(

ri log
ri
ei

+ (ni − ri) log
(ni − ri)

(ni − ei)

)
≡ D, say.

61
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To test ωc against ωf , we refer D to χ2
k−p, rejecting ωc if D is too big, so for a good fit

we should find D ≤ k − p. Assuming that ωc fits well, we may wish to go on to test, say,
ω1 : β2 = 0, where

β =

(
β1

β2

)
and β1, β2 are of dimensions p1, p2 respectively. So under ω1, log

(
pi/(1 − pi)

)
= βT1 x1i,

say.
Let D1 be the deviance of ω1, defined as in (∗) [ei = ei(β

∗
1)]. By definition D1 > D, and,

by Wilks’ theorem, to test ω1 against ωc we refer D1 − D to χ2
p2

, rejecting ω1 in favour
of ωc if this difference is too large. Most versions of glm prints D1 − D as ‘increase in
deviance’, with the corresponding increase in degrees of freedom (p2).
Note. At the stage of fitting ωc we get (from glm), β̂ and se(β̂j) for j = 1, . . . , p. The
standard errors come from the square root of the diagonal elements of the matrix[

−E
(

∂2`

∂β∂βT

)]−1

.

Since β̂ is asymptotically normal,with mean β, we can, for example, test βp = 0 by refer-

ring
(
β̂p/se(β̂p)

)
to N(0, 1).

4.2 An example from criminology, and some exer-

cises

Here is an example of binomial logistic regression with 3 2-level explanatory factors.
Farrington and Morris of the Cambridge University Institute of Criminology collected data
from Cambridge City Magistrates’ Court on 391 different persons sentenced for Theft Act
Offences between January and July 1979.
Leaving aside the 85 persons convicted for burglary , there were 120 people for shoplifting
and 186 convicted for other theft acts . (The burglary offences are not considered further
here.) The types of sentence were sorted according as to whether they were ‘lenient’ or
‘severe’, and those convicted were sorted into men and women, showing that 153 out of
203 men were given a ‘lenient’ sentence, compared with 89 out of 103 as the correspond-
ing figure for the women. These bald summary statistics suggest that men are being
treated more harshly than women, but of course, there’s more to this than first meets the
eye. A more detailed examination of these 306 individuals allowed the individuals to be
classified also by Previous convictions (none/one or more), and Offence type (shoplifting
only/other). For those convicted of shoplifting only, the numbers given lenient sentences
were

24/25, 17/23, 48/51, 15/21

these being given in the order
m,m, f, f

for gender, and
n, p, n, p,
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for n = Having no previous conviction, and p = Having one or more previous convictions.
For those convicted of some other offence, the corresponding figures are

52/61, 60/94, 22/24, 4/7.

Let yijk be the number given a lenient sentence, and let totijk be the corresponding total,
for i, j, k = 1, 2. We take i = 1, 2 for gender = male, female, j = 1, 2 for Previous
convictions = none or some, and k = 1, 2 for Offence type = shoplifting or other. We
assume that yijk are independent, Bi(totijk, pijk). Then, using binomial logistic regression,
it can be shown that the model

logit(pijk) = µ+ αi + βj + γk

with the usual constraints α1 = β1 = γ1 = 0 fits well: its deviance is 1.5565 which
is well below the expectation of a χ2

4 variable. The estimates of µ, α2, β2, γ2 with their
corresponding se’s are

2.627(.4376), .009485(.3954),−1.522(.3361),−.6044(.3662)

respectively. Comparing the ratio (.009485/.3954) with N(0, 1) suggests to us that the
parameter α2 can be dropped from the model. In other words, whether or not an individual
is given a Lenient sentence is not affected by gender. Removing the term α2 from the
model causes the deviance to increase by only .001 for an increase of 1 df: the resulting
model has deviance 1.5571, which may be referred to χ2

5. The estimates of µ, β2, γ2 for
this reduced model are 2.634(.3461), −1.524(.3261), −.6082(.3301) respectively, showing
that, as we might expect, the odds in favour of getting a Lenient sentence are reduced
if there is one or more previous conviction, and reduced if the offence type is other than
shoplifting. More specifically, if there is one or more previous conviction, then the odds
are reduced by a factor of about (1/4.6) = exp−1.524: if the offence type is other than
shoplifting then the odds of getting a Lenient sentence are reduced by a factor of about
(1/1.8).
Exercise 1. Explore what happens to the above model if you allow an interaction between
previous conviction and offence type, i.e. if you try the model

logit(pijk) = µ+ βj + γk + δjk.

Solution
If we put in the interaction term, we find that now the residual deviance is 0.96203 on
4 df, and δ̂22 = 0.5513(.7249). This means (from comparing 0.5513/.7249 with N(0, 1))
that the interaction term is non-significant. The advantage of this conclusion is that we
do not have to try to interpret an interaction to our client!
Exercise 2. Try the above exercise with the link functions
g(p) = Φ−1(p), the probit
g(p) = log(− log(1− p)), the complementary log− log.
Solution
Take the model

g(pijk) = µ+ αi + βj + γk.

The deviance for this model with the logit link function is 1.5565, with 4 df. With g(p) =
Φ−1(p) we find that the residual deviance is 1.3228 on 4 df; with g(p) = log(− log(1−p)) we
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find that the residual deviance is 1.0702 on 4 df. The small discrepancies between the three
residual deviances are unimportant, and I prefer the logit link for ease of interpretation.
For each of the three link functions we reach the same conclusion: that the term αi can
be dropped from the model.
Exercise 3. Warning: in the case of BINARY data, ie when ni = 1 for all i, we cannot
use the deviance to assess the fit of the model (the asymptotics go wrong). Show that if
ni = 1 for all i, so that ri only has 0, 1 as possible values, then the maximum value of the
log-likelihood under ωf is always 0.
Solution
The loglikelihood is say

∑
i `i(pi), where `i(pi) = rilog(pi) + (ni− ri)log(1− pi), which we

wish to maximise with respect to pi, for 0 ≤ pi ≤ 1. Now ni = 1, and so if ri = 1, we must
maximise log(pi) in 0 ≤ pi ≤ 1: clearly this is attained at pi = 1, and then `i(pi) = 0, But
if ri = 0, we also see that `i(pi) has maximum value 0. Hence, under ωf , the maximum
value of the log-likelihood is always 0.

4.3 From recent Mathematical Tripos questions

1997 paper 2/11
i) Suppose that Y1, ..., Yn are independent binomial observations, with

Yi ∼ B(ti, πi) and log(πi/(1− πi)) = βTxi, for 1 ≤ i ≤ n,

where t1, ..., tn and x1, ..., xn are given. Discuss carefully the estimation of β.
ii) A new drug is thought to check the development of symptoms of a particular

disease. A study on 338 patients who were already infected with this disease yielded the
data below.

Symptoms

Race Drug use Yes No

White Yes 14 93

No 32 81

Black Yes 11 52

No 12 43

You see below the corresponding R analysis, with the corresponding (slightly reduced)
output. (in fact, in 1997 I set this as a GLIM example, but here it is recast in R). Discuss
its interpretation carefully.

Yes <- c(14,32,11,12)

No <- c(93,81,52, 43)

tot <- Yes + No

Race <- gl(2, 2, length=4, labels=c("White", "Black"))

Drug_use <- gl(2,1, length=4, labels=c("Yes", "No"))

first.glm <- glm(Yes/tot ~ Race + Drug_Use, binomial, weights=tot)

summary(first.glm)

.....................
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Coefficients:

Estimate Std. Error

(Intercept) -1.73755 0.24038

RaceBlack -0.05548 0.28861

Drug_useNo 0.71946 0.27898

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8.3499 on 3 degrees of freedom

Residual deviance: 1.3835 on 1 degrees of freedom

Number of Fisher Scoring iterations: 4

—————————————————————————
SOLUTION.

i) With f(yi|πi) ∝ πyi

i (1− πi)
ti−yi we see that

`(β) =
∑

(yi log(πi/(1− πi)) + ti log(1− πi)).

Substitute for πi in terms of β to give

`(β) = βT
∑

xiyi −
∑

ti log(1 + exp(βTxi)) + constant.

Hence
∂`

∂β
=
∑

xiyi −
∑

tixiπi

and so

− ∂2`

∂β∂βT
=
∑

tixixi
Tπi(1− πi) = (V (β))−1

say. The rest of the solution consists of describing the iterative solution of

∂`

∂β
= 0

and the large-sample distribution of β̂ which is of course

N(β, V (β)).

ii) The fitted model is
Y esij ∼ Bi(totij, πij), 1 ≤ i, j ≤ 2

with i = 1, 2 corresponding to Race (White, Black) and j = 1, 2 corresponding to Drug
Use (Yes, No).
We fit

ω : log(πij/(1− πij)) = µ+ αi + βj
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with α1 = β1 = 0, the usual glm constraints.
Thus, using Wilks’ theorem, we may test the adequacy of ω by referring 1.385 to χ2

1, so
that our model ω clearly fits well.
Furthermore, α̂2/se(α̂2) is clearly non-significant when referred to N(0, 1), so that Race
is not significant in its effect on Symptoms(Yes/No).
However, (0.7195/.2790) is clearly in the tail of N(0, 1), showing that [Drug Use = No]
increases the probability of [Symptoms = Yes]; the drug use is effective in reducing the
probability of Symptoms.
Four iterations were required to fit this model, and the ‘null deviance’ was the deviance
obtained in fitting the model πij = constant. Since this was 8.3499 on 3 df, the null model
was obviously a poor fit.
Note that we could have tried

glm(Yes/tot ~ Race* Drug_Use, binomial, weights=tot)

allowing for a possible interaction between Race and Drug use; this model would have
given us a perfect fit (zero deviance), but it is in any case obvious from the fact the the
model ω fits so well that the race.drug term must be non-significant.

The numerical parts of the questions have been edited somewhat, as you will see below.
(They have been recast in R, but are essentially asking the same as in the original version
of the question. The R output is given in slightly reduced form.)
1998 PAPER 1/13
The numerical parts of this question has been edited somewhat. It has been recast from
GLIM into R, but is essentially asking the same as in the original version of the question.
The R output is given in slightly reduced form.
(i) Suppose Y1, ..., Yn are independent observations, with

E(Yi) = µi, g(µi) = βTxi, 1 ≤ i ≤ n,

where g(·) is a known function. Suppose also that Yi has a probability density function

f(yi|θi, φ) = exp[(yiθi − b(θi))/φ+ c(yi, φ)]

where φ is known. Show that if `(β) is defined as the corresponding log likelihood, then

∂`

∂β
=
∑ (yi − µi)xi

g′(µi)Vi

where Vi = var(Yi), 1 ≤ i ≤ n.

(ii) Murray et al. (1981) in a paper “Factors affecting the consumption of psychotropic
drugs” presented the data on a sample of individuals from West London in the table
below:

sex age.group psych r n

1 1 1 9 531

1 2 1 16 500
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1 3 1 38 644

1 4 1 26 275

1 5 1 9 90

1 1 2 12 171

1 2 2 16 125

1 3 2 31 121

1 4 2 16 56

1 5 2 10 26

2 1 1 12 588

2 2 1 42 596

2 3 1 96 765

2 4 1 52 327

2 5 1 30 179

2 1 2 33 210

2 2 2 47 189

2 3 2 71 242

2 4 2 45 98

2 5 2 21 60

Here r is the number on drugs, out of a total number n. The variable ‘sex’ takes values
1, 2 for males, females respectively, and the variable ‘psych’ takes values 1, 2, according
to whether the individuals are not, or are, psychiatric cases.
Discuss carefully the interpretation of the R-analysis below, for which the corresponding
output has been slightly reduced. (You need not prove any of the relevant theorems
needed for your discussion, but should quote them carefully.)

drugdata <- read.table("data", header=T)

attach(drugdata)

sex <- factor(sex); psych <- factor(psych)

age.group <- factor(age.group)

summary(glm(r/n ~ sex + age.group + psych, binomial, weights=n))

deviance = 14.803

d.f.= 13

Coefficients:

Value Std.Error

(Intercept) -4.016 0.1506

sex2 0.6257 0.09554

age.group2 0.7791 0.1610

age.group3 1.323 0.1476

age.group4 1.748 0.1621

age.group5 1.712 0.1899

psych2 1.417 0.09054

The term ‘sex’ is dropped from the model above, and the deviance then increases by 45.15
(corresponding to a 1 d.f. increase) to 59.955 (14 d.f.). What do you conclude?
SOLUTION
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(i) Firstly we have an easy little bit on ‘the calculus at the heart of glm’.
Dropping the suffix i, we see that

logf(y|θ, φ) = (yθ − b(θ))/φ + term free of θ.
Thus

∂logf(y|θ)
∂θ

= (y − b′(θ))/φ.

Now apply the well-known results (suppressing the known constant φ) that since
∫
f(y|θ)dy =

1 for all θ,

E(
∂logf(y|θ)

∂θ
)) = 0,

and

E(
−∂2logf(y|θ)

∂θ2
) = var(

∂logf(y|θ)
∂θ

)

and apply the chain-rule, to give the desired expression for

∂`/∂β.

(ii) Now to the numerical example. The model that we are fitting is ri ∼ independentBi(ni, πi),
for 1 ≤ i ≤ 20, where (since the logit link is the default for the binomial)

log(πi/(1− πi)) = µ+ sexj(i) + age.groupk(i) + psychl(i)

and, for example, j(i) = 1, 1, 1, ...2, 2, 2, (ie as in the first column of the data). We know
that R will assume the usual parameter identifiability conditions:

sex1 = 0, age.group1 = 0, psych1 = 0,

so that in the output, each factor level is effectively being compared with the first
corresponding factor level.
By Wilks’ theorem, we know that the deviance of 14.803 can be compared to χ2

13, and
this comparison shows that the model fits well, since 14.803 is only slightly bigger than
the expected value of χ2

13.
We also know that, approximately, each (mle/its standard error) can be compared with
N(0, 1) to test for significance of that parameter.
So we see that a female is significantly more likely than a comparable male to be on drugs,
and the probability of being on drugs increases as the age.group increases (more or less,
since the last 2 age.groups have almost the same parameter estimate)
and those who are psychiatric cases are more likely than those who are not psychiatric
cases to be on drugs.
If the term ‘sex’ is dropped from the model, the deviance increases by what is obviously
a hugely significant amount, so it was clearly wrong to try to reduce the model in this
way (as we should expect, from the original est/se for sex).



Chapter 5

Poisson regression and contingency
tables

5.1 Loglinear regression for the early UK AIDS data

The total number of reported new cases per month of AIDS in the UK up to November
1985 are listed in Table 5.1 (data taken from A.M. Sykes 1986). Thes are the data for 36

0 0 3 0 1 1 1 2 2 4 2 8 0 3 4 5 2 2
2 5 4 3 15 12 7 14 6 10 14 8 19 10 7 20 10 19

Table 5.1: Early UK AIDS data

consecutive months, and should be read across the Table.
Let us take as our model for Yi the number of new cases reported in the ith month, the
following:
Yi are independent Poisson with mean µi, 1 ≤ i ≤ 36. Thus the ‘full’ model is

ωf : µi ≥ 0, 1 ≤ i ≤ 36.

If we plot Yi against i, we observe that Yi increases (more or less) as i increases. So let
us try to model this by a simple loglinear relationship . Thus the ‘constrained’ model is

ωc : log µi = α+ βi, 1 ≤ i ≤ 36,

giving

µi = exp(α+ βi), and `(α, β) =
∑

log(e−µiµyi

i )

hence
`(α, β) = −

∑
exp(α+ βi) +

∑
yi(α+ βi).

Hence we can find the mle’s of α, β as the solution of

∂`

∂α
= 0,

∂`

∂β
= 0

and we can find the se’s of these estimators in the usual way, from the matrix of the
second derivatives of `.

69
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Figure 5.1: Poisson regression for early AIDS data

This fitting is easily achieved in glm using the Poisson “family” with the log-link function,
which of course is the canonical link function for this distribution.
You can check that α̂ = 0.03966(0.21200), β̂ = 0.7957(0.00771). Figure 5.1 shows the
original data, together with the fitted values under the Poisson model, and the exponential
curve Y = exp(α̂+ β̂i).
To test β = 0, we refer β̂/se(β̂) = (.07957/.007709) to N(0, 1), or refer 127.8, the increase

in deviance when i is droppped from the model to χ2
1. These two tests are asymptotically

equivalent.
Note that the fit of ωc is not very good: the deviance of 62.36 is large compared with χ2

34.
The approximation to the χ2 distribution cannot be expected to be very good here since
many of the ei, the fitted values under the null hypothesis ωc, are very small. We
could improve the approximation by combining some of the cells to give a smaller number
of cells overall, but with each of (ei) greater than or equal to 5.

5.2 Two useful general results

Consider the general model Yi ∼ Po(µi), 1 ≤ i ≤ n with ωf as the hypothesis µi > 0, and
ωc as the hypothesis log(µi) = α + βTxi, 1 ≤ i ≤ n, where x1, . . . , xn are given covariate
vectors, and α, β are unknown, of dimensions 1, p respectively.. It is then easy to show
that the deviance for testing ωc against ωf is

2
∑

yi log
yi
ei
, where
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ei = ei(α̂, β̂) = exp(α̂+ β̂xi).
This deviance is approximately distributed as χ2

n−p−1, if ωc true, provided that (ei) is not
too small.
By writing yi = ei + ∆i, so that

∑
∆i = 0, and expanding log(1 + (∆i/ei)) we can show

that the deviance
2
∑

yilog(yi/ei)

is approximately

2
∑

(ei + ∆i)
(∆i

ei
− 1

2

∆2
i

e2i
+ · · ·

)
.

Collecting up the terms, recalling that
∑

∆i = 0, and neglecting terms of order higher
than ∆2

i shows us that the the deviance is approximately equal to∑
(yi − ei)

2/ei.

This latter expression is called Pearson’s χ2.
For the current example the deviance and Pearson’s χ2 are 62.36, 62.03 respectively, and
n− p− 1 = 34.
Example 2. Accidents 1978–81, for traffic into Cambridge
The data are given in Table 5.2.

Let us take as our model for (Yij), the number of accidents,

Estimated
Time of day Accidents traffic volume

Trumpington Road 07.00–09.30 11 2206
Trumpington Road 09.30–15.00 9 3276
Trumpington Road 15.00–18.30 4 1999
Mill Road 07.00–09.30 4 1399
Mill Road 09.30–15.00 20 2276
Mill Road 15.00–18.30 4 1417

Table 5.2: Cambridge traffic data from 1978-81

Yij ∼ independent Po(µij)

for Road i, and Time of day j, where i = 1, 2, j = 1, 2, 3.
We might reasonably expect the number of accidents to depend on the traffic volume, so
we look for a model

µij ∝ aibj × vγij

that is
log µij = constant + log ai + log bj + γ log vij.

This then enables us to estimate a, b, γ and test a = 1 etc. Written more obviously as a
glm, this is :

log µij = µ+ αi + βj + γ log vij
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say, where i = 1, 2, j = 1, 2, 3, and α1 = 0, β1 = 0 for identifiability.
Hence α2 = 0 if and only if the two roads are equally risky, β2 represents the difference
between time 2 and time 1, and β3 represents the difference between time 3 and time 1.
The estimate of α2 compared with its se, ie the ratio (6.123/2.671), shows that Mill Road
is more dangerous than Trumpington Road. The model seems to fit well (its deviance is
1.88, which is non-significant when referred to χ2

1). The 1st and 3rd Times of Day are
about as dangerous as each other, and each is quite a lot more dangerous than the 2nd
Time of Day. (The estimates of β2, β3 are respectively −6.075(2.972), .04858(.5673).)
The accident rate has a strong dependence on the traffic volume, as we would expect:
the estimate of γ is 15.42(6.885). We take a further look at how the rate depends on
the Road and on the Time of Day, by dropping the corresponding parameters from the
model, in turn, and assessing, from the relevant χ2 distributions, whether or not the
resultant increases in deviance are significant. For example, dropping the Road term
gives an increase in deviance of 5.709, which is significant compared with χ2

1, so we put it
back into the model. Similarly, dropping Time of Day from the model gives an increase
in deviance of 5.701, which is significant compared with χ2

2, so we put this term back into
the model.
But you can check that the model can be simplified by combining the 1st and 3rd Times
of Day, so that we have a new 2-level factor (with levels ‘rush-hour’ and ‘non-rush-hour’
say). The resulting model fits well: its deviance of 1.8896 is low compared with χ2

2.
Question: Predict the number of accidents on Mill Road between 0700 and 0930 for traffic
flow 2000. [Warning: You get a weird answer. It turns out that the question being asked
is a silly one: can you see why?]
Example 3. The Independent , October 18, 1995, under the headline “So when should a
minister resign?”, gave the almost all the following data for the periods when the Prime
Ministers were, respectively, Attlee, Churchill, Eden, Macmillan, Douglas-Home, Wilson,
Heath, Wilson, Callaghan, Thatcher, Major, Blair. (Happily for me in my ceaseless
quest for data, I was able to add the data for the years 1997-2005 following a particular
resignation in 2005, but I am still missing the figures for the period 1995–1997.)
In the years
1945–51, 51–55, 55–57, 57–63, 63–64, 64–70, 70–74, 74–76, 76–79, 79–90, 90–95, 97–2005
when the Governments were, respectively,

lab, con, con, con, con, lab, con, lab, lab, con, con, lab

(where ‘lab’ = Labour, and ‘con’ = Conservative), the total number of ministerial resig-
nations were

7, 1, 2, 7, 1, 5, 6, 5, 4, 14, 11, 12.

(These resignations occurred for one or more of the following reasons: Sex scandal, Fi-
nancial scandal, Failure, Political principle, or Public criticism.)
We can fit a Poisson model to Yi, the number of resignations, taking account of the type
of Government (a 2-level factor) and the length in years of that Government. Thus, our
model is

log(E(Yi)) = µ+ αj + γ logyearsi

where j = 1, 2 for con, lab respectively, and logyears is defined as log(years). We have
taken ‘years’ as

6, 4, 2, 6, 1, 6, 4, 2, 3, 11, 5, 8 :
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Figure 5.2: Ministerial Resignations, against log(‘time at risk’)

this clearly introduces some error due to rounding, but the exact dates of the respective
Governments are not given. This model fits surprisingly well: the deviance is 11.276 (with
9 df). Note that although Labour is very slightly worse than Conservative, the effect of
political party is non-significant: α1 = 0 as usual, and α̂2 = 0.03541(.23271)). Each party
is as bad/good as the other.
The coefficient γ̂ is .96636(.22258). For a Poisson process this coefficient would be exactly
one. We could force the glm to fit the model with γ set to one by declaring logyears as
an offset when fitting the glm. The resulting model then has deviance 11.299 (df = 10).
Figure 5.2 shows Yi plotted against logyearsi, together with the fitted curve from the
model which ignores the effect of political party, that is

log(E(Yi)) = µ+ γ logyearsi.

In this case µ̂ = .3168(.3993), γ̂ = .9654(.2219) and the residual deviance is 11.299 on
10df . Conservative resignations are shown on the graph as blue points and Labour ones
are shown as red points.
Example 4.

Observe that if Si is distributed as Bi(ri, pi) where ri is large and pi is small, then Si is
approximately Poisson, mean µi, where

log(µi) = log(ri) + log(pi).

In this case, binomial logistic regression of the observed values (si) on explanatory vari-
ables (xi), say, will give extremely similar results, for example in terms of deviances and
parameter estimates, to those obtained by the Poisson regression of (si) on (xi), with the
usual log-link function, and an offset of (log(ri)).
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Figure 5.3: Proportion still missing at the end of the year against Age in years

Try both binomial and Poisson regression on the following data-set, which appeared in
The Independent , March 8, 1994, under the headline ‘Thousands of people who disappear
without trace’.

s/r = 33/3271, 63/7257, 157/5065 for males

s/r = 38/2486, 108/8877, 159/3520 for females.

Here, using figures from the Metropolitan police,
r = the number reported missing during the year ending March 1993,
and
s = the number still missing at the end of that year.
and the 3 binomial proportions correspond respectively to ages 13 years and under, 14 to
18 years, 19 years and over.
Questions of interest are whether a simple model fits these data, whether the age and/or
sex effects are significant, and how to interpret the statistical conclusions to the layman.
Figure 5.3 shows how the proportion s/r still missing at the end of the year depends on
age and sex.

5.3 Contingency tables

Example. The Daily Telegraph (28/10/88), under the headline ‘Executives seen as Drink
Drive threat’, presented the data in Table 5.3 from the police breath-test operations at
Royal Ascot and at Henley Regatta: So at Ascot, 1.1% of those tested are arrested,
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Arrested Not arrested Tested
Ascot 24 2210 2234
Henley 5 680 685
Total 29 2890 2919

Table 5.3: A simple 2× 2 table

compared with just 0.7% at Henley. Is the percentage at Ascot significantly different
from that at Henley? To look at this problem using glm techniques, we first present a
reminder of the notation for
The multinomial distribution
Assume (Nij) ∼Mn

(
n, (pij)

)
where n is fixed (= 2919 in our example), and where

pij = P (an individual is in row i, column j) of the two by two table. Thus with data
(nij),

p(n | p) = n!
∏∏ p

nij

ij

nij!
,

where
∑∑

pij = 1.
We wish to test

H0 : pij = pi+p+j for all i, j,

i.e. for this example, we wish to test whether or not you are arrested is independent of
whether you are at Ascot or Henley.
Verify, for the 2× 2 table, H0 is equivalent to

p11/p1+ = p21/p2+.

For our example this is equivalent to the statement
Probability(arrested, given tested at Ascot)= Probability(arrested, given tested at Hen-
ley).
Verify that in general H0 is equivalent to

log pij = constant + αi + βj for some α, β.

where the constant is such that
∑∑

pij = 1.
Now, there is no multinomial ‘error’ function in glm. The following Lemma shows that for
testing independence in a 2-way contingency table we can use the Poisson error function
as a ‘surrogate’.
Using the Poisson error function in glm for the multinomial distribution
The Poisson ‘trick’ for a 2-way contingency table
Consider the r× c contingency table {yij}. Thus yij = number of people in row i, column
j, 1 ≤ i ≤ r, 1 ≤ j ≤ c. Assume that the sampling is such that (Yij) ∼ Mn

(
n, (pij)

)
multinomial parameters n, (pij). Then

p
(
(yij) | (pij)

)
= n!

∏∏(
p
yij

ij

/
yij!
)
,

and, to test
H0 : pij = αiβj for some α, β
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such that (
∑∑

αiβj = 1), against

H : pij ≥ 0, and
∑∑

pij = 1,

we maximise L(p) =
∑∑

yij log pij on each of H,H0 respectively. This gives maxima∑∑
yij log(yij/n),

∑∑
yij log(eij/n)

where eij is the expected frequency under H0, so eij = yi+y+j/n. We know that we can
apply Wilks’ theorem to reject H0 if and only if D = 2

∑∑
yij log(yij/eij) is too BIG

compared with χ2
f where f = (r − 1)(c− 1).

But how can we make use of the Poisson error function in glm to compute this deviance
function?
Here’s the trick: suppose now that Yij ∼ indep Po(µij). Consider testing

HP0 : log µij = α′i + β′j

for some α′, β′, for all i, j, against

HP : log µij any real number.

Now

the loglikelihood = L(µ) = −
∑∑

µij +
∑∑

yij log µij + constant.

You will find that L(µ) is maximised under HP by

µ̂ij = yij for all i, j.

You will also find that L(µ) is maximised under HP0 by

µ∗ij = yi+y+j/y++ = eij say.

Applying Wilks’ theorem we see that we reject HP0 in favour of HP if and only if DP
is too big compared with χ2

f , where

2L(µ̂)− 2L(µ∗) = DP

and so

DP/2 = −
∑∑

µ̂ij +
∑∑

yij log µ̂ij +
∑∑

µ∗ij −
∑∑

yij log µ∗ij.

But, as you can check,
∑∑

µ̂ij =
∑∑

µ∗ij for all (yij). Hence we have the following
identity :

DP = D ≡ 2
∑∑

yij log(yij/eij).

So we can compute the appropriate deviance for testing independence for the multinomial
model by pretending that (yij) are observations on independent Poisson random variables.
This is a special case of the following
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General result, relating Poisson and multinomial loglinear models.
We assume that we are given

(Yi) ∼Mn
(
n, (pi)

)
, Y1 + · · ·+ Yk = n, p1 + · · ·+ pk = 1,

and given covariates x1, . . . , xk. Let (yi) be the corresponding observed values. We wish
to test the null hypothesis

H0 : log pi = µ+ βTxi, 1 ≤ i ≤ k, for some β

where β is of dimension p, and where µ is such that
∑
pi = 1, against the more general

hypothesis

H : pi ≥ 0, and
∑

pi = 1.

Then the deviance for testing H0 against H may be computed as if (yi) were observations
on independent Po(µi) random variables, and as if we are testing

HP0 : log(µi) = µ′ + βTxi

against
HP : log(µi) = any real numbers.

Reminder : In proving this general result we make use of the following
Lemma for exponential families in which t(y) is the vector of sufficient statistics.
Suppose that the pdf of the sample y is

f(y | β) = a(y)b(β) exp
(
βT t(y)

)
where

∫
f(y | β)dy = 1. Then at the mle of β, say β̂, the observed and expected values

of t(y) agree exactly. This is proved by observing that

L(β) = log b(β) + βT t(y), E(
∂L

∂β
) = 0,

and β̂ is the solution of ∂L
∂β

= 0.
Proof of the General Result
With (yi) as observations from the Mn

(
n, (pi)

)
distribution, we see that the loglikelihood

is, say,

L(p) =
∑

yi log pi + constant.

Under H0, pi ∝ exp(βTxi), so

pi =
(
exp(βTxi)

)
/
∑

exp(βTxj),

Thus the loglikelihood is

L(p) =
∑

yi
(
βTxi − log

∑
exp(βTxj)

)
+ constant

Hence
L
(
p(β)

)
= βT (

∑
yixi)− y+ log

(∑
exp(βTxj)

)
+ constant.
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This in turn is maximised with respect to β by β such that

∗ ∂L

∂β
= 0, ie

∑
yixi = y+

(∑
j

xj exp(βTxj)

)/∑
j

exp(βTxj),

∗∗ giving ei = np∗i as ‘fitted values’ under H0, p
∗
i ∝ exp(β̂Txi), β̂ being the solution of ∗.

It follows from p∗1 + · · ·+ p∗k = 1 that
∑k

1 ei = n. Thus D = 2
∑
yi log(yi/ei).

But if, on the other hand, we assume (yi) are observations on independent Po(µi), and
we test

HP0 : log µi = µ′ + βTxi, 1 ≤ i ≤ k

where (dimHP0 = p+ 1) against

HP : log µi any real number

where (dimHP = k). we find that

the loglikelihood = L(µ) = −
∑

µi +
∑

yi log µi + constant

So, under HP0,

L(µ) = L(µ′, β) = −
∑

exp(µ′ + βTxi) +
∑

yi(µ
′ + βTxi) + constant

giving
∂L

∂µ′
(µ′, β) = 0 thus

∑
exp(µ′ + βTxi) =

∑
yi

and
∂L

∂β
(µ′, β) = 0 thus

∑
xi exp(µ′ + βTxi) =

∑
yixi.

Hence

eµ̂
′
=
∑
i

yi

/∑
j

exp(β̂Txj)

and β̂ is the solution of ∑
yixi = y+

∑
xi exp(β̂Txi)∑
exp(β̂Txj)

,

i.e. β̂ is as in ∗.
Further, the sufficient statistics are (

∑
yi,
∑
xiyi) for (µ′, β). So at the mle, the observed

and expected values of
∑
Yi agree exactly, and we find

maxHPL(µ)−maxHP0L(µ) = −
∑

µ̂i +
∑

yi log µ̂i +
∑

µ∗i −
∑

yi log µ∗i

so that µ̂i = mle ofµi under HP , hence µ̂i = yi where µ∗i = mle of µi under HP0, hence∑
µ∗i = y+,

and µ∗i = ei with ei as in ∗∗.
Hence

∑
µ̂i =

∑
µ∗i . Hence

D (multinomial deviance)= 2
∑
yi log(yi/ei) ≡ DP (Poisson deviance)= 2

∑
yi log(µ̂i/ei).
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Exercise 1. With (yi) distributed as Multinomial, with parameters n, (pi) and with
log(pi) = βTxi+ constant, as above, show that the asymptotic covariance matrix of β̂
may be written as the inverse of the matrix

n[Σpjxjxj
T − Σ(pjxj)Σ(pjxj

T )]

and verify directly that this is a positive-definite matrix.
Reminder: A is a positive-definite matrix if and only if uTAu ≥ 0 for any vector u, with
uTAu = 0 implying that u = 0.

Exercise 2. Let x1, z1 be vectors of dimension q , and let x2, z2 be vectors of dimension
p.
Take a11 a q × q matrix, a12 a q × p matrix, a21 a p × q matrix, and a22 a p × p matrix.
Solve the simultaneous equations

a11x1 + a12x2 = z1

a21x1 + a22x2 = z2

for x2 in terms of z1, z2

This enables you to discover the form of the inverse of the partitioned matrix a, where

a =

(
a11 a12

a21 a22

)
Now use this result with q = 1 to find the asymptotic covariance matrix of β̂, given (yi)
observations on independent Poisson variables, mean µi, where

log(µi) = µ′ + βTxi.

Compare the result with the answer to Exercise 1.
Solution
This time the log-likelihood is `(µ′, β) say, where

`(µ′, β) = µ′
∑

yi + βT
∑

xiyi −
∑

exp(µ′ + βTxi).

Now form ( ∂2`
∂µ′2

∂2`
∂µ′∂βT

∂2`
∂µ′∂β

∂`2

∂β∂βT

)
You need to invert this, to show that the asymptotic covariance matrix of β̂ is of the same
form as that given in Exercise 1, provided we write

µi = exp(µ′ + βTxi), n =
∑

µi, and pi = µi/n.

Exercise 3. Let yi be observations on independent Poisson, mean µi, as above, with

log(µi) = µ′ + βTxi .

Let L(µ′, β) be the corresponding log-likelihood. Derive an expression for the profile log
likelihood L(β), which is defined as the function L(µ′, β), maximised with respect to
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µ′. Show that this profile log-likelihood function is the identical to a constant + the log-
likelihood function for the multinomial distribution, with the usual log-linear model(i.e.
log(pi) = βTxi+ constant).
Profile log-likelihood functions, in general, are an ingenious device for ‘eliminating’ nui-
sance parameters, in this case µ′. But they are not the only way of eliminating such
parameters: the Bayesian method would be to integrate out the corresponding nuisance
parameters using the appropriate probability density function, derived from the joint prior
density of the whole set of parameters.

Multi-way contingency tables: for enthusiasts only
Given several discrete-valued random variables, say A,B,C, . . ., there are many different
sorts of independence between the variables that are possible. This makes analysis of
multi-way contingency tables interesting and complex. Fortunately, the relationship be-
tween the variety of types of independence and log-linear models fits naturally within the
glm framework. We will once again make use of the relationship between the Poisson and
the multinomial in the context of log-linear models. An example with only 3 variables,
say A,B and C, serves to illustrate the methods used in tables of dimension higher than
2. Suppose A,B,C correspond respectively to the rows, columns and layers of the 3-way
table. Let

pijk = P (A = i, B = j, C = k) for i = 1, . . . , r, j = 1, . . . , c, k = 1, . . . , `

so that Σpijk = 1, and let (nijk) be the corresponding observed frequencies, assumed to be
observations from a multinomial distribution, parameters n, (pijk). For example, we might
have data from a random sample of 454 people eligible to vote in the next UK election.
Each individual in the sample has told us the answer to questions A,B,C, where
A=voting intention (Labour, Conservative, Other)
B= employment status (employed, unemployed, student, pensioner)
C=place of residence (urban, rural).
Let us suppose that the (fictitious) resulting 3-way table is Table 5.4. There are 8 different

place of residence urban urban urban rural rural rural
voting intention Lab Cons Other Lab Cons Other

employed 50 40 13 31 40 9
unemployed 40 7 5 60 5 5
student 14 9 16 32 7 11
pensioner 10 14 6 3 25 2

Table 5.4: A three-way contingency table

loglinear hypotheses corresponding to types of independence between A,B,C that we now
consider. Assume in all of these that the parameters given are such that Σpijk = 1.
We now enumerate the possible loglinear hypotheses.
H0 : For some α, β, γ, pijk = αiβjγk for all i, j, k,
thus H0 corresponds to A,B,C independent.
H1 : pijk = αiβjk for all i, j, k, for some α, β,
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thus H1 corresponds to A independent of (B,C).
(Likewise, we could consider the hypothesis : B independent of (A,C),
and the hypothesis : C independent of (A,B).)
H2 : pijk = βijγik for all i, j, k, for some β, γ.
You may check that H2 is equivalent to

P (B = j, C = k|A = i) = P (B = j|A = i)P (C = k|A = i) for all i, j, k.

Thus H2 corresponds to the hypothesis that, for each i, conditional on A= i, the variables
B,C are independent. In this case we say that ‘B, C are independent, conditional on A’.
(Likewise, we can define 2 similar hypotheses by interchanging A,B,C):
H3 : pijk = αjkβikγij for all i, j, k, for some α, β, γ.
This final hypothesis, which is symmetric in A,B,C, cannot be given an interpretation
in terms of conditional probability. We say that H3 corresponds to ‘no 3-way interaction’
between A,B,C. In other words, the interaction between any 2 factors, say A,B for a
given level of the 3rd factor, say C = k, is the same for all k. Written formally, this is
that for each i, j,

(pijkprck)

(pickprjk)

is the same for all k .
The 8 hypotheses are easily seen to be related to one another: you may check that

H0 ⊂ H1 ⊂ H3, H0 ⊂ H2 ⊂ H3, and H1 ∩H2 = H0.

All of the 8 hypotheses above may be written as loglinear hypotheses and hence tested
within the glm framework with the Poisson distribution and log link function (the default
for the Poisson). For example, we may rewrite H2 as

log(pijk) = φij + ψik

for some φ, ψ which, in the glm notation for interactions between factors, corresponds to
the model

A ∗B + A ∗ C or equivalently A ∗ (B + C).

All of the 8 hypotheses, except H3 (the hypothesis of no 3-way interaction), can be
represented by a graph joining (or not joining) the 3 vertices A,B and C. For example,
H0 corresponds to the graph in which there are no links between the 3 points A,B,C.
The null hypothesis H2, in which B,C are conditionally independent given the level of A,
is represented by a graph in which there is no direct link from B to C: there are just the
links AB,AC, as in Figure 5.4.
Exercise 1. Show that in the same notation, H0, H1, H3 correspond respectively to

A+B + C, A+B ∗ C, (B ∗ C + A ∗B + A ∗ C)

Exercise 2. The data in Table 5.4 above were partly invented to show a 3-way interac-
tion between the factors A,B,C: we might expect that the relationship between voting
intention and employment status would not be the same for the Urban voters as for the
Non-urban ones. Using the notation above, and your glm package, show that the residual
deviance for

(A+B + C) ∗ (A+B + C) is 15.242(6df)
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B

A

C

Figure 5.4: The variables B and C are conditionally independent, given the value of the
variable A

(A+B) ∗ C is 122.07(12df)

(A ∗B) + C is 27.144(11df)

A+B + C is 132.3(17df).

Of course, since H3 failed to fit the data, it was in fact obvious that none of the stronger
hypotheses could fit the data.

Exercise 3. Consider the 2 × 2 × 2 Table 5.5. Show that the deviance for fitting the

C=1 C=1 C=2 C=2
A=1 A=2 A=1 A=2

B =1 17 23 36 50
B =2 29 14 59 24

Table 5.5: A 3-way table showing no 3-way interaction

model A ∗B +B ∗ C + A ∗ C is .12362, 1df.
By comparing the parameter estimates for this model with their se’s, find the simplest
model that fits the 3-way table, and interpret it by an independence statement.

The relation between binomial logistic regression and loglinear models in a
multi-way contingency table
In a multi-way contingency table, it may not be appropriate to treat the variables, say
A,B,C, . . . symmetrically. For example it may be more natural to treat
A as a response variable, and
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B,C, . . . as explanatory variables.
In particular, if the number of levels of A is 2, for example corresponding to yes, no, then
it may make the analysis easier to interpret if we do a binomial logistic regression of A
on the factors B,C, . . ..
Is such an analysis essentially different from a loglinear analysis? We can see from the
following considerations that there must be certain exact correspondences between the
two approaches. To be specific, take the case where (Yijk) is multinomial, parameters
n, (pijk) and suppose i = 1, 2. Write y+jk as y1jk + y2jk. Then Y1jk|y+jk are independent
Binomial variables, parameters y+jk, θjk where

θjk = p1jk/p+jk.

So, for example, the model A ∗B+B ∗C+C ∗A for (pijk) can be shown to be equivalent
to the model

logit(θjk) = βj + γk.

Exercise. Use the data from the 2× 2× 2 table above, with A as the response variable,
so that you use the binomial proportions 17/40, 29/43, 36/86, 59/83 as the responses cor-
responding to factors (B,C) as (1, 1), (2, 1), (1, 2), (2, 2). Show that the deviance and the
fitted frequencies for the model B+C are exactly the same as those for A∗B+B∗C+A∗C
with data (yijk) and the Poisson model, as above. Check algebraically that this must be
so.

Simpson’s Paradox (also known as Yule’s Paradox)
We only have space in these notes for a brief discussion of the fascinating ramifications of
multi-way contingency tables. But we will just issue the following WARNING. We have
already seen that for 3-way tables, there are several different varieties of independence.
It may be misleading to collapse a multi-way table over (possibly important) categories.
For example, suppose that the 2×2 table on (Henley/Ascot) and (Arrested/Not arrested)
was in fact derived from the 2× 2× 2 table 5.6. Hence although the overall arrest rate at

Ascot Ascot Henley Henley
Arrested Not arrested Arrested Not arrested

Men 23 2 3 340
Women 1 2208 2 340

Table 5.6: Illustration of Simpson/Yule paradox

Ascot is not significantly different from that at Henley, there is a clear difference between
the Arrest rate for men at Ascot and the Arrest rate for men at Henley.
For example, the deviance for testing independence on the marginal 2-way table (As-
cot/Henley) × (Arrested/Not arrested) is 0.6773, which is non-significant when compared
to χ2

1, suggesting that the arrest rate at Ascot (.011) is not significantly different from
that (.007) at Henley.
Now you see that things are quite complex, because of course the way in which any two
of the factors depend on each other depends strongly on the level of the third factor; we
deliberately invented a data-set with a strong 3-way interaction. You can see from the full
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3-way table that the arrest rate is independent of gender for Henley although the arrest
rate strongly depends on gender for Ascot.
The 2 × 2 Table 5.7 for Henley gives a deviance of 0.19990 with 1 df, while the 2 × 2

Arrested Not arrested
Men 3 340
Women 2 340

Table 5.7: The Henley sub-table for Simpson/Yule paradox

Table 5.8 for Ascot gives a deviance of 234.0 also with 1 df. Of course, it is scarcely

Arrested Not arrested
Men 23 2
Women 1 2208

Table 5.8: The Ascot sub-table for Simpson/Yule paradox

necessary to find the exact numerical values of the deviances to understand about the
3-factor interaction: we include them here merely for completeness.
Finally, you may like to check that the deviance for testing the null hypothesis of no
3−way interaction in the 2 × 2 × 2 table is 29.5, with 1 df. (This is an example where
some of the frequencies are very small, so distributional approximations will not work
well.)

5.4 From recent Mathematical Tripos questions

Mathematical Tripos Part IIA, 1998 2/ 11
(i) Suppose that Y1, . . . , Yn are independent Poisson random variables, with E(Yi) = µi,
1 ≤ i ≤ n. Let H be the hypothesis H : µ1, . . . , µn ≥ 0.
Show that D, the deviance for testing

H0 : logµi = µ+ βTxi, 1 ≤ i ≤ n,

where x1, . . . , xn are given covariates, and µ, β are unknown parameters, may be written

D = 2[
∑

yilogyi − µ̂
∑

yi − β̂T
∑

xiyi],

where you should give equations from which (µ̂, β̂) can be determined.
How would you make use of D in practice?

(ii) A.Sykes (1986) published the sequence of reported new cases per month of AIDS in
the UK for each of 36 consecutive months up to November 1985. These data are used
in the analysis below, but have been grouped into 9 (non-overlapping) blocks each of 4
months, to give 9 consecutive readings.
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It is hypothesised that for the logs of the means, either, there is a quadratic dependence
on i, the block number or, the increase is linear, but with a ‘special effect’ (of unknown
cause) coming into force after the first 5 blocks.
Discuss carefully the analysis that follows below, commenting on the fit of the above
hypotheses.

n <- scan()

3 5 16 12 11 34 37 51 56

i <- scan()

1 2 3 4 5 6 7 8 9

summary(glm(n~i,poisson))

deviance = 13.218

d.f. = 7

Coefficients:

Value Std.Error

(intercept) 1.363 0.2210

i 0.3106 0.0382

ii <- i*i ; summary(glm(n~ i + ii, poisson))

deviance = 11.098

d.f.= 6

Coefficients:

Value Std.Error

(Intercept) 0.7755 0.4845

i 0.5845 0.1712

ii -0.02030 0.0141

special <- scan()

1 1 1 1 1 2 2 2 2

special <- factor(special)

summary(glm(n~ i + special, poisson))

deviance = 8.2427

d.f.= 6

Coefficients:

Value Std.Error

(intercept) 1.595 0.2431

i 0.2017 0.0573

special2 0.6622 0.2984

SOLUTION

(i) Here is the ‘familiar’ easy bit of the question.
We have f(yi|µi) ∝ e−µi µi

yi
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from which we see that the loglikelihood is∑
logf(yi|µi) = −

∑
µi +

∑
yilogµi + constant.

Clearly this is maximised under H by

µ̂i = yi, 1 ≤ i ≤ n.

Under H0, we see that the loglikelihood is now `(µ, β), where

`(µ, β) = −
∑

eµ+βT xi + µ
∑

yi + βT
∑

xiyi.

Hence, taking partial derivatives with respect to µ, β respectively, we obtain the equations∑
eµ+βT xi =

∑
yi∑

xie
µ+βT xi =

∑
xiyi,

which is a set of equations for (µ̂, β̂), which we could solve iteratively by glm().
The given expression for D is twice the difference between the loglikelihood maximised
under H, H0, respectively. Observe that the

∑
µ̂i term will cancel.

Use of D: Wilks’ theorem tells us that for large n, on H0, D is approximately distributed
as χ2

f , where f is the difference in dimension between H and H0: let us call this n−1−p.
We see that H0 will be a good fit to the data if we find that D ≤ n − 1 − p, (recalling
that the expected value of a χ2 variable is its d.f.)
(ii) Throughout we assume the model
ni ∼ independent Po(µi) for i = 1, . . . , 9.
The log link is the default for the Poisson. The first model we try is say

HL : log(µi) = µ+ β i, i = 1, . . . , 9.

This has a deviance which is nearly twice its d.f, showing that HL is not a good fit. Note
that under HL, the estimate of the slope β is clearly positive: compare (0.3106/0.0382)
to N(0, 1).
The next model we try is say

HQ : log(µi) = µ+ β + γ i2, i = 1, . . . , 9.

Although the deviance is reduced (by 13.218 − 11.098), this model still has a deviance
nearly twice its d.f. Inspection of γ̂, −0.02030, and its se, shows that there may be a
significant quadratic effect.
But the next model we try, which extends HL by one more parameter, but in a different
way from HQ, produces a much better fit. It corresponds to

HS : log(µi) = µ+ β i, i = 1, . . . , 5, and log(µi) = µ+ special + β i, i = 6, . . . , 9.

This time the deviance is only a little bigger than its d.f. Furthermore, comparing the
estimate of ‘special’ with its se (0.662/0.2984), we see that ‘special’ (ie the ‘jump’ in the
line) is clearly significant.



P.M.E.Altham, University of Cambridge 87

Mathematical Tripos Part IIA, 1999, 2/12
(i) Suppose that the random variable Y has probability density function

f(y|θ, φ) = exp[(yθ − b(θ))/φ+ c(y, φ)]

for −∞ < y <∞. Show that for −∞ < θ <∞, φ > 0

E(Y ) = b′(θ), var(Y ) = φb′′(θ).

(ii) Suppose that we have independent observations Y1, · · · , Yn and that we assume the
model

ω : Yi is Poisson, parameter µi, and log(µi) = β0 + β1xi,
where x1, · · · , xn are given scalar covariates.
Find the equations for the maximum likelihood estimators β̂0, β̂1, and state without

proof the asymptotic distribution of β̂1.
If, for a particular Poisson model you found that the deviance obtained on fitting

ω was 29.3, where n = 35, what would you conclude?

Solution
i) This you have seen before, so we don’t repeat it here.
ii) The log-likehood (+ a constant) is easily seen to be

`(β0, β1) = β0

∑
yi + β1

∑
xiyi −

∑
exp(β0 + β1xi),

hence
∂`

∂β0

=
∑

yi −
∑

µi,

∂`

∂β1

=
∑

xiyi −
∑

xiµi.

Here µi = exp(β0 + β1xi). Thus (β̂0, β̂1) is found as the solution to ∂`
∂β0

= 0, ∂`
∂β1

= 0 (and

these equations can only be solved by iteration). Further, we know that for large n the
asymptotic distribution of β̂ is N(β, v(β)), where the 2× 2 covariance matrix v(β) is the
inverse of (

− ∂2`
∂β2

0
− ∂2`
∂β0∂β1

− ∂2`
∂β0∂β1

− ∂2`
∂β2

1

)
.

Working out the inverse, and picking out the (2, 2)th term, shows that for large n,

var(β̂1) u
∑
µi

∆

where ∆ = (
∑
µi)(

∑
x2
iµi)− (

∑
xiµi)

2, the determinant.
Finally, if n = 35, and the deviance fitting ω is 29.3, then we refer 29.3 to χ2 with 33
degrees of freedom. Since this has expectation = 33, we conclude that ω fits well.
This last part is very easy.
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Mathematical Tripos Part IIA, 4/14
In an actuarial study, we have independent observations on numbers of deaths y1, ..., yn
and we assume that Yi has a Poisson distribution, with mean µiti, for i = 1, ..., n. Here
(t1, .., tn) are given quantities, for example “person-years at risk”.

(a) Find the maximum likelihood estimators µ̂1, ..., µ̂n.
(b) Now consider the model

ω : logµi = βTxi, 1 ≤ i ≤ n,

where x1, ..., xn are given vectors, each of dimension p. Derive the equations for β̂, the
maximum likelihood estimator of β, and briefly discuss the method of solution used by
the function glm( ) in R to solve this equation.

(c) How is the deviance for ω computed ? If you found that this deviance took the
value 27.3, and you knew that n = 37, p = 4, what would you conclude about ω?

(d) Discuss briefly how your answers to the above are affected if the model ω is
replaced by the model

ωI : µi = βTxi, 1 ≤ i ≤ n.

Solution
(a)

Yi ∼ Po(µiti)

implies that for the observation yi, the log-likelihood is say `(µi) = −µiti + yi log(µi)+ a
constant. Hence, differentiating with respect to µi shows that µ̂i = yi/ti.
(b) Now take

ω : logµi = βTxi, 1 ≤ i ≤ n,

thus the log-likelihood is say

`(β) = −
∑

ti exp βTxi +
∑

yiβ
Txi.

Differentiate with respect to β to show that β̂ is the solution of∑
xiti exp βTxi =

∑
xiyi.

Further
∂2`

∂β∂βT
= −

∑
xix

T
i tiµi,

where µi = exp βTxi for each i. The iterative solution for β̂ follows the usual Newton-
Raphson scheme, which you should describe, and the large-sample distribution of β̂ is
N(β, v(β)), where

(v(β))−1 =
∑

xix
T
i tiµi.

(c) The deviance for assessing the fit of ω is computed as 2(`(µ̂) − `(β̂)), which has the
approximate distribution of a χ2 with df n− p if ω is true.
Since Eχ2

n−p = n − p, we see that if the computed value of the deviance is 27.3, and
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n− p = 33, then ω is a good fit. (Note that var(χ2
n−p) = 2(n− p).)

(d) If we now change the fitted model (and the link function) to

ωI : µi = βTxi, 1 ≤ i ≤ n

we must be aware that only solutions for which βTxi > 0, 1 ≤ i ≤ n will make sense.
This time, when we find the first derivative of `(β) and set it to 0, we obtain the equations∑

tixi =
∑

yixi/(β
Txi).

While it is perfectly possible to solve these equations by iteration, answers for which
βTxi ≤ 0 will not make sense, statistically, and glm would give us an error message.
There is opportunity for a small ‘bonus’ mark here, since use of the identity link in this
context would be unfamiliar to most candidates.



Chapter 6

Appendix 1: The Multivariate
Normal Distribution.

We say that the k-dimensional random vector Y is multivariate normal, parameters µ,Σ
if the probability density function of Y is

f(y|µ,Σ) =
1

(2π)k/2|Σ|1/2
exp−(y − µ)TΣ−1(y − µ)/2

for all real y1, . . . , yk. We write this as

Y ∼ Nk(µ,Σ).

Observe that ∫
f(y|µ,Σ)dy = 1, for all µ,Σ.

Furthermore, it is easily verified that Y has characteristic function ψ(t) say, where

ψ(t) = E(exp(itTY )) =

∫
exp(itTy)f(y|µ,Σ)dy

so that
ψ(t) = exp(iµT t− tTΣt/2).

By differentiating the characteristic function, it may be shown that

E(Y ) = µ ,E(Y − µ)(Y − µ)T = Σ

and hence
E(Yi) = µi, cov(Yi, Yj) = Σij.

Σ is a symmetric non-negative definite matrix: thus its eigen-values are all real and greater
than or equal to zero.
If A is any p× k constant matrix, and Z = AY , then Z is also multivariate normal, with

Z ∼ Np(Aµ,AΣ AT ).

Hence, for example, Y1 ∼ N1(µ1,Σ11).

90



Chapter 7

Appendix 2: Regression diagnostics
for the Normal Model

Residuals and leverages Take yi = βTxi+εi, 1 ≤ i ≤ n, εi ∼ NID(0, σ2). Equivalently,

Y = Xβ + ε, ε ∼ Nn(0, σ
2I)

where, as usual, we assume that Y, ε are vectors of dimension n, X is a n × p matrix of
rank p, and β is an unknown vector of dimension p.
We compute the lse β̂ as (XTX)−1XTY and, using ε ∼ N(0, σ2I), we can say that

β̂ ∼ N(β, σ2
(
XTX)−1

)
independently of the usual residual sum of squares R(β̂), whose distribution is given by

R(β̂)

σ2
=

(Y −Xβ̂)T (Y −Xβ̂)

σ2
∼ χ2

n−p.

This fundamental distributional result is used, for example, to test β2 = 0, by using β̂2,
se (β̂2). The construction of all of our hypothesis tests and confidence regions will depend
on the assumption

εi ∼ NID(0, σ2)

so we need some way of checking this: this is what qq plots do.
Define Ŷ = Xβ̂ = X(XTX)−1XTY, the fitted value Ŷ ≡ HY say where H is the ‘hat
matrix’. Then the residual vector is ε̂ = Y − Ŷ , observed–fitted.
Then ε̂ = Xβ + ε−H(Xβ + ε) = (I −H)ε (check). Hence

ε̂ ∼ N
(
0, σ2(I −H)(I −H)T

)
but H = HT , HH = H, so

ε̂ ∼ N
(
0, σ2(I −H)

)
.

Let hi = Hii for 1 ≤ i ≤ n; then

ε̂i ∼ N
(
0, σ2(1− hi)

)
.

We define

ηi = ε̂i

/√
1− hi
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Figure 7.1: The ECDF of a random sample of 20 points from N(0,1), and the normal
distribution function

as the standardised residuals. We do a visual check of whether η1, . . . , ηn forms a random
sample from N(0, σ2) as follows.
We need a new definition: the Empirical Cumulative Distribution Function (ECDF) of
(η1, . . . , ηn) is defined as Fn(x), where for each x,

Fn(x) =
number out of (η1, . . . , ηn) ≤ x

n
.

Hence Fn(x) ↑ as x ↑, and for large n, we should find

Fn(x) ' Φ(x/σ)

which is the distribution function of N(0, σ2).
We could sketch Fn(x) against x, and see if it resembles a Φ(x/σ) for some σ. This is
hard to do. So instead we sketch Φ−1

(
Fn(x)

)
to see if it looks like x/σ for some σ, i.e.

a straight line through origin. This is what a qq plot does for you. Filliben’s coefficient
measures the closeness to a straight line. (The Weisberg-Bingham test is also useful.)
Here is a very simple example. A random sample of 20 points from the N(0, 1) distribution
has smallest value −2.094, largest value 1.751. The corresponding ECDF plot (Fn(x)
against x) is given in Figure 7.1, together with the Cumulative Distribution function
of the N(0, 1) distribution. This plot is followed by Figure 7.2 which shows Φ−1

(
Fn(x)

)
against x, together with the plot of the straight line y = x.

Leverages.

Note: Ŷ = HY , H = X(XTX)−1XT , giving

ŷi =
n∑
j=1

hijyj say, where hii = hi.
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Figure 7.2: The same plots, transformed by the inverse normal distribution function

Since ε̂ = (I −H)ε, we can see that

var(ε̂i) = σ2(1− hi), hence hi ≤ 1.

Further, H is a positive-semidefinite matrix, so that hi ≥ 0.
The larger hi is, the closer ŷi will be to yi. We say that xi has high ‘leverage’ in the
regression if hi large relative to the other h′s. Note that whatever the n×p matrix X, we
can say that the resulting matrix H has eigen values 1 (exactly p times) and 0 (exactly
n− p times). This follows from the fact that H is idempotent of rank p. Hence

n∑
1

hi = trace(H) = sum of the eigen values of H = rank(H) = p.

A point xi for which hi > 2p/n is said to be a ‘high leverage’ point. Leverages are also
referred to as ‘influence values’ in some packages.
Exercise 1. Suppose

X = (a1
... . . .

...ap)

where aTi aj = 1 for i 6= j, and aTi aj = 1 for i = j .
Then show

hi = a2
1i + a2

2i + · · ·+ a2
pi, 1 ≤ i ≤ n,

(so verify
∑n

1 hi = p).
Exercise 2. Most modern regression software will give you qq plots and leverage plots:
note that leverages depend only on the covariate values (x1, . . . , xn). Some regression
software will also give Cook’s distances: these measure the influence of a particular
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data point (xi, yi) on the estimate of β. Specifically, let β̂(i) be the lse of β obtained from
the data-set (x1, y1), . . . , (xn, yn) with (xi, yi) omitted. Thus, using an obvious notation,

XT
(i)X(i)β̂(i) = XT

(i)y(i).

The Cook’s distance of (xi, yi) is defined as

Di =
dTi (XTX)di

ps2

where
di = β̂(i) − β̂,

and s2 is the usual estimator of σ2.
These are scaled so that a value of Di > 1 corresponds to a point of high influence.
Note that

XT
(i)X(i) = XTX − xix

T
i .

and given any non-singular symmetric matrix A and vector b, of the same dimension, we
may write

(A− bbT )−1 = A−1 − A−1b(1− bTA−1b)−1bTA−1.

Hence show that if ŷ(i) is defined as xTi β̂(i) then

ŷ(i) = (ŷi − hiyi)/(1− hi)

where hi = xTi (XTX)−1xi, the leverage of xi as defined previously.
We have briefly described some regression diagnostics for the important special case of
the normal linear model. You will find that the more sophisticated glm packages also give
regression diagnostics corresponding to those that we have described for any glm model,
for example Poisson or binomial. It is a matter of good statistical practice to use these
diagnostics, which are usually just ‘educated eyeball tests’, ie quick graphical checks.
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RESUMÉ. The important things you need for this course are

(i) How to find
∂

∂β
,

∂2

∂β∂βT
, for example of L(β)), the log-likelihood function.

(ii) How to find E(Y ) and cov(Y ).
(iii) Basic properties of the normal, Poisson and binomial distributions.
(iv) The asymptotic distribution of θ̂ ( the mle), and how to apply of Wilks’ theorem
(∼ χ2

p).
(v) Time in front of the computer console, studying the glm directives, trying out different
things, interpreting the glm output, and learning from your mistakes, whether they be
trivial or serious.
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Chapter 9

R code for the graphs

You may want to see the R code for drawing the Figures in this document. Here it is.
(Some is very quick and easy, others less so.)

#Figures 1 and 2

x = seq(-2,2, length=20) ; y = x ; rho =.7

bivnd= function(x,y){

exp(-(x*x - 2*rho*x*y + y*y)/(2*(1-rho*rho)))

}

z = x%*% t(y)

for (i in 1:20){

for (j in 1:20){

z[i,j] = bivnd(x[i], y[j])

}

}

# title("A perspective plot of a concave function z")

z = x%*% t(y)

for (i in 1:20){

for (j in 1:20){

z[i,j] = log(bivnd(x[i], y[j]))

}

}

postscript("concave2.ps")

contour(x,y,z)

dev.off()

postscript("concave1.ps")

persp(x,y,z, theta=30, phi =30)

dev.off()

############################################

#Figure 3
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x= (1:1000)/100 - 5

beta1 = 3 ; beta2 =2

lp = beta1 + beta2*x

p = 1/(1 + exp(-lp))

plot(x,p, type="l")

postscript("logistic.ps")

plot(x,p, type="l")

dev.off()

###########################################

#Figure 4 (my chef d’oeuvre)

x = c(1,2,-1,-2)

y = c(-2, 2, 2, -2)

y = y/10

plot(y~x, xlim=c(-2.5, 2.5) , ylim=c(-1,1), xlab="", ylab="", axes= FALSE)

points(0,0, pch=19)

polygon(x,y, col="gray")

x0 = 0 ; y0= 0 ; x1 = .9 ; y1 = .9

x2 = .9 ; y2 = .1

arrows(x0,y0, x1,y1, length=0)

segments(x0,y0, x2,y2)

x3 = .5 ; y3 = -.19

points(0,0, pch=19)

arrows(x1,y1, x2,y2, col="blue")

segments(x0,y0, x2,y2)

arrows(x1,y1, x3, y3, col="red")

segments(x0,y0,x3,y3)

x4 = -.5 ; y4 =.2

segments(x0,y0, x4, y4)

points.lab = c("0 ", "Y ", "Z ", "W ")

x = c(x0,x1,x2,x3)

y= c(y0,y1,y2,y3)

points(x,y, type="n")

text(x,y, points.lab, cex=1.5)

# Now repeat all the above to put the outcome into a .ps file

x = c(1,2,-1,-2)

y = c(-2, 2, 2, -2)

y = y/10

postscript("projectionplot.ps")

plot(y~x, xlim=c(-2.5, 2.5) , ylim=c(-1,1), xlab="", ylab="", axes= FALSE)

points(0,0, pch=19)

polygon(x,y, col="gray")

x0 = 0 ; y0= 0 ; x1 = .9 ; y1 = .9

x2 = .9 ; y2 = .1

arrows(x0,y0, x1,y1, length=0)

segments(x0,y0, x2,y2)
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x3 = .5 ; y3 = -.19

points(0,0, pch=19)

arrows(x1,y1, x2,y2, col="blue")

segments(x0,y0, x2,y2)

arrows(x1,y1, x3, y3, col="red")

segments(x0,y0,x3,y3)

x4 = -.5 ; y4 =.2

segments(x0,y0, x4, y4)

points.lab = c("0 ", "Y ", "Z ", "W ")

x = c(x0,x1,x2,x3)

y= c(y0,y1,y2,y3)

points(x,y, type="n")

text(x,y, points.lab, cex=1.5)

dev.off()

#######################################################

#Figure 5

x = (-300:300)/100

y = dnorm(x)

z = dt(x, df=6)

matplot(x, cbind(z,y) , type="l", ylab=

"probability density function",lty=c(1,2),col=1)

legend("topleft", legend=c("pdf of t on 6 df",

"pdf of standard normal"), lty=c(1,2),col=1)

postscript("t-dn.ps")

matplot(x, cbind(z,y) , type="l", ylab="probability density function",

lty=c(1,2),col=1)

legend("topleft", legend=c("pdf of t on 6 df",

"pdf of standard normal"), lty=c(1,2),col=1)

dev.off()

#######################################################

#Figure 6

y=

c(86,85,82,86,

75,83,75,79,

77,70,70,68,

61,70,66,75,

67,66,64,67,

56,65,69,67,

52,67,65,63,

57,55,59,64,

47,58,60,62,

52,56,61,58,

54,56,55,59,

43,51,50,61)
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Profession=

c("driver","surgeon","barrister","MP")

Country=

c("Denmark","Netherlands","France","UK","Belgium", "Spain",

"Portugal","W.Germany","Luxembourg","Greece","Italy","Ireland")

country=gl(12,4,length=48,,labels=Country)

profession=gl(4,1,length=48,labels=Profession)

plot.design(y~profession+country)

postscript("ws4fplot.ps")

plot.design(y~profession+country)

dev.off()

#######################################################

#Figure 7

int.data = read.table("interaction.data", header=T)

attach(int.data)

int.data

noise = factor(noise)

# first.lm = lm(Y ~ noise*gender)

# summary(first.lm)

# anova(first.lm)

interaction.plot(noise, gender, Y)

postscript("interaction.ps")

interaction.plot(noise, gender, Y)

dev.off()

#######################################################

#Figure 8

y = scan("aidsdataforFigure8")

i = 1:36

aids.reg = glm(y~i, poisson)

plot(i,y, xlab="month, up to November 1985", ylab=

"number of reported new AIDS cases")

# aids.reg = glm(y~i, poisson)

fv = aids.reg$fitted.values

points(i,fv, pch="*")

lines(i,fv)

summary(aids.reg)

y

postscript("AIDS.ps")

plot(i,y,xlab="month, up to November 1985",

ylab="number of reported new AIDS cases")

points(i,fv, pch="*")
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lines(i,fv)

dev.off()

#######################################################

#Figure 9

Resignations = read.table("ResignationsFigure9data", header=T)

attach(Resignations)

plot(Res ~ log(years), pch=19, col=c(4,2) [Gov], ylab= "Resignations")

title("Ministerial Resignations:

fitting a model with no difference between the 2 parties")

legend("topleft", legend=c("conservative","labour"), col=c(4,2), pch=19)

# next.glm= glm(Res ~ Gov + offset(log(years)), poisson); summary(next.glm)

last.glm = glm(Res ~log(years),poisson); summary(last.glm)

l <- (0:25)/10

fv <- exp(0.3168 + 0.9654*l)

lines(l,fv)

postscript("MinResignations.ps")

plot(Res ~ log(years), pch=19, col=c(4,2) [Gov], ylab= "Resignations")

title("Ministerial Resignations: fitting a model with no difference

between the 2 parties")

legend("topleft", legend=c("conservative","labour"), col=c(4,2), pch=19)

lines(l,fv)

dev.off()

#######################################################

#Figure 10

# ‘Thousands of people who disappear without trace’

s =c(33,63,157,38,108,159)

r=c(3271,7256,5065,2486,8877,3520)

sex = gl(2,3,length=6, labels=c("male","female"))

age=gl(3,1,length=6, labels=c("13&under","14-18","19&over"))

# bin.add = glm(s/r ~ sex + age, binomial, weights=r); summary(bin.add)

interaction.plot(age, sex,s/r, type="l")

title("Proportion of people still missing at the end of a year, by age & sex")

postscript("ws8.ps")

interaction.plot(age, sex,s/r, type="l")

title("Proportion of people still missing at the end of a year, by age & sex")

dev.off()

#######################################################

#Figure 11

# conditional independence
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library(graphics)

x = c(2,0,4) ; y = c(0,4,2); var.names = c("A","B","C")

postscript("conditionalind.ps")

plot(x,y, pch=1, cex=3,axes="F", xlab="", ylab="")

text(x,y,var.names,cex= 1)

arrows(x[2],y[2],x[1],y[1], length=0)

arrows(x[3],y[3],x[1],y[1], length=0)

dev.off()

#######################################################

#Figures 12 and 13

par(mfrow=c(1,2)) # for onscreen graphics

set.seed(1.3) # to ensure the same random sample each time

x = rnorm(20)

F20 = ecdf(x)

X = sort(x)

X

plot(F20, verticals=TRUE, do.p= FALSE)

lines(X, pnorm(X))

# title(" ecdf(x)")

y = qqnorm(X, plot.it=FALSE)

plot(y$y, y$x,xlab="original sample from N(0,1)", ylab="inverse normal function")

abline(0,1)

postscript("ecdf.ps")

plot(F20, verticals=TRUE, do.p= FALSE)

lines(X, pnorm(X))

title(" ecdf(x)")

dev.off()

postscript("transform.ps")

plot(y$y, y$x,xlab="original sample from N(0,1)", ylab="inverse normal function")

abline(0,1)

dev.off()

#########################################################

And finally, here are the 3 datasets, which you will need to

arrange in 3 separate files.

interaction.data

Y noise gender

22 0 female

23.7 0 female

21.5 0 female

23 1 female

23 1 female
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22.7 1 female

15 0 male

15.2 0 male

15.3 0 male

14.7 0 male

19 1 male

19.3 1 male

20.7 1 male

aidsdataforFigure8

0 0 3 0 1 1 1 2 2 4 2 8 0 3 4 5 2 2 2 5

4 3 15 12 7 14 6 10 14 8 19 10 7 20 10 19

ResignationsFigure9data

epoch Gov Res years

45-51 lab 7 6

51-55 con 1 4

55-57 con 2 2

57-63 con 7 6

63-64 con 1 1

64-70 lab 5 6

70-74 con 6 4

74-76 lab 5 2

76-79 lab 4 3

79-90 con 14 11

90-95 con 11 5

97-05 lab 12 8
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