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Exact Bayesian Analysis of a 2x2 Contingency Table,
and Fisher’s “ Exact > Significance Test

By PATRICIA M. E. ALTHAM
M.R.C. Applied Psychology Unit, and Newnham College, Cambridge
[Received June 1968. Revised October 1968]

SUMMARY
A relationship is derived between the posterior probability of negative
association of rows and columns of a 2 x 2 contingency table and Fisher’s
“exact” probability, as given in existing tables for testing the hypothesis of
no association of rows and columns. The result for the 2x 2 table is
generalized to provide the posterior probability that one discrete-valued
random variable is stochastically larger than another.

1. INTRODUCTION
LET 0, 1<i, j<2 be the parameters of a 2x2 table, with 6;;>0, 1<i, j<2 and
3 X 0;; = 1. With the convention of capital letters for random variables and small
letters for the value they take, let the prior density of (@, ®;,, ©4,) be Dirichlet with
parameters (v;;), so that the density function is proportional to ] 67=: in this case
(@) is said to have prior D(vy;).

Suppose that a random sample of size n_ yields observations (7;;), then (@) has
posterior density D(v;), where v;; = ny;+vy;, 1 <i,j<2. Assume the usual dot notation
for summation over a suffix, and that the (v;;) are all strictly positive integers.

In choosing a measure of association of rows and columns of the table, it is
assumed here that such a measure can be written both as a function of the pair
(611/61.,, 01/6,) and as a function of the pair (6y,/6,, 615/05). Edwards (1963) has
proved that in this case the measure of association must necessarily be a function of
(0,1 059/015 05), the cross-ratio. The cross-ratio itself is therefore taken as the measure
of association. In general the exact posterior distribution of (0, ®g,/0;, 0y) is not
easy to deal with, but the posterior probability that ©;; @4/@;, ®y; < 1, in other words
that the association between rows and columns is negative, can readily be computed
as a finite sum of hypergeometric probabilities.

2. DERIVATION OF THE POSTERIOR PROBABILITY OF NEGATIVE ASSOCIATION

Let X=0,/0,, and Y = 0,/0,, then X and Y have independent posterior
distributions with densities proportional to x*»~1(1—x)*»1 and y'=1(1—y)=-1
respectively, and

P(®11®22/®12®21<1[n) =P(X<Y)

_ 1 P(Vz.) ar—1(1 _ 1 \Psa—
= J;/=o Mo TG =™

4 P(Vl ) 1 —
X —_—2 Va1 — x)u—ldxdy.
fM Tom T Ay dxdy
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Using the identity between the lower tail of the beta-distribution and the upper
tail of the binomial distribution, given, for example, in Raiffa and Schlaifer (1961,
Section 7.1), this expression may be rewritten as

! L'(v,) . Chee (vl - 1)
—_— 8 pra—l(] — Vag—1 . (1 — )Vl.—l—r dy’
‘ f y=0 () T' (sz)y (1= r=2vu . yil-y
Interchanging the summation and integral signs, and evaluating the resulting
beta-integral, gives

=l T(v,) v — I\ T+ —1—vy—r)
PO 001y O <1[m) =5 — 02 (1) atnNlblowm=n
( 11 22/ 12 VY21 | ) T=Evu P(Vzl) 1'\(]}22) r P(V"—l) ( )
This is the upper tail of the beta-binomial, or hypergeometric waiting-time
distribution, whose relation to the hypergeometric distribution is demonstrated by
Raiffa and Schlaifer (1961, Section 7.11). Rewriting (1) in terms of the hypergeometric
distribution gives

P(0y; 0g5/01, 05, < 1 |“) = Vzil (V'l— 1) ( val )/(V"—z)- @)

s=max(ve;—v1a,0) N V2. - 1 - Vl. - 1

3. DISCUSSION OF THE RESULT FOR THE 2 x 2 TABLE

The right-hand side of equation (2) is just Fisher’s “‘exact” probability for the
table

[$51 vs—1

vg—1 Voo

that the classical statistician would compute when testing the hypothesis
011050 = 0,5 0,, against the hypothesis 6;; 05 <01505. If vi;=v=0 and
vis = vy = 1, which seems to correspond to a strong prior belief in negative association
of rows and columns, then (2) is just the same as the classical “exact” probability
computed for data (n;). If vj; = p, 1<i, j<2, where 0<p<1, then Fisher’s test is
conservative with respect to the Bayes procedure, but the difference between the two
significance levels is less than the probability of the data on the null hypothesis. Of
course, for large (n;), this difference is negligible.
Denote the Fisher’s significance level by «, so that

« = P(observations or more extreme cases| 0y Oy = 0y 0p;).

Here “more extreme cases” are all configurations with the same marginal totals
(n;), (n;) but showing stronger positive association.
Let

B = P(more extreme cases| 0y Oy = 035 67)
and
7 = P(01; Ogp < @1 Oy [M) = 7(14, v12, Vi, Vao)s
say. The inequalities 8 <7 <« are proved as follows.
Clearly =(.,.,.,.) is strictly decreasing in its first and fourth arguments, and

strictly increasing in its second and third arguments. The fact that this particular

prior D(v;;) does not necessarily give (v;;) all integers, presents no problem here.
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Although the integral 7 cannot be expressed as a hypergeometric sum, equation (2)
shows that the sums o and f can be expressed as integrals, which are then easy to
compare with 7.

Indeed o= m(nyy,mp+1,n5+1,ny9) and B = mw(nyy+ 1,159,155, Mpp+1).  Now
v;; = ng+p, for 1<i, j<2, and so

ny+12vy2ny,
M SvipShyp+1,
gy SV Sty +1,
Ngo+12vp9>Ngy.

Hence 7"(’111_ +1,n, Mgy Mgp + 1) <7r(vy1, V19, Vo, Vo) < 77’(”;1a Ma+1,m+1, ngp), and so
B<m<o. Fisher’s significance level exceeds the Bayes significance level by an amount

wmmandemr<a=p= () (o) /)

The inequalities 8 < <« are not true for general p. For example, if p = 2, and
Ny = Mgy = 5, My = hy; = 0 then o = 0:004 and = = 0-005 (to three decimal places).

The special cases p = 0, 0-5 and 1 are of interest as they correspond respectively
to the “non-committal” prior distribution, the prior favoured by Jeffreys on invariance
grounds, and the uniform prior distribution.

If v, <vy <41, vy V92 (v3— 1) (vg;— 1) and 7<0:05, then = may be found in the
tables produced by Finney ez al. (1963). The hypergeometric distribution function
has been tabulated by Lieberman and Owen (1961). I have compiled tables of 7 to
three decimal places, for 20 >v; >v, >2and vy, vgy > vy, 74y, which Thope are laid outin
a form convenient for Bayesian statisticians, and I should be pleased to send a copy to
anyone who is interested. These tables show that = is generally small for vy, vgy/vysva;
large, which is not surprising, but there exist tables (v;;) for which vy ves/vy5 vy, > 1 and
7>0-5; for example vy; = 13, vy = 3, vy = 4, vyy = 1. Here 7 = 0-530.

Bayesians may also use the hypergeometric sum (2) to compute 7 if the data are
collected with, say, the row totals »n; and n, fixed, but not of course when both row
and column totals are fixed. In this case difficulties arise in making the choice of
prior density; see Lindley (1964, Section 5). For this reason it may not be strictly
appropriate to compare B, = and « as above; the distribution of ny;, given
011 059 = 015 0y, is of course hypergeometric only when both the row and column
totals are fixed, and in this case = is not a hypergeometric sum. However, the
comparison between B, = and « seems important all the same, since Fisher’s test is
often used when the data were not collected with both margins fixed.

There does not appear to be an attractive equation corresponding to (2) that links
the posterior probability of negative second-order interaction in a 2x2x2 table
(052, i.e. P{Or3; Or99 @15 Oy < gy Oy Oy Oy (1135,)} With the exact significance
test of the hypothesis: 011 0190 015 0591 = Opop 011 0121 0112 that was proposed by
Bartlett (1935).

4. NORMAL APPROXIMATIONS

The relationship between the posterior distribution of the cross-ratio and the
hypergeometric distribution makes two asymptotic normal approximations available
for . Bloch and Watson (1967) found a normal approximation to the distribution
of contrasts of the logarithms of Dirichlet variables.
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Writing 7 = P(log @1; —log ©;,—1log @y, +10g @y, <0|mn), their result in this
particular case gives

T =0 (—El—),

0y
where
1 (= 2 A )\22) 1

= —_— —2%/2 = 2 = —_—

D(x) JZ# f_ooe dz, p,=log ( A ) =3 P
where

1
=v;—054+——, 1<i,j<2.

The normal approximation to the hypergeometric distribution, using Yates’s
half-correction, gives

e =1— v —0-5—p,
~my =1 @(____02 )

(=D =1 =D =D =D (e—1)
= B R (= =T

Numerical comparisons of these two approximations to = were computed for
Vi =2, vyyVee>Vyavyy; firstly for 12>v >, > 5, secondly for 25 = vy >v, >4, and
finally for some values of (v;;) for which v; = 42,46. The last set was chosen for
comparison with some of the results already published by Finney et al. (1963, p. 6).
Some of the values obtained are given in Table 1. For (v;) all large, and 7 not too
small, (7>0-1, say) m; seems a slightly better approximation to = than does ,.
However, if = is small, =, is generally a closer estimate that «;. For example, for
25 =v;2v, >4 and vy >2, vy vy >v1pvy, the number of values of (v;;) for which
7<0-05 is 1,463. Of these, 1,308 values give | my— 7| <|m —ar|. It is well-known that
7, tends to over-estimate 7 when o is small, and the approximation m, suffers from
this fault too, usually to a greater extent. Analytical comparisons of w, m and ,
have proved intractable so far.

5. Exact BAYESIAN COMPARISON OF TWO DISCRETE-VALUED SCORES

Let X and Y be two scores, taking values zj,z,,...,2, Where z;<z,<...<z
Let

P(X: ile)=01:’ 1<i<s, 201::1, 0,5?0, léiés
and
P(Y=Zil¢)=¢i’ 1<i<s, 2¢i=1, ¢i>0’ ISiSS.

Let (0, ...,0,_,) and (@, ...,D,_,) have independent Dirichlet prior densities, with
parameters (vi, ..., v;) and (ug, ..., p) respectively. Suppose that independent random
samples of sizes n_ and m_on X and Y reveal that X takes the value z; exactly n; times,
and Y takes the value z; exactly m; times. Then (0, ...,0,_,) and (D, ..., D,_,) have
independent posterior densities, with parameters (v, ..., v,) and (uy, ..., ) respectively,
where v; = v;+n; and u; = p;+m,, 1<i<s. Assume (v), (u;) are all strictly positive
integers.
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Write “Xstoch. > Y for the event “X is stochastically greater than Y. Then

P(Xstoch.> Y|nm) = P(O;+...+ 0; <D, +...+ D, 1<i<s—1|n,m).

Comparison of normal approximations to

TABLE 1

V1. Va. Y1 Va1 T m T2
1) 12 12 6 2 0-032 0-043 0-037
2) 12 12 6 3 0-091 0-097 0-:097
3) 12 12 6 4 0-193 0-195 0-198
“4) 12 12 6 5 0-335 0-335 0-338
) 12 12 6 6 0-500 0-500 0-:500
6) 12 6 8 2 0-077 0-087 0-083
(@) 12 6 8 3 0-242 0-245 0:250
8) 12 6 8 4 0-516 0-522 0-528
()] 25 25 12 2 0-000 0-003 0-001
(10) 25 25 12 4 0-006 0-009 0-007
11 25 25 12 6 0-034 0-038 0-037
(12) 25 25 12 7 0-068 0-070 0-070
(13) 25 25 12 8 0-119 0-120 0-121
14 25 25 12 10 0-281 0-281 0-282
(15) 25 25 12 11 0-386 0-386 0-387
(16) 25 25 12 12 0-500 0-500 0-500
an 25 12 12 2 0-022 0-035 0-027
(18) 25 12 12 3 0-077 0-085 0-082
(19) 25 12 12 4 0-187 0-188 0-189
(20) 25 12 12 5 0-352 0-350 0-352
(21) 42 42 30 22 0-034 0-036 0-035
(22) 42 42 30 19 0-007 0-008 0-007
(23) 42 42 30 18 0-004 0-004 0-004
(24) 42 42 34 11 0-005 0-006 0-005
(25) 42 6 32 2 0-018 0-025 0-015
(26) 46 6 32 2 0-040 0-051 0-038
27 42 42 21 20 0-413 0-413 0-413
(28) 42 42 21 18 0-253 0-253 0-255
(29) 42 42 21 16 0-133 0-134 0-134
(30) 42 42 21 10 0-362 0-361 0-361
31 42 42 21 9 0-239 0-239 0-240

Now a Dirichlet distribution can be constructed from the spacings between the
order statistics of a random sample from the uniform distribution on the unit interval
(Wilks, 1962, Section 8.7). Consider two independent random samples of sizes (v, — 1)
and (u,— 1) from the uniform distribution on (0, 1): call their representation by points
in the interval (0, 1) “red points” and “black points” respectively. Let ®;+...+0; be
the distance from O to the (v;+...+»;)th red point, and @, +...+®; be the distance
from 0 to the (u;+ ...+ pyth black point, for 1 <i<s—1.
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The following three events are equivalent:
(a) ®1+"'+®1:<(D1+“'+(D1:’ ISiSS—l; (3)

(b) the (v;+...+vy)th red point is encountered before the (u;+ ...+ uy)th black
point, proceeding from 0, 1 <i<s—1; 4

(c) the number of black points encountered in the first
(u1+ ... +ps+v+ ... +v;—1) points is <(uy+...+p;—1), for 1<i<s—1.  (5)

The equivalence between (3) and (5) provides a direct proof of the connection
between the posterior probability of negative association and Fisher’s exact prob-
ability for the 2 x 2 contingency table.

Let N; be the number of black points selected in the first (u;+v;—1) points,
proceeding from 0, N, the number of black points selected in the next (u,+ v,) points,
N; the number of black points selected in the next (u;+v;) points...and N, the
number of black points in the final (u,+v,—1) points. Then Ny+...+N,=pu —1,
and from the equivalence between (3) and (5),

P(Xstoch.> Y|nm) = ¥ p(ny, ..., ny), 6)

(H1+V1—1) (#2'1"’2) (f"s—l'l'vs—l) (#s+Vs_1)
4! ny s ns
w4v—2
v—1
for n;20, 1<i<s, m<pq+r—1, my<p;+v; for 2<i<s—1, and n,<p,+v,—1

and n;+...+n, = pu —1. The summation sign Y in (6) extends over (n;) for which
. <t -1, 1<i<s—1.

where

p(ayg,....n) =

6. REMARKS ON THE APPLICATION OF EXPRESSION (6)
The expression (6) is simple to calculate by computer, and some numerical

examples are given in Table 2.
TABLE 2

Posterior probability that one score is stochastically
greater than another

s (C (s ooes fs) P(Xstoch.>Y) P(Ystoch.> X)
5 (1’ 2a 14a 4’ 7) (4a 10, 8, 4, 2) 0'873 0000
5 1,1,11,2,3) (3,10,5,3,1) 0-639 0-000
4 (1,7,4,5) (8,10,2,2 0-948 0-000
4 (3,4,10,11) (7,12,4,5) 0-902 0-000
4 (3,4,10,11) 2,6,9,11) 0-170 0-234
4 2,6,9,11) (7,12,4,5) 0-943 0-:000

Clearly, if 0<a <1, and X,, Y, are the a-quantiles of the distribution functions of
the scores X, Y respectively, then P(Xstoch. > ¥|n,m)<P(X,>Y,|nm). X, and Y,
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have independent posterior distributions. McLaren (1967) has shown that for 1 <i<s

P(X,<zgm) = P(O;+...+O;>a|n) = % (V: 1) af(1 —a)>~1=" where Y extends over

0<r<w;+vy+...+v;—1. Hence P(X,>Y,|nm) can readily be computed, and may
provide a useful upper bound to P(Xstoch.> ¥ |n,m).

In general, for s>2, P(Xstoch.> Y|n,m)+ P(Ystoch.> X |n,m) <1. However, the
program to compute P(X stoch.> Y|n,m) may be checked by equations (7) and (8)
below.

Define the events E;, E,, ..., E; by

E1 = ®1<®1, @1+®2<(D1+(D2, ceey ®1+”‘+®8—1<(D1+“'+(DS—1'
Ey=0y<®y, Op+0;<Dy+D,,...,0,+...+ 0, <Dy+... + ..

E,=0,<P, O0,40;<P+D,....,0,+0;+...4+40, ,<D +D,+...+D _,.

Then
E, = Xstoch.> Y.

It is proved in the Appendix that

S
EIP(E,.) =1. ©)
From (7), if v; = v, p; = p, 1<i<s, by symmetry
P(E)) = %, 1<j<s. ®)

The proof of (7) uses only the facts that ©,,®,>0, 1<i<sand X 0; = 3 ®,, and the
continuity of the Dirichlet distribution.

The Bayesian method presented here does involve heavier computation than that
required by most classical non-parametric tests of whether one random variable is
stochastically larger than another. Computation for these classical tests is of course
generally simplified by the existence of special tables, for example, those constructed
by Mann and Whitney for their U-test. However, such tests were initially constructed
for continuous data. In fact they are often used for discrete data, and then a certain
amount of complication is caused when there are ties in the rankings. This Bayesian
method has the advantage that it is designed for discrete data.
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APPENDIX

To prove (7), it is sufficient to show that the E;’s are pairwise disjoint and mutually
exhaustive events (neglecting sets of measure zero).

Consider the points (1,2,...,s) arranged clockwise on the circumference of a
circle. Denote by S(j, k) the sum X, (®,— ®,), where / runs from j to k—1 inclusive, so
that for example,

S(1,2) = 0,—®,,
S(1,3) = 0,+0,— D, —D,,
S(-1,1)=0, ,+0,-d, ,—D,
8(5,2) = 0,+0,—0,—D,.

Then since
Y0,=30, S(U,k)=-Sk,j) for 1<j,k<s ®
and it is easily verified that
S, k)+Sk,l)=S(,1) for 1<j,k, I<s. (10)

This notation for the partial sums of (®,—~®) means that E; may be written
N {S(j,I) < 0} where / runs over all elements of the set (1,2, ...,s) except j.

Hence, for any distinct j and k, E; <{S(j,k)<0}, and E; <{S(k,j) <0}, and so

It remains to show that |J E; = €2, and this is achieved by reductio ad absurdum.

Suppose there exists an element w of Q for which w ¢ |J E;, so that for 1<j<s,
w¢E;. Let j, be any element of the set (1,2,...,5). Then w¢ E; implies that there
exists j,#jy, such that S(j;,/») >0 and so, from (9), S(jz, /) <0. Now w¢E;,, and so
there exists j;#j,ja such that S(j,,j3)=>0 and so, from (9) S(js,jp)<0.
S(J3J2)» S(Jo»Jp) <O imply, from (10) that S(js, /1) <0. w ¢ E;, implies that there exists
J1F J1s Jor Ja for which S(Jjs,Jji) =0 so that S(ji,ja) <0. Using (10) again, it is apparent
that S(j,,/;) <0 for 1<i<3. Repeating this argument gives a set (jy,...,js_3) of
distinct numbers from (1,2,...,s), for which S(j,_3,j;)<0 for 1<i<s—2. Now
w¢E;  implies that there exists ji#j;,J, ---»Js—1 for which S(j,_;,j)>0, so that
SUeJe1)<0. But S(j,1,/)<0 for 1<i<s—2, so that S(j,j)<0, 1<i<s—1.
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The set (jy,....j9) is a permutation of (1,2,...,s), so that weE; which gives the
required contradiction. Hence Q = {J E, and so P(Q) = 1 = 3 P(E)).

Equations (7) and (8) have applications to the theory of order statistics. For
example, suppose a, u and » are positive integers, and n = av—1, m = au—1. Let F
and G be continuous distribution functions, and let (Xl,...,Xn), Y, ..., Y,) be
independent random samples from F and G respectively. If (X(),..., X(n) and
(Ys -++» Yiy) are the ordered random samples, so that Xy <...<X, and
Yiy < Yy <. < Yy, then (F(Xqp), ..., F(Xp)} and {G(¥p), ..., Gy} comstitute
independent ordered random samples from the uniform distribution on (0,1). The
independently distributed Dirichlet random vectors ® and € may be defined by

®1+...+®i=F(X(,:,,)), 1<i<a“‘1,

O +...+0,=1,

O, +...4+®; = G(Yy,), 1<i<a-1,

D +...+D,=1.
The vectors ©,® have distributions D(v), D(p) respectively, where v;= ... =y, = v;
and p, = ... = u, = u. Hence, from (8),

P{F(X4») < G(Yyp), 1Si<a—1} = -

In particular, if F = G, this equation becomes

P(X(ill)<Y(i/¢)’ ISiSa—-l) = ‘2.




