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Abstract

Given an i.i.d. sample from a distribution F on R with uniformly continuous density
p0, purely-data driven estimators are constructed that efficiently estimate F in sup-norm
loss, and simultaneously estimate p0 at the best possible rate of convergence over Hölder
balls, also in sup-norm loss. The estimators are obtained from applying a model selection
procedure close to Lepski’s method with random thresholds to projections of the empirical
measure onto spaces spanned by wavelets or B-splines. The random thresholds are based
on suprema of Rademacher processes indexed by wavelet or spline projection kernels. This
requires Bernstein-analogues of the inequalities in Koltchinskii (2006) for the deviation of
suprema of empirical processes from their Rademacher symmetrizations.
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1 Introduction

If X1, ..., Xn are i.i.d. with unknown distribution function F on R, then classical results of math-
ematical statistics establish optimality of the empirical distribution function Fn as an estimator
of F . That is to say, if we assume no apriori knowledge whatsoever on F , and equip the set of all
probability distribution functions with some natural loss function, such as sup-norm loss, then
Fn is asymptotically sharp minimax for estimating F . (The same is true even if more is known
about F , for instance if F is known to have a uniformly continuous density.) However, this does
not preclude the existence of other estimators that are also asymptotically minimax for estimat-
ing F in sup-norm loss, but which improve upon Fn in other respects. What we have in mind
is a purely-data driven estimator that is efficient for F but at the same time also estimates the
density f of F at the best rate of convergence in some relevant loss-function over some prescribed
classes of densities. More precisely, our goal in the present article is to construct estimators that
satisfiy the functional central limit theorem (CLT) for the distribution function and which adapt
to the unknown smoothness of the density in supnorm loss. Whereas this article is concerned
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with the mathematical problem of the existence and construction of such estimators, it does not
deal with the practical implementation of estimation procedures.

To achieve adaptation one can opt for several approaches, all of which are related. Among
them we mention the penalization method of Barron, Birgé and Massart (1999), wavelet thresh-
holding (Donoho, Johnstone, Kerkyacharian and Picard (1996)), and Lepski’s (1991) method.
Our choice for the goal at hand consists of using Lepski’s method, with random thresholds,
applied to wavelet and spline projection estimators of a density.

The linear estimators underlying our procedure are projections of the empirical measure onto
spaces spanned by wavelets, and wavelet theory is central to some of the derivations of this
article. The wavelets most commonly used in statistics are those that are compactly supported
(e.g., Daubechies’ wavelets), and our results readily apply to these. However, for computational
and other purposes, projections onto spline spaces are also interesting candidates for the esti-
mators. Density estimators obtained from projecting the empirical measure onto Schoenberg
spaces spanned by B-splines were studied by Huang and Studden (1993). As is well-known in
wavelet theory, the Schoenberg spline spaces with equally spaced knots have an orthonormal
basis consisting of the Battle-Lemarié wavelets, so that the spline projection estimator is in fact
exactly equal to the wavelet estimator based on Battle-Lemarié wavelets. These wavelets do not
have compact support but they are exponentially localized. Although we cannot handle in gen-
eral exponentially decaying wavelets, we can still work with Battle-Lemarié wavelets because the
B-spline expansion of the projections allows us to show that the relevant classes of functions are
of Vapnik-Cervonenkis type, so that empirical process techniques can be applied. In particular,
the adaptive estimators we devise in Theorem 3 may be based either on spline projections or on
compactly supported wavelets. And in the process of proving the main theorem, we also pro-
vide new asymptotic results for spline projection density estimators similar to those for wavelet
estimators in Giné and Nickl (2009b).

We need to use Talagrand’s exponential inequality with sharp constants (Bousquet (2003),
Klein and Rio (2005)) in the proofs, but to do this, we have to estimate the expectation of suprema
of certain empirical processes that appear in the centering of Talagrand’s inequality. The use of
entropy-based moment inequalities for empirical processes typically results in too conservative
constants (e.g., in Giné and Nickl (2009a)). In order to remedy this problem, we adapt recent
ideas due to Koltchinskii (2001, 2006) and Bartlett, Boucheron and Lugosi (2002) to density
estimation: the entropy based moment bounds are replaced by the sup norm of the associated
Rademacher averages, which are, with high probability, better estimates of the expected value of
the supremum of the empirical process. We derive a Bernstein-type analogue of an exponential
inequality in Koltchinskii (2006) that shows how the supremum of an empirical process deviates
from the supremum of the associated Rademacher processes. This Bernstein-type version allows
to use partial knowledge on the variance of the empirical processes involved, which is crucial for
applications in our context of adaptive density estimation. Moreover, we show that one can use,
instead of the supremum of the Rademacher process, its conditional expectation given the data.

Adaptive estimation in sup-norm loss is a relatively recent subject. We should mention the
results in Tsybakov (1998), Golubev, Lepski and Levit (2001) – who only considered Sobolev-type
smoothness conditions – and Goldenshluger and Lepski (2009). All these results were obtained in
the Gaussian white noise model. If one is interested in adapting to a Hölder-continuous density
in sup-norm loss in the i.i.d. density model on R, this simplifying Gaussian structure is not
available, and novel techniques are needed. In the i.i.d. density model on R, a direct ‘competitor’
to the estimators constructed in this article is the hard thresholding wavelet density estimator
introduced in Donoho et al. (1996): as proved in Giné and Nickl (2009b), its distribution function
satisfies the functional CLT and it is adaptive in the sup-norm over Hölder balls; however, the
proofs there require the additional assumption that dF integrates |x|δ for some δ > 0, and the
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constants appearing in the threshold and the risk become quite large for δ small. The results in
the present article hold under no moment condition whatsoever.

2 Wavelets expansions and estimators

We start with some basic notation. If (S,S) is a measurable space, and for Borel-measurable
functions h : S → R and Borel measures µ on S, we set µh :=

∫
S
hdµ. We will denote by

Lp(Q) := Lp(S,Q), 1 ≤ p ≤ ∞, the usual Lebesgue spaces on S w.r.t. a Borel measure Q, and if
Q is Lebesgue measure on S = R we simply denote this space by Lp(R), and its norm by ‖ · ‖p
if p < ∞. We will use the symbol ‖h‖∞ to denote supx∈R |h(x)| for h : R → R. For s ∈ N,
denote by Cs(R) the spaces of functions f : R→ R that are s-times differentiable with uniformly
continuous Dsf , equipped with the norm ‖f‖s,∞ =

∑
0≤α≤s ‖Dαf‖∞ , with the convention that

D0 =: id and that then C(R) := C0(R) is the space of bounded uniformly continuous functions.
For noninteger s > 0 and [s] the integer part of s, set

Cs(R) =

f ∈ C[s](R) : ‖f‖s,∞ :=
∑

0≤α≤[s]

‖Dαf‖∞ + sup
x 6=y

∣∣D[s]f(x)−D[s]f(y)
∣∣

|x− y|s−[s]
<∞

 .

2.1 Multiresolution analysis and wavelet bases

We recall here a few well-known facts about wavelet expansions, see, e.g., Sections 8 and 9
in Härdle, Kerkyacharian, Picard and Tsybakov (HKPT, 1998). Let φ ∈ L2(R) be a scaling
function, that is, φ is such that {φ(· − k) : k ∈ Z} is an orthonormal system in L2(R), and
moreover the linear spaces V0 = {f(x) =

∑
k ckφ(x − k) : {ck}k∈Z ∈ `2}, V1 = {h(x) = f(2x) :

f ∈ V0},...,Vj = {h(x) = f(2jx) : f ∈ V0},..., are nested (Vj−1 ⊆ Vj for j ∈ N) and their union is
dense in L2(R). In the case where φ is a bounded function that decays exponentially at infinity
(i.e. |φ(x)| ≤ Ce−γ|x| for some C, γ > 0) – which we assume for the rest of this subsection – the
kernel of the projection onto the space Vj has certain properties: First, the series

K(y, x) := K(φ, y, x) =
∑
k∈Z

φ(y − k)φ(x− k), (1)

converges pointwise, and we set Kj(y, x) := 2jK(2jy, 2jx), j ∈ N ∪ {0}. Furthermore we have

|K(y, x)| ≤ Φ(|y − x|) and sup
x∈R

∑
k

|φ(x− k)| <∞, (2)

where Φ : R→ R+ is bounded and has exponential decay (cf. Lemma 8.6 in HKPT (1996)). For
any j fixed, if f ∈ Lp(R), 1 ≤ p ≤ ∞, then the series

Kj(f)(y) :=
∫
Kj(x, y)f(x)dx =

∑
k∈Z

2jφ(2jy − k)
∫
φ(2jx− k)f(x)dx, y ∈ R

converges pointwise, and for f ∈ L2(R), Kj(f) coincides with the orthogonal projection πj :
L2(R)→ Vj of f onto Vj . For f ∈ L1(R), which is the main case in this article, the convergence
of the series in fact takes place in Lp(R), 1 ≤ p ≤ ∞. This still holds true if f(x)dx is replaced by
dµ(x), where µ is any finite signed measure. If now φ is a scaling function and ψ the associated
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mother wavelet so that {φ(·−k), 2l/2ψ(2l(·)−k) : k ∈ Z, l ∈ N} is an orthonormal basis of L2(R),
then any f ∈ Lp(R) admits the formal expansion

f(y) =
∑
k

αk(f)φ(y − k) +
∞∑
l=0

∑
k

βlk(f)ψlk(y) (3)

where ψlk(y) = 2l/2ψ(2ly − k), αk(f) =
∫
f(x)φ(x − k)dx, βlk(f) =

∫
f(x)ψlk(x)dx. Since

(Kl+1 −Kl)f =
∑
k βlk(f)ψlk, the partial sums of the series (3) are in fact given by

Kj(f)(y) =
∑
k

αk(f)φ(y − k) +
j−1∑
l=0

∑
k

βlk(f)ψlk(y), (4)

and, if φ, ψ are bounded and have exponential decay, then convergence of the series (4) holds
pointwise, and it also holds in Lp(R), 1 ≤ p ≤ ∞, if f ∈ L1(R) or if f is replaced by a finite
signed measure. Now, using these facts one can furthermore show that the wavelet series (3)
converges in Lp(R), p <∞, for f ∈ Lp(R), and we also note that if p0 is a uniformly continuous
density, then its wavelet series converges uniformly.

2.2 Density Estimation using wavelet and spline projection kernels

Let X1, ..., Xn be i.i.d. random variables with common law P and density p0 on R, and denote
by Pn = 1

n

∑n
i=1 δXi the associated empirical measure. A natural first step is to estimate the

projection Kj(p0) of p0 onto Vj by

pn(y) := pn(y, j) =
1
n

n∑
i=1

Kj(y,Xi) =
∑
k

α̂kφ(y − k) +
j−1∑
l=0

∑
k

β̂lkψlk(y) y ∈ R, (5)

where K is as in (1), j ∈ N, and where α̂k =
∫
φ(x − k)dPn(x), β̂lk =

∫
ψlk(x)dPn(x) are

the empirical wavelet coefficients. We note that for φ, ψ compactly supported (e.g., Daubechies’
wavelets), there are only finitely many k’s for which these coefficients are nonzero. This estimator
was first studied by Kerkyacharian and Picard (1992) for compactly supported wavelets.

If the wavelets φ and ψ do not have compact support, it may be impossible to compute the
estimator exactly, since the sums over k consist of infinitely many summands. However, in the
special case of the Battle-Lemarié family φr, r ≥ 1 (see, e.g., Section 6.1 in HKPT (1998)) –
which is a class of non-compactly supported but exponentially decaying wavelets – the estimator
has a simple form in terms of splines: the associated spaces Vj,r = {

∑
k ck2j/2φr(2j(·) − k) :∑

k c
2
k <∞} are in fact equal to the Schoenberg spaces generated by the Riesz-basis of B-splines

of order r, so that the sum in (5) can be computed by

pn(y, j) :=
1
n

n∑
i=1

κj(y,Xi) =
2j

n

n∑
i=1

∑
k

∑
l

bklNj,k,r(Xi)Nj,l,r(y) y ∈ R, (6)

where the Nj,k,r (are suitably translated and dilated) B-splines of order r, the kernel κ is as in
(29) below and the bkl’s are the entries of the inverse of the matrix defined in (28) below. An
exact derivation of this spline projection, their wavelet representation and detailed definitions
are given in Section 3.2. It turns out that for every sample point Xi and for every y, each
of the last two sums extends only over r terms. We should note that this ’spline projection’
estimator was first studied (outside of the wavelet setting) by Huang and Studden (1993), who
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derived pointwise rates of convergence. See also Huang (1999), where some comparison between
Daubechies’ and spline wavelets can be found.

In the course of proving the main theorem of this article, we will derive some basic results
for the linear spline projection estimator (6), that we now state. For classical kernel estimators,
results similar to those that follow were obtained in Deheuvels (2000) Giné and Guillou (2002)
and Giné and Nickl (2009a), and for wavelet estimators based on compactly supported wavelets,
this was done in Giné and Nickl (2009b).

Theorem 1 Suppose that P has a bounded density p0. Assume jn → ∞, n/(jn2jn) → ∞,
jn/ log log n → ∞ and j2n − jn ≤ τ for some τ positive. Let pn(y) = pn(y, jn) be the estimator
from (6) for some r ≥ 1. Then

lim sup
n

√
n

2jnjn
sup
y∈R
|pn(y)− Epn(y)| = C a.s.

and, for 1 ≤ p <∞,

sup
n

√
n

2jnjn

(
E sup
y∈R
|pn(y)− Epn(y)|p

)1/p

≤ C ′

where C and C ′ depend only on ‖p0‖∞ and on r, p, τ .

For rates of convergence in probability the conditions on jn can be weakened, cf. Proposition
3 below. The usual approximation error bounds for projections onto spaces spanned by the
respective wavelet basis then also give, for p0 ∈ Ct(R) with t ≤ r and 2jn ' (n/ log n)1/(2t+1),
that

sup
y∈R
|pn(y)− p0(y)| = O

((
log n
n

)t/(2t+1)
)

both a.s. and in Lp(P ).

For the following central limit theorem, we denote by  `∞(R) convergence in law for sample-
bounded processes in the Banach space of bounded functions on R, and by GP the usual P -
Brownian bridge (e.g., Chapter 3 in Dudley (1999)). We should emphasize that the optimal
bandwidth choice 2−jn ' n−1/2t+1 (or, if sup-norm loss is considered, n replaced by n/ log n) is
admissible for every t > 0 in the theorem below.

Theorem 2 Assume that the density p0 of P is a bounded function (t = 0) or that p0 ∈ Ct(R)
for some t, 0 < t ≤ r. Let jn satisfy n/(2jnjn) → ∞ and

√
n2−jn(t+1) → 0 as n → ∞. If F is

the distribution function of P and setting FSn (s) :=
∫ s
−∞ p(y, jn)dy, then

√
n(FSn − F ) `∞(R) GP .

Proof. Given ε > 0, apply Proposition 4 below with λ = ε, so that ‖FSn − Fn‖∞ = oP (1/
√
n)

follows, and use the fact that
√
n(Fn − F ) converges in law in `∞(R) to GP .

3 The adaptive estimation procedures

In this section we construct data-driven choices of the resolution level j and state the main
adaptation results. As mentioned in the introduction, we will use Rademacher symmetrization
for this. Generate a Rademacher sequence εi, i = 1, ..., n, independent of the sample, (that is, εi
takes values 1,−1 with probability 1/2) and set, for j < l,

R(n, j) = 2

∥∥∥∥∥ 1
n

n∑
i=1

εiKj(Xi, ·)

∥∥∥∥∥
∞

and T (n, j, l) = 2

∥∥∥∥∥ 1
n

n∑
i=1

εi(Kj −Kl)(Xi, ·)

∥∥∥∥∥
∞

, (7)
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where Kj is the kernel of the wavelet projection πj onto Vj (both for Battle-Lemarié and com-
pactly supported wavelets). In both cases, these are suprema of fixed random functions that
depend only on known quantities that can be computed in a numerically effective way. For more
details on Rademacher processes see Subsection 3.1.1 below.

To construct the estimators, we first need a grid indexing the spaces Vj onto which we project
Pn. For r ≥ 1, n > 1, choose integers jmin := jmin,n and jmax := jmax,n such that 0 < jmin < jmax,

2jmin '
(

n

log n

)1/(2r+1)

and 2jmax ' n

(log n)2
(8)

and set
J := Jn = [jmin, jmax] ∩ N.

Note that the number of elements in this grid is of order log n. We will consider two preliminary
estimators j̄n and j̃n of the resolution level (of course, only one is needed, but we offer a choice
amongst two as discussed below). Let pn(j) be as in (5) or (6). First, we set

j̄n = min
{
j ∈ J : ‖ pn(j)−pn(l)‖∞ ≤ T (n, j, l)+7‖Φ‖2‖pn(jmax)‖1/2∞

√
2ll
n
∀l > j, l ∈ J

}
(9)

where the function Φ is as in (2), and we discuss an explicit way to construct Φ in Remark 2
below. If the minimum does not exist, we set j̄n equal to jmax. An alternative estimator of the
resolution level is

j̃n = min
{
j ∈ J : ‖ pn(j)−pn(l)‖∞ ≤ (B(φ)+1)R(n, l)+7‖Φ‖2‖pn(jmax)‖1/2∞

√
2ll
n
∀l > j, l ∈ J

}
(10)

where B(φ) is a bound, uniform in j, for the operator norm in L∞(R) of the projection πj , see
Remark 3 below. Again, if the minimum does not exist, we set j̃n equal to jmax.

Before we state the main result, we briefly discuss these procedures: The data-driven reso-
lution level j̃n in (10) is based on tests that use Rademacher-analogues of the usual thresholds
in Lepski’s method: Starting with jmin, the main contribution to ‖pn(j) − pn(l)‖∞ is the bias
‖Epn(j)− p0‖∞. The procedure should stop when the ’variance term’ ‖pn(l)−Epn(l)‖∞ starts
to dominate. Since this is an unknown quantity, and since we know no good nonrandom upper
bound for it, we estimate it by the supremum of the associated Rademacher process, i.e., by
R(n, l). The constant B(φ) is necessary in order to correct for the lack of monotonicity of the
R(n, l)’s in the resolution level l.

The estimator j̄n in (9) is somewhat more refined: It tries to take advantage of the fact that
in the ’small bias’ domain, and using the results from Subsection 3.1.1,

‖pn(j)− pn(l)‖∞ =

∥∥∥∥∥ 1
n

n∑
i=1

(Kj −Kl)(Xi, ·)

∥∥∥∥∥
∞

should not exceed its Rademacher symmetrization

T (n, j, l) = 2

∥∥∥∥∥ 1
n

n∑
i=1

εi(Kj −Kl)(Xi, ·)

∥∥∥∥∥
∞

.

We now state the main result, whose proof is deferred to the next section. As usual, we say
that a wavelet basis is s-regular, s ∈ N ∪ {0}, if either the scaling function φ has s weak deriva-
tives contained in Lp(R) for some p ≥ 1, or if the mother wavelet ψ satisfies

∫
xαψ(x)dx = 0
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for α = 0, ..., s. Note that any compactly supported element of Cs(R), s > 0, is of bounded
(1/s)-variation, so that the p-variation condition in the following theorem is satisfied, e.g., for
all Daubechies-wavelets. The estimators below achieve the optimal rate of convergence for esti-
mating p0 in sup-norm loss in the minimax sense (over Hölder balls), cf., e.g., Korostelev and
Nussbaum (1999) for optimality of these rates.

Theorem 3 Let X1, ..., Xn be i.i.d. on R with common law P that possesses a uniformly con-
tinuous density p0. Let pn(j) := pn(y, j) be as in (5), where φ is either compactly supported, of
bounded p-variation (p <∞) and (r−1)-regular, or φ = φr equals a Battle-Lemarié wavelet. Let
the sequence {ĵn}n∈N be either {j̄n}n∈N or {j̃n}n∈N, and let Fn(ĵn)(t) =

∫ t
−∞ pn(y, ĵn)dy. Then

√
n
(
Fn(ĵn)− F

)
 `∞(R) GP , (11)

the convergence being uniform over the set of all probability measures P on R with densities p0

bounded by a fixed constant, in any distance that metrizes convergence in law. Furthermore, if
C is any precompact subset of C(R), then

sup
p0∈C

E sup
y∈R
|pn(y, ĵn)− p0(y)| = o(1). (12)

If, in addition, p0 ∈ Ct(R) for some 0 < t ≤ r then also

sup
p0:‖p0‖t,∞≤D

E sup
y∈R
|pn(y, ĵn)− p0(y)| = O

((
log n
n

)t/(2t+1)
)
. (13)

Remark 1 Relaxing the uniform continuity assumption. The assumption of uniform continuity
of the density of F can be relaxed by modifying the definition of j̄n (or j̃n) along the lines of
Giné and Nickl (2009a): The idea is to constrain all candidate estimators to lie in a ball of
size o(1/

√
n) around the empirical distribution function Fn so that (11) holds automatically.

Formally, this can be done by adding the requirement

sup
t∈R

∣∣∣∣∫ t

−∞
pn(y, j)dy − Fn(t)

∣∣∣∣ ≤ 1√
n log n

in each test in (9) or (10). If this requirement does not even hold for jmax, it can be seen as
evidence that F has no density, and one just uses Fn as the estimator, so as to obtain at least the
functional CLT. If F has a bounded density, one can use the exponential bound in Proposition
4 in the proof to control rejection probabilities of these test in the ’small bias’ domain ĵn > j∗,
and Theorem 3 can then still be proved for this procedure, without any assumptions on F . See
Theorem 2 in Giné and Nickl (2009a) for more details on this procedure and its proof.

Remark 2 The constant ‖Φ‖2. Once the wavelet φ have been chosen, ĵn is purely data driven
since the function Φ depends only on φ. For the Haar basis (φ = I[0,1)) we can take Φ = φ
because in this case K(x, y) ≤ I[0,1)(|x − y|) so that ‖Φ‖2 = 1. A general way to obtain
majorizing kernels Φ is described in Section 8.6 of HKPT (1998). For Battle-Lemarié wavelets,
the spline representation of the projection kernel is again useful for estimating ‖Φ‖2. See Huang
and Studden (1993) for explicit computations.

Remark 3 The constant B(φ). To construct j̃n one requires knowledge of the constant B(φ)
that bounds the operator norm ‖πj‖′∞ of πj viewed as an operator L∞(R). A simple way of
obtaining a bound is as follows: for any f ∈ L∞(R) we have, by (2),

|πj(f)(x)| =
∣∣∣∣∫ Kj(x, y)f(y)dy

∣∣∣∣ ≤ ‖Φ‖1‖f‖∞,
7



that is, ‖πj‖′∞ ≤ ‖Φ‖1. In combination with the previous remark, one readily obtains possible
values for B(φ). For instance, for the Haar wavelet, B(φ) ≤ 1. For spline wavelets, other
methods are available. For example, for Battle-Lemarié wavelets arising from linear B-splines,
‖πj‖′∞ is bounded by 3, and Shadrin (2001, p.135) conjectures the bound 2r−1 for general order
r. See DeVore and Lorentz (1996, Chapter 13.4), Shadrin (2001) and references therein for more
information.

We also note that – as the results in Subsection 3.1.1, in particular Proposition 2 show –
all our proofs go through if one replaces R(n, j), T (n, j, l) by their Rademacher expectations
EεR(n, j), EεT (n, j, l) in the definition of j̃n, j̄n.

3.1 Estimating Suprema of Empirical Processes

Talagrand’s (1996) exponential inequality for empirical processes (see also Ledoux (2001)), which
is a uniform Prohorov type inequality, is not specific about constants. Constants in its Bernstein
type version have been specified by several authors (Massart (2000), Bousquet (2003) and Klein
and Rio (2005)). Let Xi be the coordinates of the product probability space (S,S, P )N, where
P is any probability measure on (S,S), and let F be a countable class of measurable functions
on S that take values in [−1/2, 1/2], or, if F is P -centered, in [−1, 1]. Let σ ≤ 1/2 and V be any
two numbers satisfying

σ2 ≥ ‖Pf2‖F , V ≥ nσ2 + 2E

∥∥∥∥∥
n∑
i=1

(f(Xi)− Pf)

∥∥∥∥∥
F

, (14)

in which case V is also an upper bound for E
∥∥∑(f(Xi)− Pf)2

∥∥
F (Klein and Rio (2005)). Then,

taking into account that supf∈F∪(−F)

∑n
i=1 f(Xi) = supF |

∑n
i=1 f(Xi)|, Bousquet’s (2003) ver-

sion of Talagrand’s inequality is as follows: For every t > 0,

Pr

{∥∥∥∥∥
n∑
i=1

(f(Xi)− Pf)

∥∥∥∥∥
F

≥ E

∥∥∥∥∥
n∑
i=1

(f(Xi)− Pf)

∥∥∥∥∥
F

+ t

}
≤ exp

(
− t2

2V + 2
3 t

)
. (15)

In the other direction, the Klein and Rio (2005) result is: For every t > 0,

Pr

{∥∥∥∥∥
n∑
i=1

(f(Xi)− Pf)

∥∥∥∥∥
F

≤ E

∥∥∥∥∥
n∑
i=1

(f(Xi)− Pf)

∥∥∥∥∥
F

− t

}
≤ exp

(
− t2

2V + 2t

)
. (16)

These inequalities can be applied in conjunction with an estimate of the expected value
obtained via empirical processes methods. Here we describe one such result for VC type classes,
i.e., for F satisfying the uniform metric entropy condition

sup
Q
N(F , L2(Q), τ) ≤

(
A

τ

)v
, 0 < τ ≤ 1, (A ≥ e, v ≥ 2). (17)

with the supremum extending over all Borel probability measures on (S,S). We denote here by
N(G, L2(Q), τ) the usual covering numbers of a class G of functions by balls of radius less than
or equal to τ in L2(Q)-distance. Then one has, for every n

E

∥∥∥∥∥
n∑
i=1

(f(Xi)− Pf)

∥∥∥∥∥
F

≤ 2

[
15

√
2vnσ2 log

5A
σ

+ 1350v log
5A
σ

]
, (18)
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see Proposition 3 in Giné and Nickl (2009a) with a change obtained by using V as in (14) instead
of an earlier bound due to Talagrand for E

∥∥∑(f(Xi)− Pf)2
∥∥
F . This type of inequalities has

also some history (Talagrand (1994), Einmahl and Mason (2000), Giné and Guillou (2001), Giné
and Koltchinskii (2006), among others). The constants at the right hand side of (18) may be far
from best possible, but we prefer them over unspecified ’universal’ constants.

As is the case of Bernstein’s inequality in R, Talagrand’s inequality is especially useful in the
Gaussian tail range, and, combining (15) and (18), one can obtain such a ‘Gaussian tail’ bound
for the supremum of the empirical process that depends only on σ (similar to a bound in Giné
and Guillou (2001)).

Proposition 1 Let F be a countable class of measurable functions that satisfies (17), and is
uniformly bounded (in absolute value) by 1/2. Assume further that for some λ > 0,

nσ2 ≥ λ2v

2
log

5A
σ
. (19)

Set c1(λ) = 2[15 + 1350λ−1] and let c2(λ) ≥ 1 + 120λ−1 + 10800λ−2. Then, if

c1(λ)

√
2vnσ2 log

5A
σ
≤ t ≤ 3

2
c2(λ)nσ2, (20)

we have

Pr

{∥∥∥∥∥
n∑
i=1

(f(Xi)− Pf)

∥∥∥∥∥
F

≥ 2t

}
≤ exp

(
− t2

3c2(λ)nσ2

)
. (21)

Proof. Under (19), inequality (18) gives E ‖
∑n
i=1(f(Xi)− Pf)‖F ≤ c1(λ)

√
2vnσ2 log 5A

σ and
(14) implies that we can take V = c2(λ)nσ2. Now the result follows from (15), taking into account
that in the range of t’s E ‖

∑n
i=1(f(Xi)− Pf)‖F ≤ t ≤ 3V/2, (15) becomes

Pr

{∥∥∥∥∥
n∑
i=1

(f(Xi)− Pf)

∥∥∥∥∥
F

≥ 2t

}
≤ exp

(
− t2

3V

)
.

The constants here may be too large for some applications, but they are not so in situations
where λ can be taken very large, in particular in asymptotic considerations. [Then c1(λ) → 30
and c2(λ)→ 1 as λ→∞.]

3.1.1 Estimating the size of empirical processes by Rademacher averages

The constants one could obtain from Proposition 1 are not satisfactory for the applications to
adaptive estimation we have in mind. We now propose a remedy for this problem, inspired
by a nice idea of Koltchinskii (2001) and Bartlett, Boucheron and Lugosi (2002) consisting in
replacing the expectation of the supremum of an empirical process by the supremum of the
associated Rademacher process, that they used in other contexts, namely in risk minimization
and model selection. An inequality of this type (see Koltchinskii (2006), page 2602), is

Pr

{∥∥∥∥∥
n∑
i=1

(f(Xi)− Pf)

∥∥∥∥∥
F

≥ 2

∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

+ 3t

}
≤ exp

(
−2t2

3n

)
, (22)
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where εi, i ∈ N, are i.i.d. Rademacher random variables, independent of the Xi’s, all defined
as coordinates on a large product probability space. Note that this bound does not take the
variance V in (15) into account, but in the applications to density estimation that we have in
mind, V is much smaller than n (it is of the order n2−jn , jn →∞). We need a similar inequality,
with the quantity n in the bound replaced by V , valid over a large enough range of t’s.

It will be convenient to use the following well-known symmetrization inequality (e.g., Dudley
(1999), p.343):

1
2
E

∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

−
√
n

2
‖Pf‖F ≤ E

∥∥∥∥∥
n∑
i=1

(f(Xi)− Pf)

∥∥∥∥∥
F

≤ 2E

∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

, (23)

The following exponential bound is the Bernstein-type analogue of (22). Denote by Eε expecta-
tion w.r.t. the Rademacher variables only.

Proposition 2 Let F be a countable class of measurable functions, uniformly bounded (in ab-
solute value) by 1/2. Then, for every t > 0,

Pr

{∥∥∥∥∥
n∑
i=1

(f(Xi)− Ef(X))

∥∥∥∥∥
F

≥ 2

∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

+ 3t

}
≤ 2 exp

(
− t2

2V ′ + 2t

)
, (24)

as well as

Pr

{∥∥∥∥∥
n∑
i=1

(f(Xi)− Ef(X))

∥∥∥∥∥
F

≥ 2Eε
∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

+ 3t

}
≤ 2 exp

(
− t2

2V ′ + 2t

)
, (25)

where V ′ = nσ2 + 4E ‖
∑n
i=1 εif(Xi)‖F .

Proof. We have

Pr

{∥∥∥∥∥
n∑
i=1

(f(Xi)− Pf)

∥∥∥∥∥
F

≥ 2

∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

+ 3t

}
≤

Pr

{∥∥∥∥∥
n∑
i=1

(f(Xi)− Pf)

∥∥∥∥∥
F

≥ 2E

∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

+ t

}
+Pr

{∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

≤ E

∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

− t

}
.

For the first term, combining (23) with (15) gives

Pr

{∥∥∥∥∥
n∑
i=1

(f(Xi)− Pf)

∥∥∥∥∥
F

≥ 2E

∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

+ t

}
≤ exp

(
− t2

2V ′ + (2/3)t

)
.

For the second term, note that (16) applies to the randomized sums
∑n
i=1 εif(Xi) as well by just

taking the class of functions

G = {g(τ, x) = τf(x) : f ∈ F} ,

τ ∈ {−1, 1}, instead of F and the probability measure P̄ = 2−1(δ−1 + δ1) × P instead of P .
Hence

Pr

{∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

≤ E

∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

− t

}
≤ exp

(
− t2

2V ′ + 2t

)
, (26)
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since V ′ ≥ nσ2 + 2E ‖
∑n
i=1 εif(Xi)‖F . Combining the bounds completes the proof of (24).

It remains to prove (25). Let G, P̄ be as above, let Yi = (εi, Xi), and note that P̄ is the law
of Yi. By convexity,

Ee−tE
ε‖

Pn
i=1 εif(Xi)‖F ≤ Ee−t‖

Pn
i=1 εif(Xi)‖F = Ee−t‖

Pn
i=1 g(Yi)‖G

for all t. The Klein and Rio (2005) version (16) of Talagrand’s inequality is in fact established by
estimating the Laplace transform Ee−t‖

Pn
i=1 g(Yi)‖G , and Theorem 1.2a in Klein and Rio (2005)

implies

Ee−tE
ε‖

Pn
i=1 εi(f(Xi)−Pf)‖F ≤ −tE‖

n∑
i=1

g(Yi)‖G +
V

9
(
e3t − 3t+ 1

)
,

for V ≥ nσ2 + 2E‖
∑n
i=1 g(Yi)‖G , which, by their proof of the implication (a) ⇒ (c) in that

theorem, gives

Pr

{
Eε

∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

≤ E

∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

− t

}
≤ exp

(
− t2

2V ′ + 2t

)
.

The proof of (25) now follows as in the previous case.

For F of VC type, the moment bound (18) is usually proved as a consequence of a bound for
the Rademacher process. In fact, the proof of Proposition 3 in Giné and Nickl (2009a) shows

E

∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

≤ 15

√
2vnσ2 log

5A
σ

+ 1350v log
5A
σ
, (27)

where σ is as in (14), which we use in the following corollary, together with the previous propo-
sition. The constant c2(λ) in the exponent below is still potentially large, but tends to one if
λ→∞.

Corollary 1 Let F be a countable class of measurable functions that satisfies (17), and assume
it to be uniformly bounded (in absolute value) by 1/2. Assume further (19) for some λ > 0.
Then for 0 < t ≤ 1

20c2(λ)nσ2 with c2(λ) as in Proposition 1, we have

Pr

{∥∥∥∥∥
n∑
i=1

(f(Xi)− Ef(X))

∥∥∥∥∥
F

≥ 2

∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

+ 3t

}
≤ 2 exp

(
− t2

2.1c2(λ)nσ2

)
,

and the same inequality holds if ‖
∑n
i=1 εif(Xi)‖F is replaced by its Eε expectation.

Proof. By (19) and (27), we have V ′ ≤ c2(λ)nσ2, and the condition on t together with (24) give
the result.

3.2 Projections onto spline spaces and their wavelet representation

We briefly review in this section how the wavelet estimator (5) for Battle-Lemarié wavelets can
be represented as a spline projection estimator (6). We shall need the spline representation in
some proofs, while the wavelet representation will be useful in others.

Let T := Tj = {ti(j)}∞−∞ = 2−jZ, j ∈ Z, be a bi-infinite sequence of equally spaced knots
ti := ti(j). A function S is a spline of order r, or of degree m = r−1, if on each interval (ti, ti+1),
it is a polynomial of degree less than or equal to m (and exactly of degree m on at least one

11



interval), and, at each breakpoint ti, S is at least m − 1-times differentiable. The Schoenberg
space Sr(T ) := Sr(T,R) is defined as the set of all splines of order (less than or equal to) r, and
it coincides with the space Sr(T, 1,R) in DeVore and Lorentz (1993, p.135). The space Sr(Tj)
has a Riesz-basis formed by B-splines {Nj,k,r}k∈Z that we now describe. [See Section 4.4 in
Schumaker (1993) and p.138f. in DeVore and Lorentz (1993) for more details.] Define

N0,r(x) = 1[0,1) ∗ ... ∗ 1[0,1)(x), r-times =
r∑
i=0

(−1)i
(
r
i

)
(x− i)r−1

+

(r − 1)!
.

For r = 2, this is the linear B-spline (the usual ’hat’ function), for r = 3 it is the quadratic,
and for r = 4 it is the cubic B-spline. Set Nk,r(x) := N0,r(x − k). Then the elements of the
Riesz-basis are given by

Nj,k,r(x) := Nk,r(2jx) = N0,r

(
2jx− k

)
.

By the Curry-Schoenberg theorem, any S ∈ Sr(Tj) can be uniquely represented as S(x) =∑
k∈Z ckNj,k,r(x). The orthogonal projection πj(f) of f ∈ L2(R) onto Sr(Tj)∩L2(R) is derived,

e.g., in DeVore and Lorentz (1993, p.401f.), where it is shown that πj(f) = 2j/2
∑
k∈Z ckNj,k,r

with the coefficients ck := ck(f) satisfying (Ac)k = 2j/2
∫
Nj,k,r(x)f(x)dx where the matrix A is

given by

akl =
∫

2jNj,k,r(x)Nj,l,r(x)dx =
∫
Nk,r(x)Nl,r(x)dx. (28)

The inverse A−1 of the matrix A exists (see Corollary 4.2 on p.404 in DeVore and Lorentz (1993)),
and if we denote its entries by bkl so that ck = 2j/2

∫ ∑
l bklNj,l,r(x)f(x)dx, we have

πj(f)(y) = 2j
∫ ∑

k

∑
l

bklNj,l,r(x)Nj,k,r(y)f(x)dx =
∫
κj(x, y)f(x)dx,

where κj(x, y) = 2jκ(2jx, 2jy) with

κ(x, y) =
∑
k

∑
l

bklNl,r(x)Nk,r(y), (29)

is the spline projection kernel. Note that κ is symmetric in its arguments.
Diagonalisation of the kernel κ of the projection operator πj led in fact to one of the first

examples of wavelets, see, e.g., p.21f. and Section 2.3 in Meyer (1992), Section 5.4 in Daubechies
(1992), or Section 6.1 in HKPT (1998). There it is shown that there exists a r − 1-times
differentiable scaling function φr with exponential decay, the Battle-Lemarié wavelet of order r,
such that

Sr(Tj) ∩ L2(R) = Vj,r =

{∑
k

ck2j/2φr(2j(·)− k) :
∑
k

c2k <∞

}
.

This necessarily implies that the kernels κ and K = K(φr) describe the same projections in
L2(R), and the following simple lemma shows that these kernels are in fact pointwise the same.

Lemma 1 Let {Nk,r}k∈Z be the Riesz-basis of B-splines of order r ≥ 1, and let φr be the
associated Battle-Lemarié scaling function. If K is as in (1) and κ is as in (29), then, for all
x, y ∈ R, we have

K(x, y) = κ(x, y).

12



Proof. If r = 1, then N0,1 = φ1 since this is just the Haar-basis. So consider r > 1. Since
{φr(· − k) : k ∈ Z} is an orthonormal basis of Sr(Z) ∩ L2(R) (cf., e.g., Theorem 1 on p. 26 in
Meyer (1992)), it follows that K and κ are the kernels of the same L2-projection operator, and
therefore, for all f, g ∈ L2(R)∫ ∫

(K(x, y)− κ(x, y))f(x)g(y)dxdy = 0.

By density in L2(R × R) of linear combinations of products of elements of L2(R), this implies
that κ and K are almost everywhere equal in R2. We complete the proof by showing that both
functions are continuous in R2. For K, this follows from the decomposition

|K(x, y)−K(x′, y′)| ≤
∑
k

|φr(x−k)−φr(x′−k)||φr(y−k)|+
∑
k

|φr(y−k)−φr(y′−k)||φr(x′−k)|,

the uniform continuity of φr (r > 1) and relation (2). For κ we use the relation (31) below,

|κ(x, y)− κ(x′, y′)| ≤
∑
i

|Ni,r(x)−Ni,r(x′)||H(y − i)|+
∑
i

|H(y − i)−H(y′ − i)||Ni,r(x′)|,

which implies continuity of κ on R2 since N0,r and H are uniformly continuous (as N0,r is and∑
i |g(|i|)| <∞), and since N0,r has compact support.

3.3 An Exponential inequality for the uniform deviations of the linear
estimator

To control the uniform deviations of the linear estimators from their means, one can use inequal-
ities for the empirical process indexed by classes of functions F contained in

K =
{

2−jKj(·, y) : y ∈ R, j ∈ N ∪ {0}
}
, (30)

together with suitable bounds on the ’weak’ variance σ.
If φ has compact support (and is of finite p-variation), it is proved in Lemma 2 in Giné

and Nickl (2009b) that the class K also satisfies the bound (17). However, the proof there does
not apply to Battle-Lemarié wavelets. A different proof, using the Toeplitz- and band-limited
structure of the spline projection kernel, still enables us to prove that these classes of functions
are of Vapnik-Cervonenkis type.

Lemma 2 Let K be as in (30), where φr is a Battle-Lemarié wavelet for some r ≥ 1. Then
there exist finite constants A ≥ 2 and v ≥ 2 such that

sup
Q
N(K, L2(Q), ε) ≤

(
A

ε

)v
for 0 < ε < 1 and where the supremum extends over all Borel probability measures on R.

Proof. In the case r = 1, φ1 is just the Haar wavelet, in which case the results follows from
Lemma 2 in Giné and Nickl (2009b). Hence assume r ≥ 2.

The matrix A is Toeplitz since, by change of variables in (28), akl = ak+1,l+1 for all k, l ∈ Z,
and it is band-limited because N0,r has compact support. It follows that also A−1 is Toeplitz,
and we denote its entries by bkl = g(|k − l|)) for some function g. Furthermore it is known
(e.g., Theorem 4.3 on p.404 in DeVore and Lorentz (1993)) that the entries of the inverse of any
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positive definite band-limited matrix satisfy |bkl| ≤ cλ|k−l| for some 0 < λ < 1 and c finite. Now,
following Huang and Studden (1992), we write∑

k

g(|l − k|)Nk,r(x) =
∑
k

g(|l − k|)Nk−l,r(x− l) =
∑
k

g(|k|)Nk,r(x− l),

so that
2−jκj(·, y) =

∑
l∈Z

Nj,l,r(y)H(2j(·)− l) (31)

where H(x) =
∑
k∈Z g(|k|)Nk,r(x) is a function of bounded variation: To see the last claim, note

that N0,r is of bounded variation, and hence ‖Nk,r‖TV = ‖N0,r‖TV (where ‖ · ‖TV denotes the
usual total-variation norm) so that ‖H‖TV ≤ ‖N0,r‖TV

∑
k∈Z |g(|k|)| <∞ because

∑
k |bl,l−k| ≤∑

k cλ
|k| <∞. The last fact implies that

H =
{
H(2j(·)− l) : l ∈ Z, j ∈ N ∪ {0}

}
satisfies, for finite constants B > 1 and w ≥ 1

sup
Q
N(H, L2(Q), ε) ≤

(
B‖H‖∞

ε

)w
, for 0 < ε < ‖H‖∞

as proved in Nolan and Pollard (1987). Since Nj,0,r is zero if y is not contained in [0, 2−jr], the
sum in (31), for fixed y and j, extends only over the l’s such that 2jy−r ≤ l < 2jy, hence consists
of at most r terms. This implies that K is contained in the set Hr of linear combinations of at
most r functions from H, with coefficients bounded in absolute value by ‖Nj,l,r‖∞ = ‖N0,r‖∞ <
∞. Given ε, let ε′ = ε/(2rmax(‖H‖∞, ‖N0,r‖∞)). Let α1, ..., αn1 be an ε′-dense subset of
[−‖N0,r‖∞, ‖N0,r‖∞] which, for ε′ < ‖N0,r‖∞, has cardinality n1 ≤ 3‖N0,r‖∞/ε′. Furthermore,
let h1, ..., hn2 be a subset of H of cardinality n2 = N(H, L2(Q), ε′) which is ε′-dense in H in the
L2(Q)-metric. It follows that, for ε′ < min(‖H‖∞, ‖N0,r‖∞), every

∑
l∈Z Nj,l,r(y)H(2j(·) − l)

is at L2(Q)-distance at most ε from
∑r
l=1 αi(l)hi′(l) for some 1 ≤ i(l) ≤ n1 and 1 ≤ i′(l) ≤

n2. The total number of such linear combinations is dominated by (n1n2)r ≤ (B′/ε)(w+1)r.
This shows that the lemma holds for ε < 2rmin{‖H‖∞, ‖N0,r‖∞}max{‖H‖∞, ‖N0,r‖∞} =
2r‖H‖∞‖N0,r‖∞ = U , which completes the proof by taking A = max(B′, U, e) (for ε ∈ [U,A]
one ball covers the whole set).

Proposition 3 Let K be as in (1) and assume either that φ has compact support and is of
bounded p-variation (p < ∞), or that φ is a Battle-Lemarié scaling function for some r ≥ 1.
Suppose P has a bounded density p0. Given C, T > 0, there exist finite positive constants C1 =
C1(C,K, ‖p0‖∞) and C2 = C2(C, T,K, ‖p0‖∞) such that, if

n

2jj
≥ C and C1

√
2jj
n
≤ t ≤ T

then

Pr
{

sup
y∈R
|pn(y, j)− Epn(y, j)| ≥ t

}
≤ exp

(
−C2

nt2

2j

)
. (32)

Proof. We first prove the Battle-Lemarié wavelet case. If r > 1, the function K is continuous
(see the proof of Lemma 1), and therefore the supremum in (32) is over a countable set. That this
is also true for r = 1 follows from Remark 1 in Giné and Nickl (2009b). We apply Proposition 1
and Lemma 2 to the supremum of the empirical process indexed by the classes of functions

Kj :=
{

2−jKj(·, y)/(2‖Φ‖∞) : y ∈ R
}
,
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where Φ is a function majorizing K (as in (2)), so that Kj is uniformly bounded by 1/2. We
next bound the second moments E(2−2jK2

j (X, y)). We have, using (2),∫
2−2jK2

j (x, y)p0(x)dx ≤
∫

Φ2(|2j(x− y)|)p0(x)dx

≤ 2−j
∫

Φ2(|u|)p0(y + 2−ju)du ≤ 2−j‖p0‖∞‖Φ‖22. (33)

Hence we may take σ =
√

2−j‖Φ‖22‖p0‖∞/(2‖Φ‖∞), and the result is then a direct consequence
of Proposition 1, which applies by Lemma 2. For compactly supported wavelets, the same proof
applies, using Lemma 2 (and Remark 1) in Giné and Nickl (2009b).

Proof. (Theorem 1) Using Lemma 2, the first two claims of the Theorem follow by the same
proof as in Theorem 1 and Corollary 1, Giné and Nickl (2009b). For the bias term, we argue
as in Theorem 8.1 in HKPT (1998) – using the fact that φr is r − 1 times differentiable – and
obtain, for p0 ∈ Ct(R)

|Epn(x)− p0(x)| ≤ 2−jt‖p0‖t,∞C (34)

where C := C(Φ) =
∫

Φ(|u|)|u|tdu.

3.4 An exponential inequality for the distribution function of the linear
estimator.

The quantity of interest in this subsection is the distribution function FSn of the linear projection
estimator pn from (6), more precisely, we will study the stochastic process

√
n(FSn (s)− F (s)) =

√
n

∫ s

−∞
(pn(y, j)− p0(y))dy, s ∈ R.

To prove a functional CLT for this process, it turns out that it is easier to compare FSn to Fn
rather than to F . With F =

{
1(−∞,s] : s ∈ R

}
, the decomposition

(FSn − Fn)(s) = (Pn − P )(πj(f)− f) +
∫

(πj(p0)− p0)f, f ∈ F , (35)

will be useful, since it splits the quantity of interest into a deterministic ’bias’ term and an
empirical process.

Lemma 3 Assume that p0 is a bounded function (t = 0), or that p0 ∈ Ct(R) for some 0 < t ≤ r.
Let F =

{
1(−∞,s] : s ∈ R

}
. Then∣∣∣∣∫

R
(πj(p0)− p0)f

∣∣∣∣ ≤ C2−j(t+1) (36)

for some constant C depending only on r and ‖p0‖t,∞.

Proof. Let ψ := ψr be the mother wavelet associated to φr. Since the wavelet series of
p0 ∈ L1(R) converges in L1(R) we have πj(p0)− p0 = −

∑∞
l=j

∑
k βlk(p0)ψlk in the L1(R)-sense,

and then, since f = 1(−∞,s] ∈ L∞(R),

−
∫

R
(πj(p0)− p0)f =

∫
R

 ∞∑
l=j

∑
k

βlk(p0)ψlk(x)

 f(x)dx =
∞∑
l=j

∑
k

βlk(p0)βlk(f).
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The lemma now follows from an estimate for the decay of the wavelet coefficients of p0 and f ,
namely the bounds

sup
f∈F

∑
k

|βlk(f)| ≤ c2−l/2 and sup
k
|βlk(p0)| ≤ c′2−l(t+1/2), (37)

The first bound is proved as in the proof of Lemma 3 in Giné and Nickl (2009b), noting that
the identity before equation (37) in that proof also holds for spline wavelets by their exponential
decay property. The second bound follows from

sup
k
|βlk(p0)| ≤ c′′2−l/2‖Kl+1(p0)−Kl(p0)‖∞

≤ c′′2−l/2 (‖Kl(p0)− p0‖∞ + ‖Kl+1(p0)− p0‖∞) ≤ c′2−l/22−lt

where we used (9.35) in HKPT (1998) for the first inequality and (34) in the last.

To control the fluctuations of the stochastic term, one applies Talagrand’s inequality to the
empirical process indexed by the ’shrinking’ classes of functions {πj(f) − f : f ∈ F}. These
classes consist of differences of elements in F and in

K′j :=
{∫ t

−∞
Kj(·, y)dy : t ∈ R

}
,

and we have to show that, for each j, this class satisfies the entropy condition (17). Again, for
φ with compact support (and of finite p-variation), this result was proved in Lemma 2 in Giné
and Nickl (2009b), and we extend it now to the Battle-Lemarié wavelets considered here.

Lemma 4 Let K′j be as above where φr is a Battle-Lemarié wavelet for r ≥ 1. Then there exist
finite constants A ≥ e and v ≥ 2 and independent of j such that

sup
Q
N(K′j , L2(Q), ε) ≤

(
A

ε

)v
, 0 < ε < 1,

where the supremum extends over all Borel probability measures on R.

Proof. In analogy to the proof of Lemma 2, one can write∫ t

−∞
Kj(·, y)dy =

∑
l∈Z

∫ t

−∞
2jNj,l,r(y)dyH(2j(·)− l),

since the series (31) converges absolutely (in view of∑
l

|H(2jx− l)| ≤
∑
k

|g(|k|)|
∑
l

Nk,r(2jx− l) ≤ r‖N0,r‖∞
∑
k

|g(|k|)| <∞.)

Recall that Nj,l,r is supported in the interval [2−j l, 2−j(r+ l)]. Hence, if l > 2jt, the last integral
is zero. For l ≤ 2jt−r, the integral equals the constant c =

∫
R N0,r(y)dy, and for l ∈ [2jt−r, 2jt],

the integral cj,l,r is bounded by c, so that this sum in fact equals

c
∑

l≤2jt−r

H(2j(·)− l) +
∑

2jt−r<l<2jt

cj,l,rH(2j(·)− l).

The second sum is contained in the setHr from the proof of Lemma 2, which satisfies the required
entropy bound independent of j. For the first sum, decompose H into its positive and negative
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part, so that the two resulting collections of functions are linearly ordered (in t) by inclusion, and
hence are VC-subgraph of index 1, see Theorems 4.2.6 and 4.8.1 in Dudley (1999). Moreover, we
can take the envelope r‖N0,r‖∞

∑
k |g(|k|)| independent of j. Combining entropy bounds, this

proves the lemma.

Combining these observations, one can prove the following inequality, which parallels Theorem
1 in Giné and Nickl (2009a) for the the classical kernel density estimator, and Lemma 4 in Giné
and Nickl (2009b) for the wavelet density estimator (with φ compactly supported).

Proposition 4 Let Fn(s) =
∫ s
−∞ dPn and FSn (s) := FSn (s, j) =

∫ s
−∞ pn(y, j)dy, where pn is as

in (6). Assume that the density p0 of P is a bounded function (t = 0) or that p0 ∈ Ct(R) for
some t, 0 < t ≤ r. Let j ∈ Z satisfy 2−j ≥ d(log n/n) for some 0 < d < ∞. Then there exist
finite positive constants L := L(‖p0‖∞,K, d), Λ0 := Λ0(‖p0‖t,∞,K, d) such that for all n ∈ N
and λ ≥ Λ0 max(

√
j2−j ,

√
n2−j(t+1)) we have

Pr
(√
n‖FSn − Fn‖∞ > λ

)
≤ L exp

{
−min(2jλ2,

√
nλ)

L

}
.

Proof. Given the preceding lemmas, the proposition follows from Talagrand’s inequality applied
to the class {πj(1(−∞,x]) − 1(−∞,x]} in the same way as in the proof of Lemma 4 in Giné and
Nickl (2009b), so we omit it.

3.5 Proof of Theorem 3

We can now prove the main result, Theorem 3. We will prove it only for Battle-Lemarié wavelets.
For compactly supported wavelets, the proof is exactly the same, replacing the results from steps
I)-II) below and from Sections 3.3 and 3.4 for spline wavelets by the corresponding ones for
compactly supported wavelets obtained in Giné and Nickl (2009b). Also, uniformity in p0 –
which is proved by controlling the respective constants – is left implicit in the derivations. We
start with some preliminary observations.

I) Since, uniformly in j ∈ J , we have n/(2jj) > c log n for some c > 0 independent of n, we
have from Proposition 3, integrating tail probabilities, that

E‖pn(j)− Epn(j)‖p∞ ≤ Dp

(
2jj
n

)p/2
:= Dpσp(j, n) (38)

for every j ∈ J , 1 ≤ p <∞ and some 0 < D <∞ depending only on ‖p0‖∞ and Φ.
For the bias, we recall from (34) that, for 0 < t ≤ r

|Epn(y, j)− p0(y)| ≤ 2−jt‖p0‖t,∞C(Φ) := B(j, p0). (39)

If the density p0 is only uniformly continuous, then one still has from (2) and integrability of Φ
that, uniformly in y ∈ R,

|Epn(y, j)− p0(y)| ≤
∣∣∣∣∫ |Φ(|u|)||p0(y − 2−ju)− p0(y)|du

∣∣∣∣ := B(j, p0) = o(1). (40)

II) Define M̃ := M̃n = C‖pn(jmax)‖∞ and set C = 49‖Φ‖22. Define also M = C‖p0‖∞ for the
same C. We need to control the probability that M̃ > 1.01M or M̃ < 0.99M if p0 is uniformly
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continuous. For some 0 < L <∞ and n large enough we have

Pr
(
|M̃ −M | > 0.01C‖p0‖∞

)
= Pr (|‖pn(jmax)‖∞ − ‖p0‖∞| > 0.01‖p0‖∞)

≤ Pr (‖pn(jmax)− p0‖∞ > 0.01‖p0‖∞)
≤ Pr (‖pn(jmax)− Epn(jmax)‖∞ > 0.01‖p0‖∞ −B(jmax, p0))
≤ Pr (‖pn(jmax)− Epn(jmax)‖∞ > 0.009‖p0‖∞)

≤ exp
{
− (log n)2

L

}
by Proposition 3 and Step I). Furthermore, there exists a constant L′ such that EM̃ ≤ L′ for
every n in view of

E‖pn(jmax)‖∞ ≤ E‖pn(jmax)− Epn(jmax)‖∞ + ‖Epn(jmax)‖∞ ≤ c+ ‖Φ‖1‖p0‖∞,

where we have used (2) and (38).

III) We need some observations on the Rademacher processes used in the definition of ĵn.
First, for the symmetrized empirical measure P̃n = 2n−1

∑n
i=1 εiδXi

, we have

R(n, j) = ‖πj(P̃n)‖∞ = ‖πj(πl(P̃n))‖∞ ≤ ‖πj‖′∞R(n, l) ≤ B(φ)R(n, l) (41)

for every l > j: Here ‖πj‖′∞ is the operator norm in L∞(R) of the projection πj , which admits
bounds B(φ) independent of j. (Clearly, πj acts on finite signed measures µ by duality, taking
values in L∞(R) since |πj(µ)| = |

∫
Kj(·, y)dµ(y)| ≤ 2j‖Φ‖∞|µ|(R).) See Remark 3 for details

on how to obtain B(φ). Furthermore, for j < l,

T (n, j, l) ≤ R(n, j) +R(n, l) ≤ (1 +B(φ))R(n, l), (42)

and the same inequality holds for the Rademacher expectations of T (n, j, l). We also record
the following bound for the (full) expectation of R(n, l), l ∈ J : Using inequality (27) and the
variance computation (33), we have that there exists a constant L depending only on ‖p0‖∞ and
Φ such that, for every l ∈ J , ER(n, l) ≤ L

√
2ll/n.

Proof of (11). Let F =
{

1(−∞,s] : s ∈ R
}

, and let f ∈ F . We have

√
n

∫
(pn(ĵn)− p0)f =

√
n

∫
(pn(jmax)− p0)f +

√
n

∫
(pn(ĵn)− pn(jmax))f.

The first term satisfies the CLT from Theorem 2 for the linear estimator with jn = jmax. We
now show that the second term converges to zero in probability. Observe first

pn(ĵn)(y)− pn(jmax)(y) = Pn(Kĵn
(·, y)−Kjmax(·, y)) = −

jmax−1∑
l=ĵn

∑
k

β̂lkψlk(y),

with convergence in L1(R). Next, we have by (9.35) in HKPT (1998), for all l ∈ [ĵn, jmax − 1]
and all k, by definition of ĵn, that for some 0 < D′ <∞

(1/D′)2l/2|β̂lk| ≤ sup
y∈R
|Pn(Kl+1(·, y))− Pn(Kl(·, y))| = ‖pn(l + 1)− pn(l)‖∞

≤ ‖pn(l + 1)− pn(ĵn)‖∞ + ‖pn(l)− pn(ĵn)‖∞

≤ (1 +B(φ))(R(n, l + 1) +R(n, l)) + 3
√
M̃2ll/n,
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in case ĵn = j̄n using also the inequality T (n, j̄n, l) ≤ (1 + B(φ))R(n, l) for l ≥ j̄n (see (42)).
Consequently, uniformly in f ∈ F ,

E

∣∣∣∣∫ (pn(ĵn)− pn(jmax))f
∣∣∣∣ = E

∣∣∣∣∣∣
jmax−1∑
l=ĵn

∑
k

β̂lk

∫
ψlk(y)f(y)dy

∣∣∣∣∣∣
≤ E

jmax−1∑
l=jmin

D′2−l/2
(

(B(φ) + 1)(R(n, l + 1) +R(n, l)) + 3
√
M̃2ll/n

)∑
k

|βlk(f)|

≤
(
D′′√
n

) jmax−1∑
l=jmin

2−l/2
√
l = o

(
1√
n

)

using the moment bounds in II), III), ĵn ≥ jmin → ∞ as n → ∞ (by definition of J ) and since
supf∈F

∑
k |βlk(f)| ≤ c2−l/2 by (37) for some constant c.

Proof of (12) and (13): The proof of the case t = 0 follows from a simple modification of
the arguments below as in Theorem 2 in Giné and Nickl (2009a), so we omit it. [In this case,
one defines j∗ as jmax if t = 0 so that only the case ĵn ≤ j∗ has to be considered.] For t > 0,
define j∗ := j(p0) by the balance equation

j∗ = min
{
j ∈ J : B(j, p0) ≤

√
2 log 2‖p0‖1/2∞ ‖Φ‖2σ(j, n)

}
. (43)

Using the results from I), it is easily verified that 2j
∗ ' (n/ log n))

1
2t+1 if p0 ∈ Ct(R) for some

0 < t ≤ r, and that

σ(j∗, n) = O

((
log n
n

)t/(2t+1)
)

is the rate of convergence required in (13).
We will consider the cases {ĵn ≤ j∗} and {ĵn > j∗} separately. First, if ĵn is j̄n, then we have

by the definition of j̄n, (42), the definitions of M and j∗, (38) and the moment bound in III)

E ‖pn(j̄n)− p0‖∞ I{j̄n≤j∗}∩{M̃≤1.01M}

≤ E (‖pn(j̄n)− pn(j∗)‖∞ + E‖pn(j∗)− p0‖∞) I{j̄n≤j∗}∩{M̃≤1.01M}

≤ (B(φ) + 1)ER(n, j∗) +
√

1.01Mσ(j∗, n) + ‖pn(j∗)− p0‖∞ (44)

≤ B′
√

2j∗j∗

n
+B′′σ(j∗, n) = O(σ(j∗, n)), .

If ĵn is j̃n then one has the same bound (without even using (42)).
Also, by the results in I), II),

E
∥∥∥pn(ĵn)− p0

∥∥∥
∞
I{ĵn≤j∗}∩{M̃>1.01M}

≤
∑

j∈J :j≤j∗
E
(

[‖pn(j)− Epn(j)‖∞ +B(j, p0)] I{ĵn=j}I{M̃>1.01M}

)
≤ c log n [Dσ(j∗, n) +B(jmin, p0)] ·

√
E1{M̃>1.01M}

= o

(
(log n)

√
exp

{
− (log n)2

L

})
= o(σ(j∗, n)).
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We now turn to {ĵn > j∗}. First,

E
∥∥∥pn(ĵn)− p0

∥∥∥
∞
I{ĵn>j∗}∩{M̃<0.99M}

≤
∑

j∈J :j>j∗

E
(

[‖pn(j)− Epn(j)‖∞ +B(j, p0)] I{ĵn=j}I{M̃<0.99M}

)
≤ c′ log n [Dσ(jmax, n) +B(j∗, p0)] ·

√
EI{M̃<0.99M}

= O

(√
(log n) exp

{
− (log n)2

L

})
= o(σ(j∗, n)),

again by the results in I), II), and second, for any 1 < p <∞, 1/p+ 1/q = 1, using (38) and the
definition of j∗

E
∥∥∥pn(ĵn)− p0

∥∥∥
∞
I{ĵn>j∗}∩{0.99M≤M̃}

≤
∑

j∈J :j>j∗

(E ‖pn(j)− p0‖p∞)1/p
(
EI{ĵn=j}∩{0.99M≤M̃}

)1/q

≤
∑

j∈J :j>j∗

D′σ(j, n) · Pr
(
{ĵn = j} ∩ {0.99M ≤ M̃}

)1/q

.

We show below that for n large enough, some constant c, some δ > 0 and some q > 1,

Pr({ĵn = j} ∩ {0.99M ≤ M̃}) ≤ c2−j(q/2+δ), (45)

which gives the bound∑
j∈J :j>j∗

D′′σ(j, n) · 2−j/2−jδ/q = O

(
1√
n

)
= o(σ(j∗, n)),

completing the proof, modulo verification of (45).
To verify (45), we split the proof into two cases. Pick any j ∈ J so that j > j∗ and denote

by j− the previous element in the grid (i.e. j− = j − 1).

Case I, ĵn = j̄n: One has

Pr({j̄n = j}∩{0.99M ≤ M̃}) ≤
∑

l∈J :l≥j

Pr
(∥∥ pn(j−)− pn(l)

∥∥
∞ > T (n, j−, l) +

√
0.99Mσ(l, n)

)
.

We first observe that∥∥pn(j−)− pn(l)
∥∥
∞ ≤

∥∥ pn(j−)− pn(l)− Epn(j−) + Epn(l)
∥∥
∞ +B(j−, p0) +B(l, p0), (46)

where, setting
√

2 log 2‖p0‖1/2∞ ‖Φ‖2 =: U(p0,Φ),

B(j−, p0) +B(l, p0) ≤ 2B(j∗, p0) ≤ 2U(p0,Φ)σ(j∗, n) ≤ 2U(p0,Φ)σ(l, n)

by definition of j∗ and since l > j− ≥ j∗. Consequently, the l-th probability in the last sum is
bounded by

Pr
(∥∥pn(j−)− pn(l)− Epn(j−) + Epn(l)

∥∥
∞ > T (n, j−, l) + (

√
0.99M − 2U(p0,Φ))σ(l, n)

)
,

(47)
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and we now apply Corollary 1 to this bound. Define the class of functions

F := Fj−,l =
{

2−l(Kj−(·, y)−Kl(·, y))/(4‖Φ‖∞)
}
,

which is uniformly bounded by 1/2, and satisfies (17) for some A and v independent of l and j−

by Lemma 2 (and a computation on covering numbers). We compute σ, using (33) and l > j−:

2−2lE(Kj− −Kl)(X, y))2 ≤ 2−2l+1
(
EK2

j−(X, y) + EK2
l (X, y)

)
≤ 2−2l+1‖Φ‖22‖p0‖∞(2j

−
+ 2l) ≤ 3 · 2−l‖Φ‖22‖p0‖∞

so that we can take σ2 = 3 · 2−l‖Φ‖22‖p0‖∞/(16‖Φ‖2∞). Then the probability in (47) is equal to

Pr

(
2l4‖Φ‖∞

n

∥∥∥∥∥
n∑
i=1

f(Xi)− Pf

∥∥∥∥∥
F

>
2l4‖Φ‖∞

n
2

∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

+ (
√

0.99M − 2U(p0,Φ))σ(l, n)

)

= Pr

(∥∥∥∥∥
n∑
i=1

f(Xi)− Pf

∥∥∥∥∥
F

> 2

∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

+ 3
n(
√

0.99M − 2U(p0,Φ))σ(l, n)
3 · 2l · 4‖Φ‖∞

)
.

Since nσ2/ log(1/σ) ' n/(2ll) → ∞ uniformly in l ∈ J , there exists λn → ∞ independent of l
such that (19) is satisfied, and the choice

t =
n(
√

0.99M − 2U(p0,Φ))σ(l, n)
3 · 2l · 4‖Φ‖∞

is admissible in Corollary 1 for c2(λn) = 1 + 120λ−1
n + 10800λ−2

n . Hence, using Corollary 1, the
last probability is bounded by

≤ 2 exp

(
−n

2(
√

0.99M − 2U(p0,Φ))2(2ll/n)16‖Φ‖2∞
9 · 6.3 · c2(λn)22ln2−l‖Φ‖22‖p0‖∞16‖Φ‖2∞

)
≤ 2−l((q/2)+δ) (48)

for some δ > 0 and q > 1, by definition of M . Since
∑
l∈J :l≥j 2−l(q/2)+δ) ≤ c2−j((q/2)+δ), we

have proved (45).

Case II, ĵn = j̃n: The proof reduces to the previous case since, by inequality (42), one has

Pr({j̃εn = j} ∩ {0.99M ≤ M̃})

≤
∑

l∈J :l≥j

Pr
(∥∥ pn(j−)− pn(l)

∥∥
∞ > (B(φ) + 1)R(n, l) +

√
0.99Mσ(l, n)

)
≤

∑
l∈J :l≥j

Pr
(∥∥ pn(j−)− pn(l)

∥∥
∞ > T (n, j−, l) +

√
0.99Mσ(l, n)

)
.
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Probab. Statist. 37 503-522.
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