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Abstract. We examine the regression model Y; = go(2;) + Wi, i = 1,...,n, and the penalized least
squares estimator g, = argmingeg{||Y — g||* + pen?(g)}, where pen(g) is a penalty on the complexity of the
function g. We show that a rate of convergence for g, follows from the entropy of the sets G.(d) = {g €
G: |lg — g:|1> + pen®(g) < 6%}, 6 > 0, where g, = argmingeg{|lg — goll” + pen®(g)} (say). As examples, we
consider Sobolev and dimension penalties.

1. Introduction. We consider, for n > 2, the regression model
Y;' ZQO(ZZ)+WZ; i= 17"';”7

where Y7,...,Y, are real-valued observations, z1,...,2, are explanatory variables, with values in some
space Z, the measurement errors Wy, ..., W, are independent and centered, and go : £ — R is an unknown
regression function.

If it is a priori known that go is in some class of regression functions G, we call G a model for go.
Examples, in the case Z = R, are the class of all linear functions, or all polynomials of degree four, or all
monotone functions, or all functions with integrable second derivative, etc. In van de Geer (1990), one can
find a result which relates the speed of estimation to the entropy of the model G (see Theorem 1.1 below).
Our goal in this paper is to generalize this theorem to the situation where one has virtually no a priori
model for gg. The idea is then to let the data speak for themselves, by allowing for a range of models and
penalizing the complexity of a model. This is in the spirit of for instance Birgé and Massart (1997), Barron,
Birgé and Massart (1999) or Lugosi and Nobel (1999). More generally, adaptation to unknown complexities
can be done using various methods. Important references in this field are Efroimovich and Pinsker (1985),
and Lepskii (1991, 1992).

There are numerous ways to describe complexity. It could be the dimension of the model, or the
inverse of the number of derivatives one allows, or more generally the inverse of the smoothness parameter
describing Besov spaces, and so on. We will show that various complexity penalties can be studied using one
single approach. The result is a rate of convergence for the estimator, which can depend on the unknown
complexity.

Our main aim is to provide a simple and general result, and insight into common features of some
estimation methods. We will see that in fact, a slight re-formulation of existing theory for penalized least
squares estimation will allow to include adaptive estimation methods. However, in special situations, our
results can certainly be improved, yielding e.g. exact constants (see also the discussion in Section 4).

In this section, we introduce some notation, and we recall the result of van de Geer (1990) for least
squares estimation without penalty in Theorem 1.1. Section 2 contains the main result. Theorem 2.1
generalizes Theorem 1.1, in such a way that ((almost) adaptive) rates of convergence for various kinds of
complexity penalized estimators can be derived by entropy calculations. In Section 3, we will present some
examples, such as the choice of a smoothness parameter or the selection of explanatory variables. We also
consider soft thresholding penalties. In Section 4, we give a discussion of the results and some further
references to related work.

Throughout the paper, go denotes the true regression function, and G is some given class of regression
functions. We will not always assume that gy € G. Moreover, in some cases G is very large, for example the
class of all functions.

Let Qn = Y1, 6., /n be the empirical measure of the explanatory variables z1,...,2,. For g: Z - R,
we write the squared Ly(Qy) (semi-)norm as

1 « A
lgll* = n Zg(zi)z-
i=1
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We let

(1.1) G() ={9€G: llg—gll <4},

denote a ball with radius é around gy, intersected with G. We remark here, that we will extend the definition
of G(9) later on, to include a penalty.
Write H (u, G(9)) for the u-entropy of G(d). The entropy of a (pseudo-)metric space is defined as follows.

Definition. Let T' be a (subset of a) metric space. The u-covering number N(u,T) is defined as the
number of balls with radius u necessary to cover T'. The u-entropy is then H(u,T) =log N(u,T) V 0.

Now, one may identify G(§) with a bounded subset of n-dimensional Euclidean space. Therefore, its
entropy will always be finite. Without loss of generality, we may assume that the square root of its entropy
is integrable. We denote the result by

s
(1.2) J(8) = / HY?(u, G(6))du.
0
We will assume throughout that the errors are uniformly sub-Gaussian:

(1.3) max Be/Wi*/K* < 2,
1<i<n

where K < oo is some constant.
Now, consider the least squares estimator g, (which we tacitly assume to exist):

n
(1.4) gn = argmin 3 (Vi — g(zi))*,
=1

Later on we will introduce the penalized least squares estimator, for which we will use the same notation g,,.

The following theorem relates the speed of estimation of the least squares estimator g, to the entropy of
G. The theorem can be improved in some cases by taking in the definition of J(§) the integral over (6%/c,d]
(¢ some suitable constant) instead of (0, §]. However, to avoid digressions, we will not present this improved
version. (See also Subsection 3.3.)

Theorem 1.1. Let G(6) be defined in (1.1). Consider the least squares estimator g, defined in (1.4).
Suppose that go € G. Let ¥(5) > J(8) V & be an upper bound, such that ¥(5)/6? decreases as § increases.
Then there exists a constant ¢ depending only on K, such that for \/né2 > ¢¥(8,) and for all § > 6, we
have

~ 2 2 n52
(14) P (g, — goll” > 5%) < cexp[-"5-].

This theorem can be found in van de Geer (1990, 2000). The theorem says that if G is large, the least
squares estimator might converge rather slowly. Indeed, from van de Geer and Wegkamp (1996), we know
that if H(u,G(d))/n does not tend to zero for all 0 < u < 4, then the least squares estimator will not even
be consistent for most error distributions. In other words, when little is known a priori about gg, the least
squares estimator will not behave well. A way out is to add a penalty to the least squares loss function.

2. Penalized least squares. We have now chosen for each g € G a penalty on g, which we denote by
pen(g) (possibly pen(g) = 0 for all g, i.e. no penalty). The penalized least squares estimator is

(2.1) = argmin{~ 3"(¥i — g(=0))” + pen’(g)}
=1
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Write, for two functions g € G and g,

(2.2) 7(913) = llg — > + pen(g).

Let g« be a fixed function in G. Although in Theorem 2.1, any g, € G will do, we actually have in mind
choosing

(2.3) g« = argmin 72 (g|go),
9€G

because this choice gives the best bounds. If the minimum does not exist, one may take g. € G such that
7(g«|g0) is arbitrary close to the infimum of 72(g|go) over G. Note that 72(g|go) = |lg — gol|> + pen?(g).
As we shall see in the examples, the above choice of g, has an interpretation as trade-off between bias and
variance, with ||g — go||? representing the squared bias, and pen?(g) the variance.

Define now
(2.4) Ge(6) ={g€G: 7°(glg.) <8}, 6>0.
Let
§
(2.5) J.(8) = / HY2(u,G.(8))du.
0

Theorem 2.1. Let U,(J) > J.(d) V& be some upper bound. Suppose that U,(§)/d? decreases as §
increases. There exists a constant ¢ depending only on K, such that for

(2.6) \/E(Si > c¥,(dn),

we have for all § > 6,

(2.7) P (7%(gnlg0) > 2(7%(9+|g0) + 6%))

né?
< CeXP[—c—Q]-

Proof. Since g. € G, we have that

n

S (%~ dna0))? + pen () <

i=1

Z(Yz’ — 9+(2:))? + pen’(g.).

SENS

Rewrite this to

2.9 23 Wilgn(e) = 9-(20)) > 7 (Gnlgo) = 7(041g0)-

i=1

For a,b € R one has (a — b)? > a?/2 — b*. So

7 (Gnlg0) — 7 (9:190),

D | =

72 (gnlg*) >

and also )
72(gnlg0) > 572(§n|9*) — 7%(g+190)-



Now, if 72(gn|go) > 2(72(g«|g0) + 62), we find that

TQ(gnlg*) Z 525

and moreover

(2.9) 7% (Gnl90) — 7%(9+190)

N 2 5,
=7%(nlg0) + 572 (9nlg0) — 7°(9+190)

1
7 (Gnlgo0) + 37 *(9+/90)
1

> 67_2(gn|g*)-

oal»—\

We thus obtain that
P (7%(dnlgo) > 2(r*(g«|g0) + 67))

<P (g Z Wz(gn(zz) - g*(zi)) > %72(§n|9*) A 7_2(gn|g*) > 52)

n <
=1
< iP sup ZW — ()] > =22
= \geg.(2i6) T 24

= Z P,
=1
From Corollary 8.4 in van de Geer (2000), we know that for /na > C¥,(R), where C depends on K only,

2

P ( sup |—ZW —g«(21))| 2 a) < exp[—%]-

9EG (R)

Now, we take § > d,,, and we have chosen v/né2 > c¢¥,(8,). If we choose the constant ¢ large enough, this
gives /n;2%6% > C¥,(2'6) for all I € {1,2,...}. So we may apply the above mentioned corollary to each

P; to obtain that
oo o0
n22l62
P, <C -
Z = z:zl exPl= 330107

né?
< cexp[~—5-],

for an appropriately chosen (large enough) constant c.

The following lemma is a simple consequence of Theorem 2.1.
Lemma 2.2. Under the conditions of Theorem 2.1, we arrive at the inequality

(2.10) E7(4nlg0) < 2(r2(g.]g0) + 62) + 2,

where ¢y is a constant only depending on K.

Proof. Write 7 = 7(gn|go) and 7 = 7(g«|go) for short. We have
E#? =/ P(#* > t)dt
0
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<2(r* +62) +/ P (72 > t)dt.
t>2(724462)

But clearly,

/ P(7% > t)dt = 1/ P(#? > 2(1% + 6%))ds?
t>2(r2462) 2 Js>s,

1 né> c? né
<z — 2 1d6? = S exp[- o) < =
<5, oI = et

where in the last inequality, we used that ndZ > c%. O

It can be easily verified that Theorem 2.1 reduces to Theorem 1.1, when both pen(g) =0 for all g € G
and gy € G. It generalizes Theorem 1.1 to cover a broad class of penalized methods. In most cases however,
Theorem 2.1 and Lemma 2.2 should be understood as a rough, but simple and general method to access rates
of convergence. One cannot deduce a complete estimation recipe from it, mainly because (2.6) usually means
that the choice of the penalty depends on ¢ and hence on the distribution of the errors (via the constant K).
Moreover, the entropy approach we used is rather slovenly on constants (and also in the entropy calculations
itself it is not easy to obtain good constants). Therefore, we did not try to improve the factor 2 which
appears in the theorem and the lemma following it. In special cases, ad hoc methods may lead to major
improvements. See also the discussions in Section 3.3 and Section 4.

3. Examples.

3.1. Estimating a function in a Sobolev space. Let Z = [0, 1], and let G be the class of functions
with derivatives of all orders. Define the squared Sobolev semi-norm

(3.1) 2(g) = / 199 (2)dz, g € G.

We assume that go € G with I;(go) < oo for all s € {1,2,...}. This is in fact no restriction because we are
only concerned about estimating go in the design points 21,...,2,. We will apply Theorem 2.1. To avoid
digressions, we take g, = go (which is possible by the assumption gy € G).

We will consider several penalties. In our entropy calculations, we need two approximation lemmas. The
first lemma is a slight extension of results of Birman and Solomjak (1967), in that we express the dependence
on s (albeit perhaps not in an optimal way). (See also Kolmogorov and Tihomirov (1959).) In the result we
denote the uniform norm of a function f: Z — R, by

(3.2) |floo = sup |£(2)].
2€EZ

Lemma 3.1. Let F be the following class of s times differentiable functions on the unit interval:

(3.3) F={f: L) <1,|flo <1}

Let Ho(u,F) be the entropy of F for the metric induced by the uniform norm |- |« . Then for some constant
A, not depending on s, we have

1
s

(3.4) Hoo(u, F) < sA*(

S

)

, u>0.

We also need the entropy of a class of polynomials of finite degree. The entropy of a ball in finite-
dimensional space is roughly speaking its dimension (see e.g. van de Geer (2000)):

Lemma 3.2. Let B4(d) be a ball in d-dimensional Euclidean space with radius 6. Then

(3.5) H(u, Ba(8)) < dlog(>2

—), 0<u<a.
u



Corollary 3.3. We have for all §, M and s € {1,2,...},

=

(36)  H(u{g€G:llg—goll <5, Llg) < M}) < slogCO My o g2 M2

)

, 0<u<é.
u

Before turning to various penalties, let us briefly present an application of Theorem 1.1. Suppose that
in the regression model, g € G, where G = {g: I;(9) < M}, where s and M are given (with M > 1 say).

Then from Theorem 1.1, the least squares estimator without penalty converges with rate M TFip mEL It
is shown in van de Geer (1995) that this rate cannot improved. Comparing this result with e.g. inequality
(3.11) below, we see that penalization allows one to adapt when M is not a priori known.

3.1.1. Penalty on I;(g) with s fixed. Consider the penalty
(3.7) pen®(g) = X;I(9), 9 € G,

where 0 < A; < 1 is a smoothing parameter. To obtain a rate of convergence for the penalized estimator §,,,
we need to calculate the entropy of the class G.(d). The result is given in the next lemma.

Lemma 3.4. We have
2

X C; ¢
(3.8) E7*(gnlg0) < 2X;17(90) + i gov
S

with Cs a constant depending on K and s and ¢y a constant depending on K.
Proof. Since
G.(0) c{g€G: llg—goll <6,1s(g) </As},

it follows that

106 2 6 1 2 5 1
* < s < s,
H(u,G.(9) < slog(1) + s4%(3)* < A4H(0)
for all 0 < u < 4, and for some constant Ag depending on s. Therefore
1)
J.(0) < As)\1/25 =T,(d), § > 0.
With this choice of ¥,, we apply Lemma 2.2. O

Note that if I5(go) remains bounded in n, the choice A; < n~ %+ leads to the usual rate

~ __2s
Ellgn — goll* = O(n~ =37).

3.1.2. Penalty on I;(g) with s fixed, and on the smoothing parameter. Consider the penalty

oo A2
20\ _ 272 0
(3.9) pen®(g) = inf {NI'(9)+ 57}
where \g is a (large enough) constant, to be specified later.
It is clear that the infimum in (3.9) is attained in
9 2nsI2%(g) ’
so that
2s

o (A3(2s+ 1) =T

(3.10) pen?(g) = (I2(g)(2s + 1)) 75 (%) .



Of course, one may first calculate the penalized estimator for all A fixed. Let us denote the result by
. L1
gnx = argmin{— > (Vi — g(z:))” + NI} (9)}.
9eg N =1
The smoothing parameter A is then chosen data dependent, by minimizing over A the risk

1 R o
- Z(Yz’ — 9n,a(20)) + NI7 (Gn,n) + W?/s'

n )\2
=1

k3

Lemma 3.5. Take A3 > c1s, with ¢; a large enough constant depending on K. Then

A (2s + 1)) T N cos?logn

@11 Br(galg0) < 2 (B(g0)2s + 1) 77 (B2

n

Proof. We will calculate the entropy of G,(8). If g € G, (d), it holds that

I;(9) < My,
where
(2ns)s(52s+1 n362s+1
TR W

Therefore, by Corollary 3.3, when Mg > 6,

H(u,G.(0)) < slog(loi\/[s) n sA2(J\Zs)%

1
10ns§2s+1 sA%né2ts
1
’LL)\%S us ,\(2)

< slog(

If M, < § we obtain
106, sA2ng%ts
H(u,G.(0)) < slog(—) + ——.
(1,6:(9)) < slog(=) + =1

It follows that for M, > 4,

b , :
/ H'/*(u,G.(8))du < 2‘4\/5\/?6 + AoV/s6 + 50 log(%),
0 o 0

1
A0=/ logl/Q(E)du.
0 u

with

For M < §, we find similarly

é 2
/ HY?(u,G,(8))du < 24+/s ‘/f‘s + Agy/56.
0 0

U, () = A. (\/5\//\552 + /86 + 88 log(nA—(iz)> ,
0 V 0

where A, = 2(AV Ap), we find

With the choice

Vndy, > c¥.(0n),
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for

logn
/\gzcls, On > 184/ 8 .
n

Here ¢; is a constant depending on K. Application of Lemma 2.2 gives

cos?logn

E7%(gn|90) < 2pen®(go) + n

2s
2 (A2(2s+ 1)\ cps?logn
=2(I3(90)(25 + 1)) ™* (70 53 > +

Taking A2 = c;s gives

c1(2s + 1)) =it N cos?logn

ET2(§n|£Io) <2 (Isz(go)(Zs + 1)) 7Sy ( -

n

We may compare this with the exact asymptotic minimax constant obtained by Nussbaum (1985). He shows
that

2s
2s - S 2+
3.12 lim inf  sup  nZHE||§, — gol?> = (M*(25 + 1)) =7 (7> ,
( ) n—00 gn go: To(go)<M " K ( ) 71'(8 + 1)
where p is Lebesgue measure on [0,1], || - ||, is the La([0,1], u)-norm, M > 0 is a now a given constant

not depending on n, and where the infimum is over all estimators based on n observations of the regression
model with equidistant design. The right hand side of (3.12) is Pinsker’s constant. The constants in our
bound (3.11) are not quite as good, especially when s is large. This may also be due to our crude bound (in
terms of s) for the entropy. (See Section 4 for further discussion.)

3.1.3. Penalty on I;(g) and on s. We propose to penalize s in the following manner. Let spax €
{1,2,...} be given (we have in mind the situation where spax grows with n). We take

(3.13) pen®(g) = _min A[I7(g) + A7)

1<5<8max

Here ) is a large enough constant, which we will specify later. We assume throughout that A\, = n~ %+
for all s.

Lemma 3.6. Take \J > c1s3 ., with ¢ a large enough constant depending on K. Then

A €0Smax logn
(3.14) B (gnlg0) < 2pen®(go) + B2

Proof. We will find an upper bound for J.(d) in this situation. Fix § > 0. If \; > §/A¢ for all s < smax
we have that G(d) = 0. So let us assume that A\; < §/Ag for some s < Smax, and let s(d) be the smallest
value in {1,..., Smax} for which this is true. Using Corollary 3.3, is now easy to see that

iy 5 1 108
H(u,G.(8) < Z sAQ(uA )E +smaxlog(uA

s:s(é) Smax

).

Hence,
S

max 5
10 <Y [ 2avs

s=s(4) 0

5 1 ® s, 106
u)\s) sdu+\/8max/0 log (u)\—)du

Smax




Smax

< 2A4/Smax0 Z 25 + Agv/SmaxdV/logn

s= 5(6)

<24 i{3X6<i)25
As(s)

 + Agy/Smaxd/log 0.
Here,

1
9,1

Aoz/ logl/z(—o)du.
0 u

. . __S5
Now, one easily sees that by our choice Ay = n~ z+7,

As = 1 -
VnAF
So
J.(0) < 2Asfn/a2x(5\/ﬁ)\s(5) + Agv/Smax0+/logn
< 2As 3/2 \/_6 + Ag+v/Smax0+/logn.
We thus find that if we take
A3 > 4c?A%s3

max

we may choose §, = 2cAg4/ %, to find from Lemma 2.2,

CoSmax lOgN

E7%(gn|90) < 2pen®(go) + "

Recall that in this case,
pen’(go) = min {AJI7(go) + A3}-

8XSmax

Let so be the largest value of s < $pyax Wwhere the above minimum is attained, and suppose that I, (go)

remains bounded in n. Taking A} = ¢s3 ., one finds

A _ 250
E”gn - 90“2 = O(S?naxn 250+1)'
In this sense, the estimator with penalty on s is almost adaptive in s.
3.1.4. Penalty on I;(g9) and on s, and on the smoothing parameter. Let again 1 < spax < 00

be an upper bound for the number of derivatives, and consider the penalty

A2
20\ _ 272 0
(3.15) pen’(g) = 0<1§1£oo 1<£ri‘§3nax{’\ L(9)+ )\1/3}'

Lemma 3.7. Take A2 > ¢182 ., where ¢ is a large enough constant depending on K. Then

max log n

(3.16) E7%(gnlgo) < 2pen’(go) + —2

Proof. Clearly,
G.(6) = Uiz G (9),

where

GO ={g €0+ llg= gl + inf {NI}(9) +X/(N'/*)} < 8%},



So, arguing as in the proof of Lemma 3.5,

S
o= M 1 500+ M,_..)
H +(0)) < AZ(—=2)5 max log(————Smex?
(1,0.(6)) < 3 A% + s log(= 70,
where s
2ns)®0°°
s — %, S = 1;---75max-
Ao’ (25 +1)72
Thus
S
max n(52 n62
T <> zA\/E‘CO + Aov/3max + Smaxd log(A—%)
s=1
52 62
< A, (sfn/fx\/f + v/Smax0 + Smax0 log(T;—2)> =T, (9).
0 0
The result now follows again from Lemma 2.2. O
3.2. Penalty on the dimension. Let G be the class of all functions on z1,...,2,. To settle the
notation, we assume the z; are distinct. Let 41, ...,1, be an orthonormal basis of Ly(Q,). We may write

any function g : Z — R as

g(zz) = a1¢1(zi) +...+ an¢n(zi)7 i= 17 AL
where aq, ..., a, are the coefficients of g.
Consider a fixed dimension d, and suppose we approximate go by a function go 4 with d specified non-
zero coefficients. The variance of the least squares estimator of go 4 is 2d/n, o2 being the (average) variance

of the measurement errors. The squared bias of this estimator is [|gs,0 — gol|*>. Therefore, the mean square
error is

d
(3.17) ||gd,0_90||2+‘72ﬁ-

We will now show that a dimension penalty yields an estimator with mean square error which minimizes
(3.17) over d, up to logarithmic factors in the non-nested case, and up to a constant in the nested case. In
both situations, we take g. = argmin 72(g|go).

3.2.1. Non-nested case. We define the dimension of g as the number of non-zero coefficients:

dg = #{ak 7& 0}7

and take the penalty
(3.18) pen®(g) = A3 2.
The penalized least squares estimator §,, is now the estimator with hard thresholding, i.e.,
n
gn =Y duty,
k=1

where

joN

_ ayp 1f|0~£k|>)\0/\/ﬁ
FTL0 i |ak| < Ao/vn
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and where &y is the empirical coefficient
1 n
ay = - ;Yﬂﬂk(?«’z’)-
1=

We shall not use the explicit expression, so that generalizations to other estimation methods or other dimen-
sion penalties remain in sight.

Lemma 3.8. Take Ao > ci1v/logn, where c; is a large enough constant depending on K. Then

. c
(3.19) E72(glg0) < 27 (gulg0) + -
Proof. If g € G.(d), we must have that d, < |nd*/N\%] = d(§), where |a] denotes the integer (including

zero) part of a > 0. There are
n < nd
a) =

linear subspaces of dimension d. It is therefore easy to see from Lemma 3.2 that

H(u,G.(9)) < d(d) 10g(56) +d(8)logn

né>

54
< Y (log( )+logn>.

So
J(9) <A0 \/lognvd T, (
where L
Ay = / 1og1/2( Ydu + 1.
0
We find that \/nd, > c¢¥.(d) for v/nd, > c and \g > cAgy/logn. O

3.2.2. Nested case. We now let the dimension of g be the last non-zero coefficient:
dy = max{k : ay # 0}.

The penalty is

d
(3.20) pen®(g) = A2 ;g.

Lemma 3.9. For Ay > ¢;, with ¢; a large enough constant depending on K, we have

. ¢
(3.21) E7?(gnlg0) < 27%(g:l90) + —

Proof. It is clear that G.(d) is now the linear subspace {g = g« + Zz(j} apr}, with d(§) = L"T‘fj So

0
by Lemma 3.2,
56 nd? 56
H(u,G.(5)) < d(6) 10%( ) < ?1%(?)-
0

Hence

2
J.(8) < Ao ‘/f‘s V= 0,(0),
0
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with
! 5
A0=/ log'/?(Z)du.
0 u

O

3.3. Soft thresholding. As we already indicated in Section 2, Theorem 2.1 is simple and quite general,
but cannot catch all the particularities of special cases. Here are some points of attention:
(i) If pen(g«|go) is of larger order than ||g« — go||, Theorem 2.1 might give rise to too pessimistic rates for
l9n — gol|-
(ii) In the proof of Theorem 2.1, we did not use sophisticated lower bounds for

7 (Gnlg0) — 7°(9x190)-

(iii) The entropy integral in (2.5) might be unnecessary large (but not larger than néAg, with the constant

Ao equal to fol log'/?(5/u)du, because G, (d) is a subset of a ball with radius § in n-dimensional Euclidean
space.) One may replace the definition (2.5) of J,.(d) by

(3.22) J.(8) = ' H'Y?(u,G,(8))du
§2/c!

where ¢ is a constant depending on the distribution of the errors (see Birgé and Massart (1993), or van
de Geer (1995, 2000)). Nevertheless, the result may be too rough (such as too many log-factors: see below
(3.25) combined with Lemma 3.11).

(iv) The theorem relies on entropy methods to handle empirical processes. These methods do not lead to
good constants. (Tracing back the behaviour of the constant ¢ of Theorem 2.1 in e.g. the proof of Corollary
8.4 in van de Geer (2000) would lead to immense quantities.) Concentration inequalities (e.g., from Ledoux
and Talagrand (1991)) can be used to improve on this.

We shall now consider an example where (i) occurs. Let, as in the previous example, G be the class
of all functions on z1,...,2,. Suppose for definiteness that the z; are distinct, and let 41,...,%, be an
orthonormal basis in Ly(Q,). We consider for some \g > 1, the penalty

2)\
(3.23) pen’(g) = == Z lakl, g = Z .

The penalized least squares estimator g, is now the estimator with soft thresholding, i.e.,
n
gn =Y tuty,
k=1

where
&k—)\o/\/ﬁ if éy, >)\0/\/ﬁ
Gy = &k-i-)\o/\/'ﬁ if@k<—)\0/\/ﬁ ,
0 if |ax| < Xo/v/n

and where &y is the empirical coefficient

lz Tﬁk zz

Thus, the soft thresholding estimator is very similar to the hard thresholding estimator. However, we shall
again not use explicit expressions, so that the methodology can be extended to other estimation problems.
We shall now consider problem (i). For

3

(3.24) gs = argmin 72 (9190),

12



one has

n
gx = E dk,*¢k7
k=1

where .

QL0 —/\0/\/7_1 if QR0 > )\0/\/77

O s = ag,o0 + /\0/\/7_1 if ago < —/\0/\/77 s

0 if |ak0|§/\0/\/ﬁ

and where {ay,0} are the coefficients of gg. Let Ko = {a,0 : |ak,0| > Ao/+/n}. Then
_2X
pen - s Z |ak *
kelCo

Therefore, as soon as go has coefficients larger than one, pen?(g,) is larger than \g//n. So the best Theorem
2.1 can give here is the very slow n~'/* rate of convergence for ||g, — go||. We are thus confronted with
problem (i): Theorem 2.1 cannot yield good rates here.

Nevertheless, one may ask whether entropy calculations can be used to study the empirical process. To
look at this more closely, we present a result of Loubes and van de Geer (2000), which says that the set

A={aeR": Z|ak|§1}
k=1

has entropy
, 1 1
(3.25) H(u, A) < A ) logn—}-loga , u>0.

Putting this bound in the integral of the square root entropy (equation (3.22)) will give rise to unnecessary
log-factors (see Lemma 3.11 below for the the behaviour of the empirical process).
Let us also address problem (ii). Define

_2)
(3.26) pen?(g A Z lokol, 9= Zak¢k

kE/Co
Lemma 3.10. We have for g = Y}, art,

2Xo
(3.27) 7(gl90) — 7°(g:190) > [lg — golI* — llg« — golI” — peng(g — g.) + Z |-
ngICo

Proof. This is true because

2\
pen®(g) — pen®(g.) 0Zlakl |ovk,«)

0 Z o, — Olk*|+— Z g |-

kelCo k&’Co

Next, we consider the empirical process.
Lemma 3.11. We have

L Y, Wilg(zi) — g«(2:))| _ 3K +/Togn
P(Sg pen?(g — g«) T )

»bIUl

(3.28)
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Proof. Define
1 n
= — i i,kZ].,..., .
Vi ngwwk(z) n

Then clearly, for g = > p_, axty,
n

1 n n
- D Wilg(z:) — gu(20))] = | Y Vil — aga)| < max [Vi] Y Jag — g,
i=1 k=1

1<k<n
k=1 ==
— 2 —
= max [Vilpen®(g — g.)v/n/(2)0)-
By Lemma 8.2 in van de Geer (2000), we know that the condition (1.3) on the errors implies that for each k,

na2

P(|Vk| > a) S Qexp[—m], a > 0.

Take a = 6K y/logn/n to find for each k,

9

P(|Vi| > 6K+/logn/n) < 2n~1.

Therefore, ;
P(11<n/?§ |Vi| > 6K+/logn/n) < 2n~1%.

O

A similar result can be found using the entropy bound (3.22), but then one gets additional log-factors
(see also Lemma 4.2 in Loubes and van de Geer (2000)).

Let us now define dy = |Ko|, i.e. dp is the number of coeflicients ayo of go with |ago| > Ao/v/n. Note
that in fact,
dO = dg**a
where J
ger = argminllg — goll* + 33521,

and where d; is the number of non-zero coefficients of the function g.
Lemma 3.12. We have, for Ay > 6K+/logn, almost surely for all n sufficiently large,

N d
(3.20) i = a0l <6 (- = ol + (43022 )

Proof. We use the inequality

n

(3.30) 23 Wilan(z1) = () > 7 (Galgo) = (g2 190)

i=1
By Lemma 3.11, almost surely for all n sufficiently large,
2 < R 6K+/Togn .
D0 Wiln () = 9+(20))] < =3 —pen*(9n — 90)
i=1

~

< pen’(gn — gs)-
But 9\
~ ~ 0 ~
pen’(§n — gs) = Pend(fn — gx) + NG > la-
kZKo

14



Invoking this in (3.30), and using Lemma 3.10 gives

lgn — 9ol < llg« — goll* + 2peng(gn — g)-

. [do | .
peng(gn - g*) <2X g”gn - g*”

By Cauchy-Schwarz,

So we arrive at

. do .
(3.31) 197 = g0II” < llg- = golI* + 4201/ —ll9n — g2,

almost surely, for all n sufficiently large.
If [|lg« — golI* < %4)\0\/d0/n, this gives

6 do
An - 2 < _4)\ - An - Yx
192 = 9oll” < =4X0\/ =1 = 9:;

So then
197 — 9+l < llgn — goll + llg« — goll
2
< (\/6%1)4/\0\/ do/n,
and hence \
1 1
I —aoll < (LD Lyaapedo < gan 2o

On the other hand, if ||g. — go||?

v

£4X0+/do/n, we obtain from (3.31)

g — g0lI* < 6llgx — gl

O

4. Conclusion. The examples show that the general approach of Theorem 2.1 can be useful in a variety
of situations. There are clearly some drawbacks, such as the fact that penalized least squares is certainly
not always the best method for obtaining adaptive estimators (alternatives are for example unbiased risk
estimation, or using empirical complexities and sample splitting), the method of proof gives no explicit or
very large constants, and penalties can be very large, i.e., larger than the estimation error (see in Section 3.3
for an illustration). On the other hand, this general method to access rates of convergence clarifies common
features and can inspire the development of new methods. Moreover, the method of proof allows extensions
to other estimation methods. For example, one may derive similar results for the least absolute deviations
estimator, or quantile regression estimators. The issue of the constants then opens another window: to
get good bounds, concentration inequalities for rather complicated empirical processes are required. Note
furthermore that the least squares method often requires a good estimator of the variance of the errors,
because constants depend on it. On the other hand, e.g. the least absolute deviations estimator can be based
on universal constants. Simulation studies might help here to turn the theory into a practical method.

We have considered three examples. The first example is on Sobolev spaces. Since the results are based
on entropy calculations only, it can be easily adjusted to cover, say, Besov spaces. Also, one may choose for a
sequence space formulation. We remark that in general, the design (i.e. the configuration of the explanatory
variables z1,...,2,) will play a role in the entropy calculations or in the re-formulation in sequence spaces.

The penalties we have chosen in Section 3.1, are certainly not the best ones. For example, consider the
sequence space formulation

Y. :Oék’()-i-Vk, k=1,...,n,
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where the ag = (@1,0,-..,0n,0) is unknown and where V;,...,V, are independent normally distributed
variables with mean zero and variance o?/n. To estimate g, consider penalties of the form pen?(a) =
> roi wiad, with wi,..., w2 given weights. In Nussbaum (1985), one can find the optimal choice of the
weights in minimax sense for the situation where the model corresponds to estimating a function in a
Sobolev space, with given number of derivatives s. This gives the minimax bound (3.12). The penalty
(3.7) in Subsection 3.1.1. corresponds to the choice wy = Agk®, which is not the optimal choice as given in
Nussbaum (1985).

Clearly, the penalty (3.10) in Subsection 3.1.2 is also not optimal in minimax sense. However, a small
improvement in our result as compared to the minimax result is that when I;(go) = 0, we arrive at almost
the parametric rate.

The penalty of Subsection 3.1.4, for estimating s, is comparable to the one used by Kohler, Krzyzak
and Schafer (2000). They consider multivariate Sobolev classes, and employ a truncation device in their
estimation method. Their results are similar the ones obtained in Subsection 3.1.4. The results can again
be improved by other estimation methods. Golubev and Nussbaum (1996) show that the estimates used in
Nussbaum (1985) can be made adaptive, in the sense that they no longer depend on the Sobolev radius M or
on the number of derivatives s and yet attain the minimax bound (3.12). The method used for this purpose
is unbiased risk minimization. Thus our result for estimating s is not optimal even in rate. We believe this
is due to the estimation method, and not to our method of proof. On the other hand, the sequence space
formulation and unbiased risk estimation relies heavily on the particular situation, and moreover, it might
be not as common practice as adjusting a posteriori the degree of smoothness of a spline estimate.

Penalized methods can be seen as Bayesian methods, with the penalty playing the role of (say) minus
the logarithm of the prior distribution. The penalized least squares estimator is then a posterior mode
estimator. For the estimation of a function in Sobolev space, Belitser and Ghosal (2000) also consider
adaptive Bayesian procedures. They use the sequence space formulation, and show that the probability
mass the posterior distribution of the smoothness parameter s puts on values smaller than the “truth”
(under-smoothing) tends to zero as n — oo. This result needs virtually no conditions on the prior on s.
However, it is clear that this result as such gives no indication about the posterior mode estimator, which
works only for special priors.

We have also considered some dimension penalties. (Almost) adaptivity of the hard and soft thresholding
estimator is for example considered in Donoho and Johnstone (1996). The procedure can be refined for various
wavelets, with the threshold depending on a particular resolution level. General (dimension) penalties are
considered by Birgé and Massart (1997) and Barron, Birgé and Massart (1999). The latter treat a large
variety of models and methods (e.g., maximum likelihood, least squares, least absolute deviations). In
Subsection 3.2, we have defined dimension in such a way that it depends on the choice of the basis. Of
course, the dimension of a linear space does not depend on the basis. Theorem 2.1 can be applied in various
situations, allowing various linear spaces as a model.

The extension of the theory for soft thresholding type estimators has been considered in Loubes and
van de Geer (2000). Here, entropy methods are used to get results for the empirical processes involved.

Keeping the approximation theory separate helps to gain insight in the statistical problem. We therefore
did not present any detailed results on approximation theory, such as the best approximation in d-dimensional
space of a Besov function with smoothness s. But, for example, it can be shown that Lemma 3.8 leads to
a rate of the form (logn/n)~ =+ (use e.g. Birgé and Massart (1996)). This means one has adaptation in
rate, up to logarithmic factors.
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