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Abstract Let P be a nonparametric probability model consisting of smooth
probability densities and let p̂n be the corresponding maximum likelihood esti-
mator based on n independent observations each distributed according to the
law P. With P̂n denoting the measure induced by the density p̂n, define the
stochastic process ν̂n : f �−→ √

n
∫

fd(P̂n − P) where f ranges over some func-
tion class F . We give a general condition for Donsker classes F implying that
the stochastic process ν̂n is asymptotically equivalent to the empirical process
in the space �∞(F) of bounded functions on F . This implies in particular that
ν̂n converges in law in �∞(F) to a mean zero Gaussian process. We verify the
general condition for a large family of Donsker classes F . We give a number
of applications: convergence of the probability measure P̂n to P at rate

√
n in

certain metrics metrizing the topology of weak(-star) convergence; a unified
treatment of convergence rates of the MLE in a continuous scale of Sobo-
lev-norms;

√
n-efficient estimation of nonlinear functionals defined on P ; limit

theorems at rate
√

n for the maximum likelihood estimator of the convolution
product P ∗ P.
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1 Introduction

Let X1, ..., Xn be independent and identically distributed (i.i.d.) according to
some law P on a Borel set � ⊆ R. Denote by Pn the usual empirical measure on
� induced by the sample. If P is a given probability model consisting of smooth
densities on �, the (nonparametric) maximum likelihood estimator (MLE)
p̂n is defined as the element of P for which the supremum supp∈P Pn log p =
supp∈P n−1 ∑

log p(Xi) is attained. Convergence properties of the MLE in the
Hellinger distance (or metrics related to the L2-norm) in the case where the set
P is genuinely infinite-dimensional have been studied in [4,35,40,41]; see also
the monograph [36]. The literature has focussed on strong limiting properties of
these estimators, in particular, on (optimal) convergence rates of the estimation
error measured in distances that typically dominate the total variation metric
on the set (of probability measures corresponding to) P . A weak limit theory
seems also to be of interest, since it is typically the case that ‘weak’ (rather
than ‘strong’) theorems are used for statistical inference. In particular, it is of
interest whether or not the rate

√
n occurring in the (uniform) central limit

theorem for empirical measures can be achieved. Thus under weak limit theory
we understand here that

√
n(P̂n − P)(·) converges in law in the Banach space

�∞(F) of bounded functions on some class F of measurable functions where P̂n
is the (random) measure induced by the maximum likelihood estimator p̂n. For
concrete choices of F , such a general result then delivers many special weak
limit theorems of inferential importance as corollaries. To our knowledge, weak
convergence properties of the nonparametric maximum likelihood estimator at
this level of generality have not been derived in the literature. The only result
in this direction that we are aware of is Kiefer and Wolfowitz [16]. Translating
their particular result into the general terminology of the present paper, they
show for P the set of monotone increasing (decreasing) densities on the positive
half-line and F the set of indicator functions of all intervals of the form (0, x],
that the difference between the measure induced by the maximum likelihood
estimator and the empirical measure is of order oP(n−1/2) (in fact, even of
smaller order) in the norm of �∞(F). A result similar to the one in [16] was
obtained recently in [29] for the MLE of a log-concave density.

In Sect.2 of this paper we consider the MLE over a set of probability densities
Pt contained in a (fractional) Sobolev space of order t (defined over �). In Theo-
rem 1 we show for F = Ut, a ball in the same Sobolev space that contains Pt, that
the �∞(Ut)-norm of the difference between the probability measure P̂n induced
by the MLE and the empirical measure Pn decreases at a certain rate faster than
n−1/2, the rate being in accordance with the one obtained in [16]. In particular,
the random variable

√
n(P̂n − P) converges in law in �∞(Ut). In Theorem 2 we

move on to give a general approximation condition (Condition 2) on function
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classes F under which the �∞(F)-norm of the difference between P̂n and Pn
decreases at rate oP(n−1/2). Hence, if F is—in addition—also a Donsker class,√

n(P̂n − P) converges in law in �∞(F). In Proposition 1 we then verify Condi-
tion 2 for a large family of (Donsker) classes F consisting of smooth functions.
We discuss in detail in Sect. 2.1 the connection with related results for kernel
density estimators (smoothed empirical measures), as well as the relationship
to the ‘plug-in property’ recently introduced by Bickel and Ritov [3].

In Sect. 3 we exploit the general results from Sect. 2 to obtain a number of
interesting consequences. First, let P(�) denote the set of all (Borel-) prob-
ability measures on �. We give (fast) rates for d(P̂n, Pn) in certain metrics d
metrizing the weak(-star) topology on P(�), implying in particular d(P̂n, P) =
OP(n−1/2). Second, we give a unified treatment of the convergence rate of
the MLE in a continuous scale of Sobolev-norms. Third, the above results are
useful for establishing

√
n-asymptotic normality and efficiency of the (plug-in)

MLE for a large class of nonlinear functionals � defined on Pt. This improves
substantially upon related work by [40], and can be applied, in particular, to
the integral functionals considered in [2,5,15,17,18]. Finally, we derive limit
theorems at rate

√
n for the nonparametric maximum likelihood estimator of

the convolution product P ∗ P. Similar results have recently been obtained by
[13,30] for kernel density estimators.

1.1 Notation and definitions

We collect here the main notation and definitions used in the paper. For (B, ‖·‖)
a normed space, B′ denotes the topological dual space. The operator norm of a
continuous linear functional L on B will be denoted by ‖L‖′. For an arbitrary
(non-empty) set M, let �∞(M) denote the Banach space of bounded real-valued
functions H on M normed by

‖H‖∞,M := sup
m∈M

|H(m)| .

We denote by BS the Borel-σ -algebra of a topological space S. Throughout the
paper, we shall at least assume that the set � satisfies ∅ 
= � ∈ BR. The symbol
L∞(�) denotes the Banach space of B�-measurable bounded real-valued func-
tions on � normed by the usual sup-norm ‖·‖∞, and C(�) denotes the closed
subspace of bounded real-valued continuous functions on � with the induced
norm.

For � an open set in BR, we define Hölder and Lipschitz classes, that is, sets
of the form

Fs,∞,C =
{

f ∈ C(�) : ‖f‖s,∞ =
[s]∑

α=0

∥
∥Dαf

∥
∥∞ + sup

x 
=y

∣
∣D[s]f (x) − D[s]f (y)

∣
∣

|x − y|s−[s] ≤ C

}

(1)
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where Dα denotes the (classical) derivative of order α, where 0 < C < ∞,
s > 0, and where [s] = s − {s} with [s] integer and 0 < {s} ≤ 1.

We shall furthermore denote by L0(�) the set of real-valued B�-measur-
able functions on �. For h ∈ L0(�) and some Borel measure µ on �, we set
µh := ∫

�
h dµ and ‖h‖r,µ := (

∫
�

|h|r dµ)1/r for 1 ≤ r ≤ ∞ (where ‖h‖∞,µ
denotes the µ-essential supremum of |h|). As usual, we denote by Lr(�, µ) the
vector space of all h ∈ L0(�) that satisfy ‖h‖r,µ < ∞. In accordance, Lr(�, µ),
denotes the corresponding Banach spaces of equivalence classes [h]µ (modulo
equality µ -almost everywhere), h ∈ Lr(�, µ). The symbol λ will always denote
Lebesgue-measure on �, and we shall occasionally write λ |� to specify the
underlying support.

The Sobolev spaces over some open set � ⊆ R and for integer m ≥ 0 are
given by

Wm
2 (�, λ |�) := {f ∈ L0 (�) : ‖f‖m,2,λ|� < ∞}, (2)

where the Sobolev seminorm is given by ‖f‖m,2,λ|� = ∑
0≤α≤m

∥
∥Dα

wf
∥
∥

2,λ|� .
Here Dα

wf denotes the weak (or generalized) derivative of integer order α (see,
e.g., [1], 1.62). We denote by Wm

2 (�, λ) the Hilbert space of equivalence clas-
ses of functions [f ]λ obtained by taking the quotient of Wm

2 (�, λ) w.r.t. the
set {f ∈ L0 (�) : ‖f‖m,2,λ = 0}. For positive non-integer s, Sobolev spaces
on an open set � ⊆ R can be defined by interpolation: we set Ws

2 (�, λ) :=
[Wm

2 (�, λ) , L2 (�, λ)]θ where (1 − θ)m = s for m integer and 0 < θ < 1, and
where the interpolation couple [·, ·]θ is defined in the usual way, cf., e.g., Defini-
tion 1.2.1 in [20]. The norm on the Hilbert space Ws

2 (�, λ) is again denoted by
‖·‖s,2,λ. The definition via interpolation is used in much of the literature, e.g., in
([1], 7.30–7.32), and is equivalent to other common definitions (e.g., the one in
([34], 3.4.2), cf. Parts 1 and 2 of Proposition 2). Clearly, Wr

2 (�, λ) ⊆ Ws
2 (�, λ)

holds for r ≥ s with continuous injection. For s > 1/2 and � a bounded C∞-
domain in R (for a definition see ([34], 3.2.1)), every

[
f
]
λ

∈ Ws
2 (�, λ) contains

exactly one bounded continuous function (see Part 3 of Proposition 2 below);
hence, in that case one can define the Hilbert space Ws

2 (�, λ) = {f ∈ C(�) :
[f ]λ ∈ Ws

2 (�, λ)} again equipped with the norm ‖·‖s,2,λ.
For a sequence of i.i.d. random variables X1, . . . , Xn distributed according to

the law P on �, define the empirical measure Pn = n−1 ∑n
i=1 δXi . Given a subset

F of L0(�), define the F-indexed empirical process νn by

f �−→ νn(f ) := √
n (Pn − P) f = 1√

n

n∑

i=1

(f (Xi) − Pf ) (f ∈ F). (3)

We use the symbol �S to denote convergence in law of random elements in a
metric space S in the generalized sense of Hoffmann-Jorgensen, see Chap. 3 in
[8]. A function class F ⊆ L2(�, P) is said to be P-Donsker if it is P-pregaussian
and if νn ��∞(F) G where G is a zero-mean Gaussian process indexed by F
with covariance function P((f − Pf )(g − Pg)) for f , g ∈ F , and with almost all
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its sample paths bounded and uniformly continuous, see p. 94 in [8] for details.
We note that νn need not be B�∞(F) -measurable, but convergence in law of νn
still implies ‖νn‖∞,F = OP∗(1) by Prohorov’s theorem, where P

∗ denotes outer
probability. [All random elements in this paper can be viewed as being defined
on (�∞, B�∞ , P∞). For real-valued random elements Zn we use the notation
Zn = OP∗(an) to denote lim supn→∞ P

∞∗(|Zn| /an > M) → 0 for M → ∞,
where P

∞∗ is the outer measure corresponding to P
∞. A similar remark applies

to the symbols oP∗ , OP, and oP.]

2 Weak convergence of the MLE in �∞(F)

Let {Xi}n
i=1 be i.i.d. according to the law P on the open set � ⊆ R. Unless

otherwise stated, we shall assume throughout the rest of the paper that � is
a bounded C∞-domain; for a definition see ([34], 3.2.1). [We note that for the
one-dimensional case considered here, this is tantamount to assuming that �

is a finite union of bounded open intervals that are separated, that is, they are
at a positive distance of each other. Nevertheless, we shall use the shorter term
‘bounded C∞-domain’ in the sequel, also because it is the appropriate concept
for generalization of our results to higher dimensions.] The (log-)likelihood
function is given by

Ln (p) := Pn log p = 1
n

n∑

i=1

log p (Xi) (4)

where the density function p : � → R belongs to the probability model

Pt :=Pt,ζ ,D(�)=
{

p ∈ Wt
2 (�, λ) : ‖p‖1,λ =1, inf

x∈�
p(x) ≥ ζ , ‖p‖t,2,λ ≤ D

}

.

(5)

Here t > 1/2, ζ > 0, and 0 < D < ∞, are given constants specifying the model.
We note that Pt consists of bounded continuous functions. The uniform lower
bound ζ is common in the literature when considering maximum likelihood
estimators. It is possible to generalize all subsequent results to many other
function classes, see Remark 3.5.2.

The maximum likelihood estimator is defined as an element p̂n ∈ Pt which
satisfies

Ln (̂pn) = sup
p∈Pt

Ln (p) . (6)

As shown in Sect. 4.2, Pt is a compact subset of C(�) and the function Ln (·) is
continuous on Pt w.r.t. the sup-norm topology; hence, the supremum in (6) is
attained, that is, an element p̂n satisfying (6) exists. Viewed as a map from �n

to the metric space (Pt, ‖·‖∞), the MLE p̂n can in fact (and will) be chosen to



416 R. Nickl

be B�n -B(Pt ,‖·‖∞)-measurable. [We note here once and for all that all results of
this paper hold not only for a particular, but for any B�n -B(Pt ,‖·‖∞)-measurable
selection. For further details on measurability see Sect. 4.2.1.] It is possible to
generalize our results to approximate MLEs which attain the maximum only
up to a term which is of sufficiently small order. The case of sieved MLEs is
somewhat different, see Remark 3.5.1.

We wish to derive a ‘Donsker-type’ theorem where the empirical measure is
replaced by the measure induced by the maximum likelihood estimator defined
in (6). To this end, for F some class of B�-measurable real-valued functions,
define the mapping

f �−→ ν̂n(f ) = √
n(P̂n − P)f (f ∈ F) (7)

where the (random) measure P̂n is defined by

P̂n(A) =
∫

A

p̂ndλ (A ∈ B�). (8)

We wish to study the behaviour of ν̂n as a random element in �∞(F); in par-
ticular, we wish to provide general conditions under which ν̂n ��∞(F) G holds,
where G is a centered Gaussian process indexed by F .

Condition 1 The probability model Pt = Pt,ζ ,D(�) is given by (5) above where
� ⊆ R is a bounded C∞-domain and where t > 1/2, and ζ > 0, as well as
0 < D < ∞ are given constants. (To ensure that Pt,ζ ,D(�) is non-empty, we
assume that ζ ≤ λ(�)−1 ≤ D2.)

1. The random variables X1, . . . , Xn are independent identically distributed
according to the law P on B�; in fact, they are the coordinate projections of
the infinite product probability space (�∞, B�∞ , P∞). The Radon–Nikodym
derivative dP/dλ exists and is almost everywhere equal to an element p0 ∈ Pt.

2. The function p0 satisfies the strict inequalities infx∈� p0(x) > ζ and
‖p0‖t,2,λ < D.

Note that we are estimating the continuous representative p0 of dP/dλ. The
condition t > 1/2 is crucial for many reasons, see Remark 3.5.3.

The following remark on Condition 1.2 is in order: when deriving weak
convergence properties of M-estimators in the ‘parametric’ (i.e., finite-dimen-
sional) case, it is standard to assume that the true parameter is in the interior
of the parameter space (w.r.t. the Euclidean topology). The point here is that
the parameter space contains a neighborhood of the true parameter that is an
open set in the same topology in which the M-estimator is consistent, a fact that
is central to the classical proof in the finite-dimensional case. This approach
to proving asymptotic normality of M-estimators is not directly viable in the
infinite-dimensional setup: there the usual requirement of (relative) compact-
ness of the ‘parameter space’ in any norm-topology in which an M-estimator
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is consistent prohibits the assumption that the true parameter is an interior
point w.r.t. this norm topology. Condition 1.2 acts as a substitute for such an
assumption. Note that it is related, but not identical to the (non-topological)
concept of an internal point in the sense of V.1.6 in [10].

Taking this, as well as a number of other subtle issues, into account, it is pos-
sible to modify and extend the classical asymptotic normality proof for MLEs
to obtain the following result. For the proof of the theorem as well as a discus-
sion of our proof strategy we refer to Sect. 4.3.1. We note that in the following
theorem νn and ν̂n take values in �∞(Ut,B) since Ut,B is uniformly bounded (cf.
Part 3 of Proposition 2).

Theorem 1 Assume that Condition 1 is satisfied. For Ut,B = {f ∈ Wt
2 (�, λ) :

‖f‖t,2,λ ≤ B}, 0 < B < ∞, and ν̂n = √
n(P̂n − P) we have that

∥
∥ν̂n − νn

∥
∥∞,Ut,B

= oP

(
n−(t−k)/(2t+1)

)
(9)

holds for every real k > 1/2. Furthermore,

ν̂n ��∞(Ut,B) G,

where G is a mean zero Gaussian process indexed by Ut,B with covariance func-
tion �(f , g) = P((f − Pf )(g − Pg)) for f , g ∈ Ut,B, and with almost all its sample
paths bounded and uniformly continuous.

Theorem 1 is similar in spirit to the main result in [16]. As mentioned in
Sect. 1, they show for P the set of monotone increasing (decreasing) densities
on the positive half-line and F the set of indicator functions of all intervals of the
form (0, x], that the quantity

∥
∥ν̂n − νn

∥
∥∞,F is—up to logarithmic terms—of the

order oP(n−1/6). This rate corresponds to the one obtained in case t = 1 in
the above theorem. [But note that the above theorem does not imply the result
by [16]]. We furthermore note that the Donsker class Ut,B featured in Theorem
1 is connected to the ‘parameter space’ Pt in the sense that both sets have the
same smoothness index t, which is essential in the proof of that theorem. A
similar connection also exists between the corresponding classes P and F in
the set-up of [16]. Furthermore, Theorem 1 also contains the results on func-
tional estimation in [40], Example 1 as a special case; see Corollary 4 below and
Remark 3.5.4 for details.

The question now arises whether the above mentioned connection between
Pt and F is intrinsically necessary for a weak convergence result to hold or
whether it can be relaxed to some extent: as the index t increases, i.e., as the
MLE is constrained to a smoother class of functions, one would expect the
MLE P̂n to be ‘farther away’ from Pn. At first sight, this intuition seems to
be confirmed by Theorem 1 in that the set Ut,B on which the two processes are
(asymptotically) close to each other becomes smaller as t increases. However, at
the same time Theorem 1 shows that the rate at which the norm

∥
∥ν̂n − νn

∥
∥∞,Ut,B
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decreases becomes faster as t increases, raising the question whether one might
be able to replace Ut,B by a general (Donsker) class F independent of t—e.g.,
by Us,B for arbitrary s > 1/2—and still be able to obtain a weak convergence
result for P̂n − P at rate n1/2. We shall answer this question in the positive in
Theorem 3.

To this end we now formulate a general approximation condition for func-
tion classes F , which will be sufficient to prove such a more general result in
Theorem 2.

Condition 2 Let Pt and p0 be as in Condition 1, and let p̂n be the MLE. Let F
be a (non-empty) subset of L1(�, λ). Assume that for every f ∈ F , there exists a
sequence un(f ) in Wt

2 (�, λ) such that

an := sup
f∈F

∣
∣
∣
∣
∣
∣

∫

�

(̂pn − p0)(un(f ) − f )dλ

∣
∣
∣
∣
∣
∣
= oP∗(n−1/2)

holds as well as that

bn := sup
f∈F

‖un(f )‖t,2,λ = O(n(t−k∗)/(2t+1))

holds for some real k∗ > 1/2. Assume further that

cn := sup
f∈F

|(Pn − P)(un(f ) − f )| = oP∗(n−1/2).

Sufficient conditions for and further discussion of Condition 2 will be given
after Theorem 2. For the proof of the following theorem as well as a discussion
of our proof strategy see Sect. 4.3.2.

Theorem 2 Assume that Conditions 1 and 2 are satisfied. For ν̂n = √
n(P̂n − P)

we have that

∥
∥ν̂n − νn

∥
∥∞,F ≤ n1/2(an + cn) + bnoP∗(n−(t−k)/(2t+1)) (10)

holds for every real k > 1/2; in particular,

∥
∥ν̂n − νn

∥
∥∞,F = oP∗(1). (11)

If, in addition, F is a P-Donsker class then also

ν̂n ��∞(F) G, (12)

where G is a mean zero Gaussian process indexed by F with covariance function
�(f , g) = P((f − Pf )(g − Pg)) for f , g ∈ F , and with almost all its sample paths
bounded and uniformly continuous.
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Note that in the context of the above theorem ν̂n is not guaranteed to always
take its values in �∞(F). However, since νn is a random element in �∞(F)

whenever F is a P-Donsker class, the result (11) shows that ν̂n is then so on a
set An whose complement has (outer) probability converging to zero as sample
size increases. The result in (12) is hence to be interpreted accordingly.

We conjecture that Condition 2 covers many Donsker classes F . In fact, it
covers most Donsker classes of smooth functions as the following proposition,
which is proved in Sect. 4.3.3, shows.

Proposition 1 Let � be a bounded C∞-domain and let t > 1/2 be given. Fur-
thermore, let s > 1/2 be arbitrary. Then any bounded (non-empty) subset F of
Ws

2 (�, λ) satisfies Condition 2 for the given t and for any 1/2 < k∗ ≤ min(s, t).
More precisely, if s < t holds, Condition 2 is satisfied with an = OP∗(n(−t−s)/(2t+1)),
with bn = O(n(t−s)/(2t+1)), and with cn = OP(n−1/2+(k′−s)/(2t+1)) for every
1/2 < k′ < s. If s ≥ t holds, then an = cn = 0 and bn = O(1).

This proposition covers Hölder and Lipschitz classes Fs,∞,C (cf. definition
(1)) with s > 1/2. [This follows from the imbeddings used in the proof of Corol-
lary 1.] By using imbedding theorems for function spaces on �, the proposition
also covers bounded subsets of Besov- and Triebel spaces, including in particu-
lar, Sobolev spaces Ws

r with either s > 1/2 and 2 ≤ r < ∞ or with s > 1/r and
1 ≤ r < 2. See, e.g., Sect. 3.3.1 in [34] for details.

Condition 2 requires the function class F to be sufficiently well-approxi-
mable by smooth functions. In particular, to obtain appropriate bounds for an
and bn in Condition 2 for a given class F one needs to examine its approxi-
mation-theoretic properties (together with a rate for the MLE). We note that
such an approximation result will typically also imply that the L2-norm of the
approximation error un(f )− f tends to zero (uniformly in f ). As a consequence,
the requirement for cn in Condition 2 is then automatically satisfied, provided,
e.g., the sets of approximation errors {un(f ) − f : f ∈ F} are contained in some
P-Donsker class H that satisfies Pollard’s or Ossiander’s empirical CLT (see
[38], p. 220f.).

Function classes F that are not well-approximable by smooth functions, for
example F = {f }, with f ∈ L∞(�) arbitrary, are not covered by Theorem 2.
[This seems to be a general phenomenon in the weak convergence theory of
‘plug-in estimators’ in the sense of [3], see the last but one paragraph in Sect. 2.1
below.]

Finally, Theorem 2 together with Proposition 1 give an affirmative answer
to the question raised in the second paragraph following Theorem 1. This is
summarized in Theorem 3 which generalizes Theorem 1. [Again, νn and ν̂n take
values in �∞(Us,B) since Us,B is uniformly bounded (cf. Part 3 of Proposition 2).]

Theorem 3 Assume that Condition 1 is satisfied and that s > 1/2. For Us,B =
{f ∈ Ws

2 (�, λ) : ‖f‖s,2,λ ≤ B}, 0 < B < ∞, and ν̂n = √
n(P̂n − P) we have

∥
∥ν̂n − νn

∥
∥∞,Us,B

= oP

(
n−(min(s,t)−k)/(2t+1)

)
(13)
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for every real k > 1/2. Furthermore,

ν̂n ��∞(Us,B) G,

where G is a mean zero Gaussian process indexed by Us,B with covariance func-
tion �(f , g) = P((f − Pf )(g − Pg)) for f , g ∈ Us,B, and with almost all its sample
paths bounded and uniformly continuous.

Proof Follows immediately from (10) in Theorem 2, Proposition 1, straight-
forward rate calculations, and Part 5 of Proposition 2. 
�

Theorem 3 shows that the difference between the MLE P̂n and the empirical
measure Pn in �∞(Us,B) is always at least of order oP(n−1/2) regardless of how
large the smoothness index t of the underlying probability model Pt is. It is
important to note that here—in contrast to Theorem 1—the indexing function
class F = Us,B on which the processes are asymptotically close to each other
(but not the rate in the above theorem) is independent of t. [One might ask
whether min(s, t) can be replaced by s in (13). We do not know whether the
appearance of min(s, t) in (13) is a genuine feature of MLEs or an artefact of
our proof strategy.]

2.1 Discussion

Since Pt is a (genuinely) nonparametric model, the empirical measure Pn is an
efficient estimator for P in the Banach space �∞(F) as soon as F is a (universal)
Donsker class (cf., e.g., [38], p. 420) Therefore, by Theorems 2 and 3, the MLE
is also an efficient estimator for P in �∞(F). This is achieved by showing that
the MLE is asymptotically closer to Pn than to P in �∞(F). Hence—as con-
cluded also by Kiefer and Wolfowitz [16] in their more specific setup—from
a pure efficiency point of view (in �∞(F)), there is little justification for using
the MLE (or any other estimator) instead of Pn. Does this imply that the con-
ventional wisdom that MLEs do take advantage of additional information on
the probability model—in the present context given by the information that P

possesses a smooth density p0 contained in Pt—is unfounded in infinite-dimen-
sional models?

When estimating parameters in infinite-dimensional spaces, the ‘value’ of
additional information on the underlying probability model typically will de-
pend on the metric (or rather, topology) w.r.t. which one assesses the properties
of an estimator. In the previous paragraph, we only considered convergence
in the metric of �∞(F) for Donsker classes F . Clearly, changing the class F
amounts to changing the metric (or topology). As we shall argue in the sub-
sequent paragraphs, an estimator that uses all information will typically have
optimal properties in all relevant metrics simultaneously.

It is shown on the one hand in Theorem 2 that the MLE achieves the con-
vergence rate 1/

√
n in the metric ‖·‖∞,F for certain Donsker classes F . On

the other hand, if one takes F equal to the unit ball in L2(�, λ), then the MLE
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achieves the minimax (over Pt with t > 1/2) rate of convergence n−t/(2t+1) in the
norm ‖·‖∞,F = ‖·‖2,λ. [This follows from results in [4,35], see Corollary 3 and
Proposition 6.] In contrast, the empirical measure Pn is certainly an inconsistent
estimator in the L2-metric. Corollaries 2 and 3 below highlight the superiority
of the MLE over Pn in some detail: they show that the MLE performs optimal
in a continuous range of metrics (induced by certain Sobolev norms), ranging
from metrics for the weak topology on Pt to stronger metrics that dominate,
e.g., the total variation norm on Pt. This has interesting statistical implications
discussed below.

Another interesting question would be whether the MLE achieves the rate of
convergence 1/

√
n in �∞(F) for P -pregaussian classes F that are not P-Dons-

ker, in which case Pn fails to be a (
√

n-) consistent estimator. It is indeed possible
to construct smoothed empirical measures P̃n (i.e., kernel or histogram-based
estimators with non-standard bandwidths) so that

√
n(P̃n − P) converges in law

in the space �∞(F) to a sample-continuous Gaussian process G over F for P-
pregaussian classes F that are not P-Donsker. Results of this kind are proved in
[26,27] under the assumption that P possesses a twofold differentiable density
with compact support. We do not know whether such results can also be shown
for the maximum likelihood estimator (but this is of course an interesting open
question). From a practical point of view, we are not aware of many concrete
examples for pregaussian classes that are not Donsker on the sample space R

d

(or relevant subsets thereof). [We refer, however, to [21], where it is shown that
balls in certain Besov spaces on R

d are pregaussian but not Donsker.]
In light of these facts we conjecture here that—in infinite dimensional mod-

els with convergent Hellinger-bracketing integral (e.g., Pt with t > 1/2)—the
usual wisdom that MLEs use all information of the probability model is mir-
rored in the fact that the MLE achieves the minimax rate of convergence in
most (if not all) metrics. We note that this simultaneous optimality property is
not necessarily shared by other common density estimators. For example, while
the nonstandard-bandwidth-kernel density estimators discussed above can be
tuned to converge in law in �∞(F) at rate

√
n for Donsker (or even pregaus-

sian) classes F , this comes at the expense of a rate of convergence of the density
estimator in stronger norms (e.g., in ‖·‖2,λ) which is slower than the minimax
rate. See [28,37,42] as well as [26,27] for results of this kind. Related results for
density estimators based on series expansions are derived in [23].

It transpires from the recent paper Bickel and Ritov [3], that the simultaneous
optimality of an estimator in various metrics is of statistical importance. Bickel
and Ritov [3] defined an estimator P̃n to possess the uniform plug-in property
for the class of linear functionals arising from f ∈ F via φf (·) = ∫

�
f d(·) if

sup
f∈F

∣
∣
∣
√

n(φf (P̃n) − φf (P))

∣
∣
∣ = sup

f∈F

∣
∣
∣
∣
√

n
∫

f d(P̃n − P)

∣
∣
∣
∣ = OP(1) (14)

and if— simultaneously— P̃n achieves the minimax rate of convergence over the
underlying probability model in L2-loss. It was already discussed in the previous
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paragraph that the MLE achieves the minimax rate of convergence over Pt with
t > 1/2 in L2-loss. Consequently, Theorem 2 above implies that the MLE pos-
sesses the ‘uniform plug-in property’ for Donsker classes satisfying Condition 2.

Bickel and Ritov [3] already gave a number of statistical examples where
one can take advantage of density estimators possessing the plug-in property.
In Corollaries 4–6 below, we will provide some further examples in order to
show how one may apply our results to efficiently estimate parameters that
cannot be estimated via the empirical measure.

3 Some implications of Theorems 2 and 3

3.1 Convergence of the MLE in the weak topology on P(�)

Let P(�) denote the set of all (Borel) probability measures on �. In this section
we consider the weak topology on P(�). [That is, we view P(�) as a bounded
subset of C(�)′ and equip it with the weak-star topology.] An application of
the general Donsker-theorem for empirical processes gives convergence at rate√

n of Pn to P in certain metrics metrizing the weak topology on P(�), see,
e.g., [12,33], and also [14]. Theorem 3 allows one to state similar results for
the maximum likelihood estimator. Consider first the (dual) bounded Lipschitz
metric on P(�) given by

β(µ, υ) = sup
f∈F1,∞,1

∣
∣
∣
∣
∣
∣

∫

�

f d(µ − υ)

∣
∣
∣
∣
∣
∣

(15)

for µ,υ ∈ P(�) where F1,∞,1 is the unit ball in the space of bounded Lips-
chitz-functions on � (see (1)). As is well-known, the bounded Lipschitz metric
β metrizes the weak topology on P(�) ([9], Proposition 11.3.2).

Corollary 1 Assume that Condition 1 holds. We then have

β(P̂n, Pn) = oP

(
n−1/2−(min(1,t)−k)/(2t+1)

)
(16)

for every real k > 1/2. Furthermore,

β(P̂n, P) = OP(n−1/2).

Next define the Sobolev-norm metric ds on P(�) (for s > 1/2) by

ds (µ, υ) := sup
f∈Us,1

∣
∣
∣
∣
∣
∣

∫

�

f d(µ − υ)

∣
∣
∣
∣
∣
∣
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for every µ,υ ∈ P(�), where Us,1 = {f ∈ Ws
2 (�, λ) : ‖f‖s,2,λ ≤ 1}. [Note that

ds (µ, υ) is always finite since Us,1 is uniformly bounded.] For 1/2 < s < 1, this
metric is stronger than the dual bounded Lipschitz metric β, that is,

β(µ, υ) ≤ Kds (µ, υ)

holds for every µ,υ ∈ P(�) and some constant K (possibly depending on s);
see the proof of Corollary 1. We give the following metrization lemma which
was proved in Theorem 2.2 of [12] for the slightly different case where � is a
compact Riemannian manifold.

Lemma 1 Let � ⊆ R be a bounded C∞-domain and suppose that s > 1/2. Then
the metric ds metrizes the topology of weak convergence on P(�).

Corollary 2 Assume that Condition 1 holds and that s > 1/2. We then have

ds(P̂n, Pn) = oP

(
n−1/2−(min(s,t)−k)/(2t+1)

)

for every real k > 1/2. Furthermore,

ds(P̂n, P) = OP(n−1/2).

3.2 Convergence rates of the MLE in Sobolev norms

Whereas the maximum likelihood estimator P̂n does not improve upon Pn in
the the metric ds for s > 1/2, it does so in stronger topologies. To elucidate this
fact, it is interesting to extend the definition of the Sobolev-norm metric ds in
the previous subsection to the case 0 ≤ s < ∞. The functional

‖·‖−s,2,λ = sup
[f ]λ∈Us,1

∣
∣
∣
∣
∣
∣

∫

�

(·)f dλ

∣
∣
∣
∣
∣
∣

(17)

with Us,1 the unit ball of Ws
2 (�, λ) (0 ≤ s < ∞) induces a norm on L2 (�, λ).

[In fact, ‖·‖−s,2,λ is just the restriction of the operator norm of the dual space
(Ws

2 (�, λ))′ to (L2 (�, λ))′ = L2 (�, λ).] By Theorem 3, the convergence rate of
the MLE in the norm ‖·‖−s,2,λ, s > 1/2, is of order 1/

√
n. On the other hand, the

convergence rate of the MLE in the norm ‖·‖0,2,λ = ‖·‖2,λ is of order n−t/(2t+1)

by results due to [4,35], see also Proposition 6 below. The following corollary
shows that these seemingly unrelated convergence rates in the norms ‖·‖−s,2,λ,
s > 1/2, and ‖·‖2,λ are in fact related by a ‘continuous transition’ of rates of
convergence in intermediate Sobolev norms. [Recall that ‖·‖r,2,λ for r ≥ 0 was
defined after (2) above.]
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Corollary 3 Assume that Condition 1 holds and let δ > 0 be arbitrary. We then
have

∥
∥p̂n − p0

∥
∥

r,2,λ =

⎧
⎪⎪⎨

⎪⎪⎩

OP(1) if r = t
OP∗(n−(t−r)/(2t+1)) if t > r ≥ 0
OP(n−(t−r)/(2t+1)+δ) if 0 > r ≥ −1/2
OP(n−1/2) if − 1/2 > r

.

For r = 0, the rate of convergence is well-known to be best possible in the
minimax sense. The same can be shown to be true in case of integer r > 0, cf. the
results in [32], and it is reasonable to expect this also for noninteger r ∈ [−1/2, t)
(possibly up to the δ-term). [For measurability issues in case t > r ≥ 0 see the
discussion following Proposition 6 below.] In case of the empirical measure Pn
with −1/2 > r, we have supf∈U−r,1

∣
∣
∫
�

f d(Pn − P)
∣
∣ = OP(n−1/2) where U−r,1 is

the unit ball of W−r
2 (�, λ), but for r ≥ 1/2, the norm ‖·‖r,2,λ cannot even be

applied to Pn. In fact, in case r ≥ 1/2, supf∈U−r,1

∣
∣
∫
�

f d(Pn − P)
∣
∣ = ∞ a.s. can

be shown to hold for any set U−r,1 of representatives of elements of U−r,1 by a
similar reasoning as in Theorem 7 in [21].

3.3 Estimation of functionals defined on Pt

Many statistical problems can be formulated as the problem of estimating a
(given) functional � defined on some set of probability measures. An asymp-
totic estimation theory for this framework was first established by [39], who con-
sidered functionals defined on cumulative distribution functions. Alternatively,
one can consider functionals � defined on sets of probability densities. We wish
to apply Theorem 2 (and Corollary 3) in this context. First, we consider general
functionals defined on (open subsets of) the Banach spaces Wr

2 (�, λ) with arbi-
trary −∞ < r < t. Here we use the convention that Wr

2 (�, λ) = (W−r
2 (�, λ))′

in case of negative r. [It is easy to see that L2 (�, λ) and hence Pt is contained in
Wr

2 (�, λ) for negative r if one views elements f of L2 (�, λ) as linear functionals
φf (·) = ∫

�
(·)f dλ acting on W−r

2 (�, λ) via integration, see also Sect. 2.2 in [22].]
This includes the important case where the functional is defined on L2 (�, λ)

(corresponding to r = 0). The following corollary provides general conditions
such that �(p0) is efficiently estimable at rate

√
n by the plug-in MLE.

Corollary 4 Suppose that Condition 1 holds. Let A be an open subset of Wr
2 (�, λ)

with −1/2 ≤ r < t containing p0. Let � : A → R be a given real-valued func-
tional. Assume that � is Fréchet differentiable at the point p0 ∈ A with Fréchet
derivative D�(p0) and suppose that

|�(p0 + h) − �(p0) − D�(p0)(h)| = O(‖h‖ω
r,2,λ) (18)

holds for all h ∈ A and some ω > (2t + 1)/2(t − r). Assume further that√
nD�(p0)(p̂n − p0) = ν̂n(u�,P) holds for some u�,P ∈ L2(�, P) [which is,
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e.g., satisfied if D�(p0) ∈ (L2 (�, λ))′] and that F = {u�,P} satisfies Condition 2.
We then have

√
n(�(p̂n) − �(p0)) �R N(0,

∥
∥u�,P − Pu�,P

∥
∥2

2,P). (19)

We note that, if � is Fréchet differentiable at p0 ∈ Wr
2 (�, λ) for some r ≤ 0,

a L2 (�, λ)-Riesz-representer u�,P of D�(TP) always exists. Note further that
in the remaining cases −∞ < r < −1/2 not covered by the corollary, the result
(19) follows from a standard delta method argument under the sole condition
that � is Hadamard differentiable at the point p0 in A with Hadamard deriva-
tive D�(p0) ∈ (Wr

2 (�, λ))′, since in this case the MLE-process ν̂n converges in
law in (Wr

2 (�, λ))′ by Theorem 3. [Clearly, this argument would also work for
the empirical process νn.]

In case r = 0, it is easily seen how Corollary 4 exploits the virtues of Bickel
and Ritov’s [3] plug-in property: density estimators p̃n that possess this prop-
erty (such as the MLE p̂n) achieve optimal convergence rates for

∥
∥p̃n − p0

∥
∥

2,λ.
This admits the minimal condition ω > (2t + 1)/2t in (18) necessary to imply
that the remainder term ‖h‖ω

2,λ = ∥
∥p̃n − p0

∥
∥ω

2,λ is of stochastic order oP(n−1/2).
Simultaneously, the ‘plug-in property’ guarantees convergence in law of the
linearization term

√
nD�(p0)(p̃n − p0) for a large class of functionals �.

Corollary 4 substantially generalizes upon results by [40], see Remark 3.5.4
for more discussion. An example to which Corollary 4 can be applied is the
entropy functional. Another example is integrated squared density derivatives,
which were considered, e.g., in [2,5,15,17,18]. These authors are interested in
the parameter �(p0) = ‖Dαp0‖2

2,λ where Dα denotes the classical (Fréchet-)
differential operator of order α. We consider weak derivatives Dα

w. [Clearly,
Dα

wp0 coincides with the Fréchet-derivative Dαp0 if the latter exists. Otherwise,
considering weak derivatives is more general.]

Corollary 5 Let α be a nonnegative integer. Suppose that Condition 1 holds and
that t − 2α − 1/2 > 0 is satisfied. Assume further that in case α ≥ 1 the condition
limx∈�,x→x∗ Dj

wp0(x) = 0 holds for every point x∗ in the boundary of � and for
α ≤ j ≤ 2α − 1. Then

√
n

(∥
∥Dα

wp̂n
∥
∥2

2,λ − ∥
∥Dα

wp0
∥
∥2

2,λ

)
�R N

(
0, ‖g − Pg‖2

2,P

)

with g = 2D2α
w p0.

Observe that [Dj
wp0] ∈ Wt−j

2 (�, λ) and t − j > 1/2 hold for α ≤ j ≤ 2α − 1.

Hence, a continuous representative of Dj
wp0 exists, and the condition in the

corollary involving the limit of the weak derivative of p0 refers to this rep-
resentative. These boundary conditions parallel similar assumptions used in
[5,17,18]).

We note that
∥
∥Dα

wp̂n
∥
∥2

2,λ is asymptotically efficient, that is, its limiting vari-
ance can be shown to achieve the semiparametric lower variance bound for
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estimating
∥
∥Dα

wp0
∥
∥2

2,λ. We further note that, in light of the results in [2,5,17,18],
one may also be interested in the case 1/4 < t − 2α ≤ 1/2. We conjecture that
the rate

√
n is not attained by the plug-in MLE for these parameters. We also

note that the proof of Corollary 5 can be adapted to deal with the more general
class of integral functionals considered in [5,17,18].

3.4 Estimation of P ∗ P

Given an i.i.d. sample from a random variable taking values in R with density
ϕ, [30] as well as [13] constructed kernel density estimators ϕ̃n for ϕ such that
the convolution products ϕ̃n ∗ ϕ̃n − ϕ ∗ ϕ converge in law at rate

√
n in Lp(R, λ)

spaces (1 ≤ p ≤ ∞). Such results are of interest, e.g., for estimating the density
of a moving average process yt = σεt−1 + εt with (εt)

n
t=1 i.i.d. according to the

density ϕ. See also [11] for further statistical applications. We show that simi-
lar results can be proved for the maximum likelihood estimator by using our
Theorem 3.

Let X be a random variable with unknown density p0 ∈ Pt,ζ ,D((0, 1)) sat-
isfying, in addition, limx→0 p0(x) = limx→1 p0(x) < ∞. [Note that any p ∈
Pt,ζ ,D((0, 1)) with t > 1/2 is uniformly continuous on (0, 1) by Part 5 of Prop-
osition 2 below.] Then p0 can be viewed as a continuous function on the one-
dimensional torus T = R/Z, and the convolution p0 ∗ p0 is always well defined.
Given an i.i.d. sample of size n from X, we construct the maximum likelihood
estimator p̂n over Pt,ζ ,D((0, 1)). Setting p̂n(0) = limx→1 p̂n(x) < ∞, the function
p̂n can be viewed as an element of the space of bounded Borel-measurable (and
hence also integrable) functions on T. The convolution product p̂n ∗ p̂n is then
again well defined. In particular, p̂n ∗ p̂n is contained, for every n, in C((0, 1)).

Corollary 6 Suppose that Condition 1 holds with �= (0, 1) and that
limx→0 p0(x) = limx→1 p0(x) is satisfied. We then have that

√
n(p̂n ∗ p̂n − p0 ∗ p0)

converges in law in the space C((0, 1)).

It can be furthermore shown that the limiting variable equals the one of
2
√

n(Pn −P)∗P, which is easily seen to be mean zero Gaussian. [Note however,
that Pn ∗ P is an infeasible ‘estimator’ and the naive plug-in estimator Pn ∗ Pn
is not even contained in C((0, 1)) for any n.] Clearly, convergence in law in
C((0, 1)) implies convergence in law in Lp((0, 1), λ) for 1 ≤ p ≤ ∞. Also, the
proof method of the corollary easily generalizes to estimation of the density of
X +Y, where X and Y are independent random variables on (0, 1), see Sect. 4.1
in [22] for more details.

3.5 Remarks and extensions

We collect some remarks on the results of the paper in this section.
1. (Other density estimators) Suppose the MLE defined by (6) were replaced

by a sieved maximum likelihood estimator where the maximization is under-
taken over a (suitably fast) growing sequence of (possibly finite-dimensional)
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compact subsets Pt,H(n) of Pt where Pt is contained in the closure (in some
relevant topology) of

⋃∞
n=1 Pt,H(n). Our proof strategy needs considerable (but

natural) adaptation in this case, see [23]. Likewise, it seems reasonable to expect
that similar weak convergence results can be proved for regularization MLEs. It
is of course of interest to investigate whether results of this kind can be proved
for other density estimators. We refer to the discussion in Sect. 2.1, and also to
[23] where similar results are proved for trigonometric series estimators.

2. (Parameter space) The results in this paper are given for the parameter
space Pt contained in the Sobolev–Hilbert space Wt

2 (�, λ) on the bounded set
� ⊆ R. They can be generalized to the spaces Wt

p (�, λ) with 1 < p < ∞ and
real-valued t > d/p where � is a bounded C∞-domain in R

d quite straightfor-
wardly. Similarly, they can be generalized to Hölder, Besov or Triebel function
classes (defined over such domains). Also, the case where additional restric-
tions are being imposed on the parameter space Pt is of interest: as long as
these restrictions specify subsets of Pt that are convex and closed (in the sup-
norm topology), we expect no major difficulties in proving results similar to
Theorems 1–3.

3. (Requirement of t > 1/2) The condition t > 1/2 is necessary in many
respects. It implies containment of Pt in the space of bounded continuous
functions which is used throughout the proofs. More importantly, it delivers
asymptotic equicontinuity of the empirical process indexed by Pt, which implies
the—in many ways essential—optimal convergence rates in Proposition 6. [It is
known that for t ≤ 1/2, minimum contrast estimators such as the MLE do not
necessarily achieve optimal convergence rates, see Sect. 4 in [4].] The condition
t > 1/2 would also be necessary to show uniform (in Pt) consistency at rate

√
n

of the MLE (e.g., for estimating certain functionals �(p0)), which is necessary
to make confidently inferential use of asymptotic results. It is well known that
even for fixed functionals � and ‘too large’ nonparametric models (for exam-
ple Pt with t = 0), no uniformly consistent estimators exist, the minimax risk
converges to infinity and the rate

√
n is unattainable by any estimator: see, e.g.,

[7] or Sect. 3 in [19] for a general study of such problems.
4. (Corollary 4) The asymptotic distribution of nonlinear real-valued func-

tionals of the nonparametric MLE has also been considered in the paper Wong
and Severini [40], who give high-level conditions on general (not necessarily
density-) MLEs. In Example 1, [40] consider the case of (log-)density estimation
over a parameter space of (log-)densities constrained by a Lipschitz condition
of order t ≥ 2. [Roughly speaking, they assume log p0 ∈ Ft,∞,C for t ≥ 2, cf. (1)
above.] Wong and Severini [40] show

√
n-asymptotic normality of the plug-in

MLE �(p̂n) − �(p0) if � : L2 (�, λ) → R is twice-Frechet differentiable, and
if, in addition, the Riesz-representer u�,P of the first derivative of � is orthog-
onal to p0 and contained in a Lipschitz space of order t ≥ 2. These conditions
are much stronger than those in Corollary 4 (with r = 0). In particular, Wong
and Severini [40] require that the order of the smoothness constraint t on the
Riesz-representer has to be equal to the order of the smoothness constraint
on the class of admissible densities. This undesirable dependence of the class
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of admissible functionals � on the ‘parameter space’ Pt in [40] result is highly
restrictive in applications. It is removed by Corollary 4 above.

4 Proofs and preliminary results

We need to establish a number of preliminary results before proving Theorems
1 and 2 as well as Proposition 1 in Sect. 4.3 below. Section 4.4 contains the
proofs for Sect. 3.

The following proposition summarizes some facts on Sobolev spaces that will
be used throughout the proofs. For s ≥ 0, denote by Ws

2 (R, λ |R ) |� the Banach
space of restrictions to � of elements of Ws

2 (R, λ |R ) (which was defined after
(2)) normed by

‖f‖s,2,� = inf{‖g‖s,2,λ|R : [g]λ|R ∈ Ws
2(R, λ |R ) : [g |� ]λ|� = [f ]λ|� }. (20)

Let F denote the usual Fourier–Plancherel transform acting on L2(R, λ |R )

scaled with (2π)−1/2. Define for real s ≥ 0

Hs(R, λ |R ) = {[h]λ|R ∈ L2(R, λ |R ) : ‖h‖∧,s,2,λ|R := ∥
∥〈u〉s Fh

∥
∥

2,λ|R < ∞}

with the notation 〈u〉s = (1 + |u|2)s/2 (and where we use the obvious general-
ization of ‖f‖2,λ|R for complex-valued functions f ).

Proposition 2 Let � be a bounded C∞-domain and let s ≥ 0.

1. We have Ws
2 (R, λ |R ) = Hs(R, λ |R ) and the norms ‖·‖s,2,λ|R and ‖·‖∧,s,2,λ|R

are equivalent.
2. We have Ws

2 (�, λ) = Ws
2 (R, λ |R ) |� and the norms ‖·‖s,2,λ|� and ‖·‖s,2,�

are equivalent.
3. Let s > 1/2. The imbeddings Ws

2 (�, λ) ↪→ C (�) as well as Ws
2 (�, λ) ↪→

C (�) hold. In particular,

‖g‖∞ ≤ Cs ‖g‖s,2,λ

holds for all g ∈ Ws
2 (�, λ) with imbedding constant 0 < Cs < ∞.

4. If t > 1/2, the set Pt defined in (5) is contained in {f ∈ C (�) : ζ ≤ f (x) ≤ CtD
for all x ∈ �}.

5. Let s > 1/2 and let U be a bounded subset of Ws
2 (�, λ). Then U is uniformly

equicontinuous on �. Furthermore, U is a P -Donsker class for every Borel
probability measure P on �.

6. Let s > 1/2. Ws
2 (�, λ) is a multiplication algebra, that is, ‖fg‖s,2,λ ≤

M ‖f‖s,2,λ ‖g‖s,2,λ holds for some positive finite constant 0 < M < ∞ and all
f , g ∈ Ws

2 (�, λ).

Proof These results are known and we only collect references. Part 1 follows
from Theorem 1.7.1 in [20]. Part 2 follows from Part 1 and Theorems 1.9/1-2
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in [20], noting that any bounded C∞-domain satisfies Condition 7.10 in that
monograph. The first imbedding of Part 3 is proved, e.g., in Theorem 1.9.8 in
[20], which immediately implies the second imbedding and also Part 4 of the
proposition by definition of Pt. For Part 5, we infer uniform equicontinuity of U
from 2.7.1/12 in [34]. Furthermore, the L2(P)-bracketing metric entropy of any
bounded subset U of Ws

2 (�, λ) is seen to be of order ε−1/s for every P ∈ P(�)

(where ε → 0 denotes the bracket-size) upon noting that Ws
2 (R, λ |R ) coincides

with the Besov space Bs
22 (R, λ |R ) defined in [24] and upon using Part 2 of Cor-

ollary 2 in [24] with β = 0, d = 1 , µ = P, r = 2, p = q = 2. This implies that for
s > 1/2, the set U is P-Donsker for every P ∈ P(�) in view of Ossiander’s CLT
(Theorem 7.2.1 in [8]). Finally, Ws

2 (�, λ) is a multiplication algebra for s > 1/2,
since Ws

2 (R, λ |R ) is one by ([34], 2.8.3) and by using Part 2 together with the
fact that the restricted norm inherits multiplicativity. 
�

4.1 Differential calculus and limit theory for the likelihood function

We shall denote by L(i) (p) the likelihood per observation, that is L(i) (p) =
log p(Xi). We will derive the Fréchet derivatives of the likelihood function
p �−→ Ln (p) = n−1 ∑n

i=1 L(i) (p) as well as of its limiting function p �−→
PL(i) (p) = ∫

�
log p(x)dP(x) both viewed as mappings defined on a suitable

open subset V of the Banach space L∞ (�). This is convenient as the set Pt
will be seen to be contained in this open set. Recall that first derivatives are to
be understood as elements of L∞ (�)′, whereas second derivatives are continu-
ous bilinear, real-valued functionals defined on L∞ (�) × L∞ (�) (with obvious
extension for higher derivatives).

Proposition 3 For � ∈ BR, let V = {d ∈ L∞ (�) : d(x) > ζ/2 for all x ∈ �}
where 0 < ζ < ∞. For f1, ..., fα ∈ L∞ (�), α ≥ 1, the multilinear mapping rep-
resenting the α-th Fréchet-derivative of Ln : V → R at the point d ∈ V is given
by

DαLn (d) (f1, . . . , fα) = n−1(α − 1)!(−1)α−1
n∑

i=1

d−α (Xi) f1 (Xi) · · · fα(Xi).

Furthermore, the multilinear mapping representing the α-th Fréchet-derivative of
PL(i) (·) at the point d ∈ V is given by

Dα
PL(i) (d) (f1, . . . , fα) = PDαL(i) (d) (f1, . . . , fα)

= (α − 1)!(−1)α−1
∫

�

d−αf1 · · · fαdP.

Proof For the first part it is sufficient to consider the likelihood per obser-
vation L(i) (p) = log p(Xi) which is the composite mapping consisting of the
logarithm and the evaluation map δXi on L∞ (�). Since δXi ∈ (L∞ (�))′, we
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have DδXi (d) (f ) = δXi(f ) for every f ∈ L∞ (�). Since δXi (d) > ζ/2 holds for
all d ∈ V , and since the logarithm is differentiable on R

+ we have by the chain
rule on Banach spaces (8.2.1 in [6]) that

D(log d(Xi)) (f ) = D((log ◦δXi)(d))(f ) = d−1(Xi)f (Xi) .

By a similar reasoning, we have for the second derivative

D2(log d(Xi))(f , g) = −d−2(Xi)f (Xi) g (Xi)

by using 8.12.1 in [6], and this reasoning is easily iterated to give the α-th deriva-
tive. The second part of the proposition follows from the fact that differentiation
and integration of L(i) (·) can be interchanged as a consequence of Proposi-
tion 4 below. We verify the conditions of this proposition with E = L∞ (�),
V = V , µ = P, and f (v, s) = log d(Xi) for the first derivative; higher order
derivatives following in a similar manner. Notice first that log d is contained in
L∞ (�), and thus in L1(�, P), for every d ∈ V . Also, by Part 1 of this propo-
sition, for every d ∈ V , the derivative DL(i) (d) (f ) = d−1 (Xi) f (Xi) of L(i) (p)

at d exists, and is continuous as a map from V to L∞ (�)′. Note finally that
supd∈V

∥
∥DL(i) (d)

∥
∥′

∞ ≤ supd∈V
∥
∥d−1

∥
∥∞ = 2/ζ < ∞ where 2/ζ ∈ L1(�, P) is the

dominating function. 
�
By Part 4 of Proposition 2, the set Pt is contained in the L∞(�)-open set V .

Thus the above result shows that the likelihood function and its limiting counter-
part are Fréchet-differentiable at each p ∈ Pt (the former for all (X1, . . . , Xn)T ∈
�n).

The following proposition gives sufficient conditions for interchanging the
order of differentiation and integration in a general setting. It was used in the
proof of Part 2 of Proposition 3 above. Here, for (S, A, µ) some measure space,
L1(S, A, µ) denotes the vector space of A-measurable µ-integrable real-valued
functions defined on S.

Proposition 4 Let V be an open subset of some Banach space E and let (S, A, µ)

be a measure space. Suppose that the function f (v, s) : V × S → R is contained
in L1(S, A, µ) for every v ∈ V. Assume that for every v ∈ V and every s ∈ S the
Fréchet-derivative D1f (v, s) w.r.t. the first variable exists. Furthermore, assume
that for every s ∈ S, the map v �−→ D1f (v, s) from V to E′ is continuous. Suppose
further that there exists a function g ∈ L1(S, A, µ) such that ‖D1f (v, s)‖′

E ≤ g(s)
for every v ∈ V and s ∈ S. Then, the function ϕ : v �−→ ∫

S f (v, s)dµ(s) from V ⊆
E → R is Fréchet differentiable with derivative Dϕ(v)(h) = ∫

S D1f (v, s)(h)dµ(s)
for h ∈ E.

Proof We need to show for every v ∈ V that

∣
∣
∣
∣
∣
∣
ϕ(v + h) − ϕ(v) −

∫

S

D1f (v, s)(h)dµ(s)

∣
∣
∣
∣
∣
∣
= o(‖h‖E) (21)
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as ‖h‖E → 0, and that h �→ ∫
S D1f (v, s)(h)dµ(s) is norm-continuous on E.

Without loss of generality we may assume that ‖h‖E is sufficiently small such
that the line connecting v and v + h is contained in V. Inserting the definition
of ϕ, we have

∣
∣
∣
∣
∣
∣

∫

S

(f (v + h, s) − f (v, s) − D1f (v, s)(h))dµ(s)

∣
∣
∣
∣
∣
∣

≤
∫

S

|(f (v + h, s) − f (v, s) − D1f (v, s)(h))| dµ(s)

where the integrand is o(‖h‖E) by assumption. Hence (21) follows from the
dominated convergence theorem if we show that there exists a function g∗ ∈
L1(S, A, µ) which dominates the integrand divided by ‖h‖E. Apply the (path-
wise) mean value theorem and the chain rule on Banach spaces (8.2.1 in [6]) to
obtain

|f (v + h, s) − f (v, s) − D1f (v, s)(h)| ≤ ∥
∥D1f (ṽ, s) − D1f (v, s)

∥
∥′

E ‖h‖E

≤ 2g(s) ‖h‖E = g∗(s) ‖h‖E

under the conditions of the proposition. Here, ṽ = v + ξh (0 ≤ ξ ≤ 1) are mean
values contained in V. Continuity of h �→ ∫

S D1f (v, s)(h)dµ on E follows from

|D1f (v, s)(h)| ≤ ‖D1f (v, x)‖′
E ‖h‖E ≤ |g(s)| ‖h‖E

which gives |Dϕ(v)(h)| ≤ C ‖h‖E for C = ∫
S |g| dµ. 
�

In what follows, for a (possibly random) symmetric bilinear functional �

defined on L0(�), we shall use the following notation where H and G are sub-
sets of L0(�):

‖�‖∞,H,G := sup
h∈H

sup
g∈G

|�(h, g)| . (22)

If UE = H = G is the unit ball of some Banach space E contained in L0(�), the
norm ‖�‖∞,UE,UE

just equals the usual operator norm of the restriction of �

to E × E. We use the same notation for multilinear functionals. The following
lemma establishes stochastic bounds (with rate) for the likelihood derivatives
which are (symmetric multi-) linear functionals on L∞(�) ⊆ L0(�).

Lemma 2 Let Condition 1.1 hold and let 1 ≤ α < ∞. Let Hj , j = 1, . . . , α, be
bounded subsets of L∞(�) that are P-Donsker. We then have

sup
p∈Pt

∥
∥DαLn (p) − PDαL(i) (p)

∥
∥∞,H1,...,Hα

= OP∗(n−1/2). (23)
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Proof Note that

sup
p∈Pt

∥
∥DαLn (p) − PDαL(i) (p)

∥
∥∞,H1,...,Hα

= sup
p∈Pt

sup
h1∈H1

· · · sup
hα∈Hα

|(α − 1)!|

×
∣
∣
∣
∣
∣
∣
n−1

n∑

i=1

(p−αh1 · · · hα) (Xi) −
∫

�

(p−αh1 · · · hα)dP

∣
∣
∣
∣
∣
∣

= sup
p∈Pt

sup
h1∈H1

· · · sup
hα∈Hα

|(α − 1)!| ∣
∣(Pn − P)(p−αh1 · · · hα)

∣
∣

by definition of the operator ‘norm’ (22). If we show that

C := {
p−αh1 · · · hα : p ∈ Pt, hj ∈ Hj for j = 1, . . . , α

}

is a P-Donsker class, we have proved (23): this is so since then the empiri-
cal process n1/2(Pn − P) indexed by C converges in law in (�∞(C), ‖·‖∞,C) to
a measurable limit which, by Prohorov’s Theorem (1.3.8 in [38]), entails that
n1/2(Pn − P) is uniformly tight in that space, and hence

‖Pn − P‖∞,C = OP∗
(
n−1/2)

.

Since finite products of uniformly bounded Donsker classes are again Donsker
(by [38], 2.10.8), it is sufficient to show that 1/Pt is P-Donsker to prove that C is
a P-Donsker class. For 1/Pt to be P -Donsker, it is sufficient (by [38], 2.10.9) to
show that Pt is so, since the functions in Pt are uniformly bounded away from
zero. The set Pt is bounded in Wt

2 (�, λ) and is thus P-Donsker by Part 5 of
Proposition 2. 
�

4.2 Existence and ‘Strong’ convergence properties of the MLE

Lemma 3 Let � be a bounded C∞-domain and let t > s > 1/2. Then Pt is a
compact subset of Ws

2 (�, λ) as well as of C(�).

Proof By Part 3 of Proposition 2, it is sufficient to prove that Pt = Pt,ζ ,D(�) is
a compact subset of Ws

2 (�, λ). Observe first that the imbedding

id : Wt
2 (�, λ) ↪→ Ws

2 (�, λ)

is a compact imbedding since t > s holds (see Theorem 1.16.1 in [20]). In other
words, the Sobolev ball

Ut,D = {f ∈ Wt
2 (�, λ) : ‖f‖t,2,λ ≤ D} (0 < D < ∞)
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is relatively compact in the Banach space Ws
2 (�, λ). We now show that Ut,D

is in fact compact: let fm be any sequence in Ut,D. By relative compactness of
id(Ut,D), the sequence id(fm) converges (by passing to a subsequence if neces-
sary) to some g ∈ Ws

2 (�, λ) in the ‖·‖s,2,λ-norm and hence, by Part 3 of Propo-
sition 2, also in the ‖·‖∞-norm. Since the Banach space Wt

2 (�, λ) is separable
and reflexive, the weak topology of Wt

2 (�, λ) on the ball Ut,D is metrizable and
Ut,D is compact in this topology, see V.4.7 and V.5.1 in [10]. Consequently, there
exists some weak accumulation point f ∈ Ut,D so that L(fm) (or, if necessary,
a subsequence independent of L) converges to L(f ) for all L ∈ (

Wt
2 (�, λ)

)′.
Since the evaluation functional δx is contained in

(
Wt

2 (�, λ)
)′ for any x ∈ � (by

Part 3 of Proposition 2), we have δx(fm) → δx(f ) for all x ∈ �, that is, fm → f
pointwise. This implies that g = id(f ) ∈ id(Ut,D) and thus Ut,D, more precisely
id(Ut,D), is compact in Ws

2 (�, λ).
Fix x ∈ � and let the set Pζ

x stand for the set of all functions f in Ws
2 (�, λ)

that satisfy ζ ≤ f (x) at the point x ∈ �. We then have

Pζ
x = {

f ∈ Ws
2 (�, λ) : ζ ≤ f (x) < ∞} = δ−1

x ([ζ , ∞))

which is a closed set since the inverse image of the closed set [ζ , ∞) under the
continuous evaluation map δx is closed. We therefore have that the set

Pζ := {
f ∈ Ws

2 (�, λ) : ζ ≤ f (x) < ∞ ∀x ∈ �
} = ∩

x∈�
Pζ

x

is closed since arbitrary intersections of closed sets are again closed. We next
show that also

P(1) = {g ∈ Ws
2 (�, λ) : ‖g‖1,λ = 1}

is closed. Suppose for f ∈ Ws
2 (�, λ) there exists a sequence gm in P(1) such

that ‖f − gm‖s,2,λ → 0 as m → ∞. Since � is bounded, we have ‖h‖1,λ ≤
K ‖h‖∞ ≤ KCs ‖h‖s,2,λ for all h ∈ Ws

2 (�, λ) by the imbedding C (�) ↪→ L1(�, λ)

with imbedding constant K and by Part 3 of Proposition 2. Consequently
‖f − gm‖1,λ → 0 holds for m → ∞. By

∣
∣‖f‖1,λ − ‖gm‖1,λ

∣
∣ ≤ ‖f − gm‖1,λ, we

have ‖f‖1,λ = 1 and hence P(1) is closed in Ws
2 (�, λ). Observe therefore that

Pt = P(1) ∩ Pζ ∩ Ut,D is compact in Ws
2 (�, λ) since it is the intersection of a

compact and two closed subsets. 
�

4.2.1 Existence and measurability

For any bounded subset U of Ws
2 (�, λ) with s > 1/2 and � a bounded C∞-

domain, the map

(X1, . . . , Xn)T �−→ n1/2(Pn − P)
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from �n to (�∞(U), ‖·‖∞,U ) is B�n -B�∞(U) measurable by using Part 5 of Prop-
osition 2 (equicontinuity) and Theorem 5.3.8 in [8]. [Inspection of the proof of
Lemma 2 then shows that the l.h.s. of (23) is B�n -BR measurable whenever the
classes H1, . . . , Hα are equicontinuous on �.]

The following proposition establishes measurability of certain suprema and
is taken from Lemma A3 in [25].

Proposition 5 Let (S, A) be a (non-empty) measurable space, let (�, d) be a
(non-empty) compact metric space and let u : S × � → R be a function that is
A-measurable in its first argument for each θ ∈ � and that is continuous on �

in its second argument for each s ∈ S. Then there exists an A-B(�,d) measurable
function θ̃ : S → � such that

u(s, θ̃ (s)) = sup
θ∈�

u(s, θ)

holds for each s ∈ S.

Identify (S, A) with the sample space (�n, B�n) and (�, d) with the compact
metric space (Pt, ‖·‖∞) (see Lemma 3) and note that the likelihood function (4)
is continuous on Pt (t > 1/2, ζ > 0) in the ‖·‖∞-topology and measurable for
given p. Proposition 5 then establishes the existence of p̂n as a B�n -B(Pt ,‖·‖∞)-
measurable selection of the optimization problem (6). [We note that all results
in the paper clearly hold for every B�n-B(Pt ,‖·‖∞)-measurable selection. In fact,
they hold for any selection (measurable or not) if one formulates all results
in terms of outer probability P

∗.] Note further that the map p �→ ∫
fpdλ from

(Pt, ‖·‖∞) to (�∞(F), ‖·‖∞,F ) is continuous if F is a bounded subset of L1 (�, λ).
Consequently, the mapping ν̂n is B�n-B�∞(F)-measurable. Observe finally that
the map associating with each probability density p ∈ Pt the corresponding
probability measure is continuous viewed as a mapping from (Pt, ‖·‖∞) to P(�)

equipped with the weak topology τweak. [To see this note that ‖·‖∞-convergence
implies ‖·‖1,λ-convergence (for bounded �) which implies convergence in the
total variation metric on P(�). This in turn implies weak convergence on P(�).]
Hence, the map (X1, . . . , Xn) �−→ P̂n from �n → P(�) is B�n - B(P(�),τweak)-
measurable.

4.2.2 Consistency and rates of convergence

In the following proposition, we derive the rate of convergence of the MLE in
the L2-norm by using results due to [35]. By a suitable interpolation inequality,
these results also imply convergence rates for ‘intermediate (fractional) deriv-
atives’ with 0 ≤ s ≤ t. We also give almost sure consistency in corresponding
Sobolev-norms.

Proposition 6 Suppose that Condition 1.1 holds. Then

‖̂pn − p0‖s,2,λ = OP∗
(
n−(t−s)/(2t+1)

)
(24)
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holds for 0 ≤ s ≤ t. Furthermore,

‖̂pn − p0‖s,2,λ → 0 P-a.s. (25)

holds as n → ∞ for every 0 ≤ s < t.

Proof To prove (25), we may restrict ourselves to t > s > 1/2. Note that
(Pt, ‖·‖s,2,λ) is a compact metric space by Lemma 3 above. Therefore, the space
C((Pt, ‖·‖s,2,λ)) of bounded real-valued functions on Pt that are ‖·‖s,2,λ-contin-
uous is a separable Banach space normed by the sup-norm ‖·‖∞,Pt , see, e.g.,
11.2.5 in [9]. Observe that both log p(x) and

∫
�

log pdP are bounded real-val-
ued continuous functions on (Pt, ‖·‖s,2,λ) for every x ∈ �: boundedness of both
functions follows from ζ ≤ p(x) ≤ CtD < ∞ for all p ∈ Pt and x ∈ � (by
Part 4 of Proposition 2) and boundedness of the logarithm on [ζ , CtD]. Con-
tinuity of log p(x) follows from the fact that pm → p in the ‖·‖s,2,λ-topology
implies pm → p in the ‖·‖∞-topology (Part 3 of Proposition 2) and the fact that
the logarithm is continuous on [ζ , CtD], which implies log pm(x) → log p(x)

for all (in fact uniformly in) x ∈ � . For
∫
�

log pdP continuity follows from the
same reasoning and the dominated convergence theorem. Therefore, the sum of
i.i.d random variables Sn(p) = ∑n

i=1(log p(Xi) − ∫
�

log pdP) satisfies Mourier’s
SLLN in C((Pt, ‖·‖s,2,λ)) (see Corollary 7.1.8. in [8]), that is

sup
p∈Pt

|Sn(p)/n| = sup
p∈Pt

∣
∣
∣
∣
∣
∣
Ln(p) −

∫

�

log pdP

∣
∣
∣
∣
∣
∣
→ 0 P-a.s.

holds as n goes to infinity. This gives almost sure consistency in the metric
induced by the ‖·‖s,2,λ-norm by standard arguments, see, e.g., Lemma 3.1 in [25]:
Both Ln(p) and the limiting function

∫
�

log pdP are continuous on (Pt, ‖·‖s,2,λ)

and the unique maximizer of the limiting function is the ‘true’ density function
p0, i.e., supp∈Pt

∫
�

log pdP = ∫
�

log p0dP under Condition 1.1.
We next prove (24). Note first that the Hellinger-bracketing-metric entropy

H[ ](ε, P1/2
t , ‖·‖2,λ) is of order ε−1/t where ε → 0 denotes the bracket size:

since the functions in Pt are bounded from below by ζ , it follows from stan-
dard arguments that H[ ](ε, P1/2

t , ‖·‖2,λ|� ) can be bounded (up to irrelevant
constants) by the bracketing metric entropy H[ ](ε, Pt, ‖·‖2,λ|� ), which is seen
to be of order ε−1/t by using Part 2 of Corollary 2 in [24] with β = 0, d = 1,
µ = λ |� , r = 2, p = q = 2, and upon noting that Ws

2 (R, λ |R ) coincides with the
Besov space Bs

22 (R, λ |R ) considered in [24]. This gives, by (7.26) in [36], that
∫
�
(̂p1/2

n − p1/2
0 )2dλ = OP(n−2t/(2t+1)). Then

OP

(
n−2t/(2t+1)

)
=

∫

�

(
p̂1/2

n − p1/2
0

)2
dλ



436 R. Nickl

=
∫

�

(
(̂pn − p0) (̂p1/2

n + p1/2
0 )−1

)2
dλ

≥ C · ‖̂pn − p0‖2
2,λ

for a suitable positive real number C, since the densities in Pt are uniformly
bounded by Part 4 of Proposition 2. Taking the square root delivers (24) for
the case s = 0. The case 0 < s ≤ t follows from the following interpolation
inequality (see Remark 1.9.1 and Theorem 1.9.6 in [20])

‖f‖s,2,λ ≤ C ‖f‖s/t
t,2,λ ‖f‖(t−s)/t

2,λ

for f ∈ Wt
2 (�, λ) and 0 < C < ∞, and the fact that ‖̂pn − p0‖t,2,λ ≤ 2D by

Condition 1.1. 
�
For given 1/2 < s < t, Lemma 3 and Proposition 5 can be used to show that

a B�n -B(Pt ,‖·‖s,2,λ)-measurable selection of the optimization problem (6) exists.
For this selection, expression (24) can then be formulated avoiding outer prob-
ability. [We note that such a selection depends on s and is not guaranteed to be
B�n-B(Pt ,‖·‖r,2,λ)-measurable for r > s.]

4.3 Proofs for Sect. 2

4.3.1 Proof of Theorem 1

The classical proof of asymptotic normality of MLEs in finite-dimensional mod-
els exploits the fact that the first derivative of the likelihood function (score)
evaluated at the maximizer (MLE) is zero and then proceeds by a suitable Tay-
lor-approximation of the score around the true value; see, e.g., Chap. 8 in [25]
for a detailed recent account and references. This classical approach, however,
is not viable in the infinite-dimensional setup of this paper. Here, the deriva-
tive DLn (̂pn) (h) of the likelihood-function at the maximum p̂n evaluated at h
belonging to

Tt =
⎧
⎨

⎩
h ∈ L0 (�) : ‖h‖t,2,λ < ∞,

∫

�

hdλ = 0

⎫
⎬

⎭
,

which is the tangent space of Pt at p0 (or any other ‘internal’ point of Pt), is
generally non-zero for every given n, even under Condition 1 (which implies
that p0 is an ‘internal’ point), since there is no guarantee whatsoever that p̂n is
an ‘internal’ point: the ‘internality’ condition ‖̂pn‖t,2,λ < D for large n could be
inferred from ‖p0‖t,2,λ < D if the MLE were consistent in the norm-topology
of Wt

2 (�, λ), which, however, is not to be expected since Pt is non-compact in
this topology. However, closeness of the MLE p̂n to p0 in the norm-topology of
Wt

2 (�, λ) is not crucial in the weak convergence context, but rather it is essential
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to establish closeness of DLn (̂pn) (h) to PDL(i) (p0) (h) for h ∈ Tt at the order
oP(n−1/2). Since PDL(i) (p0) (h) = 0, this is equivalent to showing that

DLn (̂pn) (h) = oP

(
n−1/2)

(26)

for every h ∈ Tt. Showing (26) even uniformly in ‖·‖t,2,λ-bounded subsets of Tt
then delivers

∥
∥ν̂n − νn

∥
∥∞,Ut,B

= oP(1) by using the close connection between
the empirical process and the likelihood derivatives.

Throughout Sect. 4.3.1, we shall assume that the conditions of Theorem 1
hold. We define the operator � : L∞(�) → L∞(�) ∩ {g :

∫
�

gdλ = 0} given
by �(f ) = (f − Pf )p0. Note the connection to the empirical process, i.e., that
DLn (p0) (�(f )) = (Pn − P)f holds.

Lemma 4 We have that

sup
f∈Ut,B

∣
∣DLn

(
p̂n

)
(�(f ))

∣
∣ = oP∗

(
n−1/2−(t−k)/(2t+1)

)

holds for every real k > 1/2.

Proof Recall that we use (�∞, B�∞ , P∞) as the underlying probability space
on which the data X1, X2, . . . are defined. We shall denote elements of �∞
by ω = (x1, x2, . . . ). We shall say that a sequence An ⊆ �∞ is eventual, if for
P

∞-almost all ω ∈ �∞ there exists an index N(ω) ∈ N such that the relation
ω ∈ An holds for n ≥ N(ω).

Step 1: Throughout the proof, by a point internal to Pt we mean a probability
density function p ∈ Pt that satisfies ‖p‖t,2,λ < D as well as infx∈� p(x) > ζ .
Observe that, for 0 < ε ≤ 1, the quantity (1 − ε) p̂n + εp0 is always an internal
point of Pt as a consequence of Condition 1. Set

Ut,η,0 =
⎧
⎨

⎩
w ∈ Wt

2 (�, λ) : ‖w‖t,2,λ < η,
∫

�

wdλ = 0

⎫
⎬

⎭

where η = D − ‖p0‖t,2,λ which is positive since p0 is an internal point. Define

ĥn(w) := (1 − ε) p̂n + εp0 + εw (w ∈ Ut,η,0). (27)

We now show that, for ε small enough,

{
ω ∈ �∞ :

{
ĥn(w) : w ∈ Ut,η,0

}
⊆ Pt

}
(28)
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is eventual. To see this, observe the following three facts: first, by the triangle
inequality

∥
∥
∥ĥn(w)

∥
∥
∥

t,2,λ
≤ (1 − ε) D + ε ‖p0‖t,2,λ + εη

≤ D

holds for every 0 < ε ≤ 1, every n and every w ∈ Ut,η,0 by definition of η. This
verifies the Sobolev-norm condition for containment of ĥn(w) in Pt. Second, by
Condition 1.2, there exists a β > 0 such that infx∈� p0(x) > ζ + β is satisfied.
Note that by Part 3 of Proposition 2 and Part 2 of Proposition 6, the MLE is
almost surely ‖·‖∞-consistent, and therefore infx∈� p̂n(x) ≥ ζ + β is eventual.
Since ‖w‖∞ ≤ Ct ‖w‖t,2,λ ≤ Ctη by Part 3 of Proposition 2, it follows that

ĥn(w) = (1 − ε) p̂n + εp0 + εw

≥ ζ + β − εCtη for every w ∈ Ut,η,0 (29)

holds eventually. Thus, for ε ≤ β/(Ctη), the inequality ĥn(w) ≥ ζ , every w ∈
Ut,η,0 , holds eventually. Third, since ĥn(w) > 0 for every w ∈ Ut,η,0 and ε ≤
β/(Ctη) holds eventually by (29), and since w integrates to zero, ĥn(w) is a
density for all w ∈ Ut,η,0 eventually.

Let now ε satisfy 0 < ε ≤ min(1, β/(Ctη)). In view of (28), since p̂n is a
maximizer of Ln(·) over Pt, and since Ln(·) is Fréchet differentiable at p̂n by
Proposition 3, the derivative of Ln(·) at p̂n in the direction of ĥn(w), w ∈ Ut,η,0,
has to equal zero eventually: that is

DLn (̂pn) (w − p̂n + p0) = 0 for every w ∈ Ut,η,0 (30)

holds eventually (where we have divided by ε > 0). [We note that a convex
combination similar to (27) has been used in [40] in their framework.]

Step 2: For every f ∈ Ut,B, we have by Condition 1, Parts 3 and 6 of Proposi-
tion 2

‖�(f )‖t,2,λ ≤ M ‖f − Pf‖t,2,λ ‖p0‖t,2,λ

≤ MD(‖f‖t,2,λ + ‖Pf‖t,2,λ)

≤ MD(B + ‖CtB‖t,2,λ)

≤ MDB(1 + CtC′) < ∞ (31)

where C′ = ‖1�‖t,2,λ = ‖1�‖2,λ < ∞. Now with η as in Step 1 define

s(�(f )) = η ‖�(f )‖−1
t,2,λ �(f )

if �(f ) 
= 0, and set s(�(f )) = 0 otherwise. Then it follows that s(�(f )) ∈ Ut,η,0
for every f ∈ Ut,B.
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Step 3: Inserting s(�(f )) for w in (30) we obtain that

DLn (̂pn) (s(�(f )) − p̂n + p0) = 0 for every f ∈ Ut,B

holds eventually. By linearity of DLn(̂pn)(·) we hence have that

DLn (̂pn) (s(�(f ))) = DLn (̂pn) (̂pn − p0) for every f ∈ Ut,B (32)

holds eventually. Using Proposition 3, we see that the expected value of the
likelihood derivative at p0 equals zero along the directions {h :

∫
�

hdλ = 0} and
thus in particular along the direction p̂n − p0:

PDL(i) (p0) (̂pn − p0) =
∫

�

(̂pn − p0) p−1
0 dP = ‖̂pn‖1,λ − ‖p0‖1,λ = 0 (33)

since both p̂n and p0 are probability densities. Thus, we have from (32) that

DLn (̂pn) (s(�(f ))) = (DLn (̂pn) − PDL(i) (p0))(̂pn − p0) for every f ∈ Ut,B

holds eventually. Let now k be as in the lemma. W.l.o.g. we may restrict our-
selves to the case k ≤ t. Choose a real j, 1/2 < j < k. Let Uj,1 denote the

unit ball of Wj
2 (�, λ) which is a P-Donsker class by Part 5 of Proposition 2. By

Proposition 3 we obtain

∣
∣(DLn (̂pn) − PDL(i) (p0)) (̂pn − p0)

∣
∣ ≤ ∣

∣(DLn (̂pn) − PDL(i) (̂pn)) (̂pn − p0)
∣
∣

+ ∣
∣(PDL(i) (̂pn) − PDL(i) (p0)) (̂pn − p0)

∣
∣

≤ sup
p∈Pt

∥
∥DLn (p) − PDL(i) (p)

∥
∥∞,Uj

‖̂pn − p0‖j,2,λ + ζ−1 ‖̂pn − p0‖2
2,λ =: Zn.

[We note here once and for all that expressions like PDL(i) (̂pn) are to be
understood as PDL(i) (p) evaluated at p = p̂n.] It follows from Lemma 2 and
Proposition 6 (and the results from Sect. 4.2.1) that

Zn = OP(n−1/2)OP∗(n−(t−j)/(2t+1)) + OP(n−2t/(2t+1))

= oP∗(n−1/2−(t−k)/(2t+1)). (34)

Summarizing we obtain that

DLn (̂pn) (s(�(f ))) = Zn for every f ∈ Ut,B

holds eventually. Multiplying by η−1 ‖�(f )‖t,2,λ we have that

DLn (̂pn) (�(f )) = η−1 ‖�(f )‖t,2,λ Zn for every f ∈ Ut,B
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holds eventually. Using (31), (34) and the fact that Zn does not depend on
f ∈ Ut,B, we arrive at

sup
f∈Ut,B

|DLn (̂pn) (�(f ))| = oP∗(n−1/2−(t−k)/(2t+1))

which completes the proof. 
�
Proof (Theorem 1) Inserting for the definitions (3) and (7), we have

∥
∥ν̂n − νn

∥
∥∞,Ut,B

= √
n sup

f∈Ut,B

∣
∣
∣(P̂n − P)f − (Pn − P)f

∣
∣
∣

= √
n sup

f∈Ut,B

∣
∣
∣
∣
∣
∣

∫

�

(f −
∫

�

f dP) (̂pn − p0) dλ − (Pn − P)f

∣
∣
∣
∣
∣
∣
.

Recall that

−PD2L(i) (p0) (̂pn − p0, g) =
∫

�

gp−1
0 (̂pn − p0) dλ

holds for g ∈ L∞(�) by Proposition 3 (and Condition 1). So for g = (f −∫
�

f dP)p0 = �(f ) we obtain

∥
∥ν̂n − νn

∥
∥∞,Ut,B

= √
n sup

f∈Ut,B

∣
∣
∣−PD2L(i) (p0) (̂pn − p0, �(f )) − (Pn − P)f

∣
∣
∣ . (35)

We now treat the term −PD2L(i) (p0) (̂pn − p0, �(f )): by the mean value theo-
rem, we have

DLn (̂pn) (�(f )) = DLn (p0) (�(f )) + D2Ln (p̄n) (̂pn − p0, �(f ))

where the mean values p̄n ≡ p̄n(f ) lie, for every f ∈ Ut,B, on the line segment
connecting p̂n and p0 which is contained in Pt. This gives

DLn (̂pn) (�(f )) − PD2L(i) (p0) (̂pn − p0, �(f )) = DLn (p0) (�(f ))

+(D2Ln (p̄n) − PD2L(i) (p0))

(̂pn − p0, �(f )).

Note now that the set �(Ut,B) = {�(f ) = (f − Pf )p0 : f ∈ Ut,B} is a P-Donsker
class by (31) and Part 5 of Proposition 2. Let k be as in the theorem. W.l.o.g.
we may restrict ourselves to the case k ≤ t. Choose a real j, 1/2 < j < k. Let
Uj,1 denote the unit ball of Wj

2 (�, λ) which is a P-Donsker class by Part 5 of
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Proposition 2. Using Lemma 2, Propositions 2, 3, and 6, and (31), we have

sup
f∈Ut,B

∣
∣
∣(D2Ln (p̄n) − PD2L(i) (p0))(̂pn − p0, �(f ))

∣
∣
∣

≤ sup
f∈Ut,B

∣
∣
∣(D2Ln (p̄n) − PD2L(i)(

_
pn))(̂pn − p0, �(f ))

∣
∣
∣

+ sup
f∈Ut,B

∣
∣
∣(PD2L(i) (p̄n) − PD2L(i) (p0))(̂pn − p0, �(f ))

∣
∣
∣

≤ sup
p∈Pt

∥
∥
∥D2Ln (p) − PD2L(i) (p)

∥
∥
∥∞,Uj,1,�(Ut,B)

‖̂pn − p0‖j,2,λ

+2ζ−3CtD sup
f∈Ut,B

‖�(f )‖∞ ‖̂pn − p0‖2,λ
∥
∥_

pn − p0
∥
∥

2,λ

= OP(n−1/2)OP∗(n−(t−j)/(2t+1)) + OP∗(n−2t/(2t+1))

= oP∗(n−1/2−(t−k)/(2t+1)).

Here we have used the simple fact that

‖p̄n − p0‖2,λ = ‖ξ(f )̂pn + (1 − ξ(f ))p0 − p0‖2,λ = ξ(f ) ‖̂pn − p0‖2,λ

for some 0 ≤ ξ(f ) ≤ 1. This together with Lemma 4 gives

sup
f∈Ut,B

∣
∣
∣−PD2L(i) (p0) (̂pn − p0, �(f )) − DLn (p0) (�(f ))

∣
∣
∣ = oP∗(n−1/2−(t−k)/(2t+1)).

Inserting this is into (35) shows that

∥
∥ν̂n − νn

∥
∥∞, Ut,B

≤ √
n sup

f∈Ut,B

|DLn (p0) (�(f )) − (Pn − P)f | + oP∗(n−(t−k)/(2t+1))

= oP∗(n−(t−k)/(2t+1))

upon recalling that DLn (p0) (�(f )) = (Pn − P)f . The proof of (9) is now
complete (observing that oP∗ can be replaced by oP , since

∥
∥ν̂n − νn

∥
∥∞,Ut,B

is measurable by the results in Sect. 4.2.1). The second claim of the theorem
now follows upon observing that Ut,B is a P-Donsker class by Part 5 of
Proposition 2. 
�

4.3.2 Proof of Theorem 2

Since the limiting derivative PDL(i) (p0) (h) is zero not only for h ∈ Tt, but for
every element in the ‘nonparametric’ tangent space Tnp = {h :

∫
�

hdλ = 0},
one may suspect that (26) above will also hold for ‘nice’ subsets of Tnp that are
not contained in Wt

2 (�, λ), especially in light of the fact that the rate for the
empirical score obtained in Lemma 4 is faster than n−1/2. Condition 2 describes
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a large class of sets F , for which the projection �(F) on Tnp is indeed a ‘nice’ set
in this sense. For such classes F one can then readily obtain the corresponding
weak convergence result.

Proof of Theorem 2 We start from

∥
∥ν̂n − νn

∥
∥∞,F ≤ sup

f∈F

∣
∣ν̂n(f − un(f ))

∣
∣

+ sup
f∈F

∣
∣ν̂n(un(f )) − νn(un(f ))

∣
∣ + sup

f∈F
|νn(un(f ) − f )| .

Observe that the first term is equal to

n1/2 sup
f∈F

∣
∣
∣
∣
∣
∣

∫

�

(̂pn − p0)(un(f ) − f )dλ

∣
∣
∣
∣
∣
∣
= n1/2an

by definition of an. The second term equals zero in the trivial case where
un(f ) = 0 for every f ∈ F and otherwise is equal to

sup
f∈F ,

un(f ) 
=0

‖un(f )‖t,2,λ
∣
∣(ν̂n − νn)(un(f )/ ‖un(f )‖t,2,λ)

∣
∣

≤ bn
∥
∥ν̂n − νn

∥
∥∞,Ut,1

= bnoP(n−(t−k)/(2t+1))

for every k > 1/2 by Theorem 1 and definition of bn. Finally, the third term is
equal to n1/2cn by definition of cn. This establishes (10). The claim (11) then
follows by Condition 2 upon choosing k such that 1/2 < k ≤ k∗. The last claim
then follows from the second one observing that F is a P-Donsker class. 
�

4.3.3 Proof of Proposition 1

Proof of Proposition 1 First consider the case s < t. Since F ⊆ Us,B for some
0 < B < ∞, it suffices to prove the proposition for F equal to the Sobolev ball
Us,B. Note that Us,B ⊆ L1 (�, λ) by Part 3 of Proposition 2. Recall from Part 1
of Proposition 2 that an equivalent norm on Ws

2 (R, λ |R ) is given by ‖·‖∧,s,2,λ|R .
By Part 2 of Proposition 2, the restriction of Ws

2 (R, λ |R ) to � coincides with
Ws

2 (�, λ) and the restricted norm is equivalent to the intrinsic norm. The restric-
tion operator is a retraction (see Step 3 of the proof of Theorem 1.9.1 in [20])
and hence it follows that there exists a constant 0 < C < ∞ such that for every
f ∈ Us,B ⊆ Ws

2 (�, λ), there exists a function h with [h]λ ∈ Ws
2 (R, λ |R ) such

that ‖h‖∧,s,2,λ|R ≤ C ‖f‖s,2,λ|� and h |� = f everywhere on � hold. Recall that
F denotes the Fourier(-Plancherel) transform and define g(u) := 〈u〉s (Fh)(u)

where we recall the notation 〈u〉s = (1 + |u|2)s/2. Observe that Part 1 of Propo-
sition 2 and the definition of h imply

‖g‖2,λ|R = ∥
∥〈u〉s Fh

∥
∥

2,λ|R = ‖h‖∧,s,2,λ|R ≤ C ‖f‖s,2,λ|� ≤ CB < ∞
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where the constants do not depend on f ∈ Us,B. For positive real N define now

hN = F−1(1{|·|≤N}Fh),

which is real-valued (since h is real-valued and since 1{|·|≤N} is symmetric). By
Part 1 of Proposition 2, Plancherel’s Theorem, and the fact that t > s we have

‖hN‖2
t,2,λ|R ≤ C′

t

∥
∥〈·〉t FhN

∥
∥2

2,λ|R = C′
t

∥
∥〈·〉t−s 1{|·|≤N}g

∥
∥2

2,λ|R
≤ C′

t(1 + N2)t−s ‖g‖2
2,λ|R < ∞

for a suitable finite constant C′
t. This implies in particular that [hN]λ is an ele-

ment of Wt
2 (R, λ |R ). By a similar reasoning the approximation error can be

bounded as follows:

‖h − hN‖2
k′,2,λ|R ≤ C′

k′
∥
∥
∥〈·〉k′

F(h − hN)

∥
∥
∥

2

2,λ|R = C′
k′

∥
∥
∥〈·〉k′

1{|·|>N}Fh
∥
∥
∥

2

2,λ|R

= C′
k′

∥
∥
∥〈·〉k′−s 1{|·|>N}g

∥
∥
∥

2

2,λ|R ≤ C′
k′ ‖g‖2

2,λ|R (1 + N2)k′−s

for every k′ < s. By restriction of the equivalence class [hN]λ to the bounded
C∞-domain �, we obtain the function hN |� ∈ Wt

2 (�, λ) approximating f ∈
Us,B. Setting N = n1/(2t+1) for n ∈ N defines approximating sequence un(f ) =
hn1/(2t+1) |� which satisfies

sup
f∈Us,B

‖un(f )‖t,2,λ = O(n(t−s)/(2t+1)) (36)

and

sup
f∈Us,B

‖f − un(f )‖k′,2,λ = O(n(k′−s)/(2t+1)) (37)

for every k′ < s by the above reasoning and since ‖d |�‖r,2,λ ≤ C′′ ‖d‖r,2,λ|R
holds for some 0 < C′′ < ∞, every r ≥ 0, and d ∈ Ws

2 (R, λ |R ) by Part 2 of
Proposition 2. Now note that bn is equal to the left-hand side in (36) which
satisfies the growth requirement in Condition 2 for k∗ = s > 1/2. By applying
Cauchy-Schwarz’s inequality to the expression defining an, and using (24) from
Proposition 6 as well as (37) with k′ = 0, we have

an ≤ ∥
∥p̂n − p0

∥
∥

2,λ sup
f∈Us,B

‖f − un(f )‖0,2,λ = OP(n(−t−s)/(2t+1)) = oP(n−1/2),
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since s > 1/2. Finally, for every 1/2 < k′ < s we obtain by Part 5 of Proposition
2 and by (37)

cn = sup
f∈Us,B

|(Pn − P)(un(f ) − f )| ≤ ‖Pn − P‖∞,Uk′ ,B sup
f∈Us,B

‖un(f ) − f‖k′,2,λ

= OP(n−1/2)O(n(k′−s)/(2t+1)) = oP(n−1/2).

This shows that the proposition holds in case s < t. In case s ≥ t, the proof of
the proposition is trivial by choosing un(f ) = f . 
�

4.4 Proofs for Sect. 3

Proof of Corollary 1 We first show that F1,∞,1 is a bounded subset of Ws
2(�, λ)

for every 1/2 < s < 1 : note that F1,∞,1 is a bounded subset of Cs(�) = {f ∈
L0(�) : ‖f‖s,∞ < ∞} (cf. (1)) and that Cs(�) is equal to the Hölder–Zygmund
space Bs∞,∞(�) for non-integer s (e.g., [34]), 2.5.7/9 and 3.4.2/2). By Theorem
3.3.1/7 in [34] we have the continuous imbedding Bs∞,∞(�) ↪→ Bs

2,2(�, λ) =
Ws

2(�, λ). This implies

β(P̂n, Pn) ≤ n−1/2 ∥
∥ν̂n − νn

∥
∥∞,Us,B

for suitable 0 < B < ∞. Applying Theorem 3 gives

β(P̂n, Pn) = oP(n−1/2−(min(s,t)−k)/(2t+1))

for every k > 1/2 and every 1/2 < s < 1, which is equivalent to (16). Since
F1,∞,1 is a P-Donsker class, the second claim then follows immediately. Measur-
ability of β(P̂n, Pn) as well as of β(P̂n, P) follows from the results in Sect. 4.2.1
and from continuity of β on P(�) × P(�). 
�
Proof of Lemma 1 Since the topology of weak convergence on P(�) is metriz-
able, it is sufficient to show that µm → µ weakly if and only if ds (µm, µ) → 0
holds as m → ∞ for µm, µ in P(�). We first show that ds (µm, µ) → 0 implies
µm → µ weakly: by the portmanteau-theorem (e.g. Theorem 11.1.1 in [9]), it is
sufficient to show that lim supm→∞ µm(F) ≤ µ(F) holds for every F ⊆ � that
is closed in �. Let such a F ⊆ � be given. Then, for every ε > 0 there exists a
δ > 0 such that µ(Fδ) − µ(F) < ε holds where Fδ = {x ∈ � : |x − F| < δ}, and
this remains true if δ is made smaller. Now by Proposition 11.2.3 in [9] there
exists a function fδ : � → [0, 1] contained in the space of bounded Lipschitz
functions on � (that is, in the space C1(�) defined in the proof of Corollary 1
above) which satisfies

fδ(x) =
{

1 for x ∈ F
0 for x ∈ �\Fδ

.
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Since fδ is bounded Lipschitz it is uniformly continuous on � and hence
there exists a continuous extension f ext

δ to the closure of �, i.e., f ext
δ ∈ C(�̄).

By the Stone–Weierstraß theorem, we can find a polynomial gδ such that
supx∈� |gδ(x) − fδ(x)| ≤ supx∈�̄

∣
∣gδ(x) − f ext

δ (x)
∣
∣ < ε. Obviously, gδ ∈ Ws

2 (�, λ)

for every s. Now

µm(F) ≤
∫

�

fδdµm =
∫

�

(fδ − gδ)dµm +
∫

�

gδdµm

≤
∫

�

gδdµm + ε →
m→∞

∫

�

gδdµ + ε

≤
∫

�

fδdµ + 2ε ≤ µ(Fδ) + 2ε ≤ µ(F) + 3ε

which proves one direction. To prove the converse, observe that Us,1 (s > 1/2)
is uniformly bounded and equicontinuous on � by Part 5 of Proposition 2 and
thus µm → µ weakly implies ds (µm, µ) → 0 by Corollary 11.3.4 in [9]. 
�
Proof of Corollary 2 Follows immediately from Theorem 3 and the fact that
Us,1 is a P-Donsker class by Part 5 of Proposition 2. Measurability of ds(P̂n, Pn)

as well as of ds(P̂n, P) follows from the results in Sect. 4.2.1. 
�
Proof of Corollary 3 The case r ≥ 0 was proved in Proposition 6 above. The
case r < −1/2 follows directly from Theorem 3 by Prohorov’s theorem. We
next consider the case −1/2 ≤ r < 0. From what has just been established, we
have

∥
∥p̂n − p0

∥
∥

0,2,λ = OP(n−t/(2t+1)) as well as
∥
∥p̂n − p0

∥
∥−s,2,λ = OP(n−1/2) for

s > 1/2. From Theorem 1.12.5 (and 1.2.43) in [20], we obtain the interpolation
inequality

‖f‖r,2,λ ≤ C ‖f‖1+r/s
0,2,λ ‖f‖−r/s

−s,2,λ (38)

for all f ∈ L2(�, λ) and 0 > r ≥ −1/2. Choose s = 1/2 + ε where ε > 0 is
arbitrary. Applying (38) to f = p̂n − p0 gives

∥
∥p̂n − p0

∥
∥

r,2,λ = OP(n−(t−r)/(2t+1)n−(r−(r/(1+2ε)))/(2t+1)) = OP(n−(t−r)/(2t+1)nδ)

for 0 > r ≥ −1/2. The second exponent δ is positive and can be made arbitrarily
close to zero by choosing ε arbitrarily small. 
�
Proof of Corollary 4 We first prove the claim under the first condition. Observe
that the relation p̂n ∈ A eventually holds by Part 2 of Proposition 6. Using Cor-
ollary 3 with δ > 0 arbitrary, we obtain that

∣
∣�(p̂n) − �(p0) − D�(p0)(p̂n − p0)

∣
∣ = OP∗(nω[−(t−r)/(2t+1)+δ]) = oP∗(n−1/2)

(39)
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holds by the assumption on ω. Since the class F satisfies Condition 2 by assump-
tion, we can use (39) together with Theorem 2 to obtain that

√
n(�(p̂n) − �(p0)) = √

nD�(p0)(p̂n − p0) + oP∗(1) = ν̂n(u�,P) + oP∗(1)

= νn(u�,P) + oP∗(1)

holds. This proves (19) by the classical central limit theorem, observing that
u�,P ∈ L2(�, P). 
�

Proof of Corollary 5 We may assume w.l.o.g. that the bounded C∞-domain �

equals the open interval (a, b). Denote by 〈·, ·〉 the inner product on L2 (�, λ).
We first prove the auxiliary result that

〈
D2α

w p0, h
〉
= (−1)α

〈
Dα

wp0, Dα
wh

〉
(40)

holds for all h with [h]λ ∈ Wα
2 (�, λ). For α = 0, this is trivial, hence assume α≥1.

It suffices to show (40) for all h ∈ Wα
2 (�, λ). By Part 2 of Proposition 2 (and [1],

Theorem 4.12/III), there exist continuous functions pext
0 and hext, extending p0

and h to R, that satisfy [pext
0 ]λ ∈ Wt

2 (R, λ |R ) and [hext]λ ∈ Wα
2 (R, λ |R ), respec-

tively. Note that both [Dl
wpext

0 ]λ and [Dj
whext]λ, 0 ≤ l ≤ 2α − 1, 0 ≤ j ≤ α − 1,

belong to W1
2 (R, λ |R ) and hence are absolutely continuous on the closed inter-

val [a, b] in the sense that each equivalence class contains an absolutely con-
tinuous representative. By the assumption in the corollary we have for these
representatives that Dl

wpext
0 (a) = Dl

wpext
0 (b) = 0 for every α ≤ l ≤ 2α − 1.

Applying integration by parts proves (40) since

〈
D2α

w p0, h
〉
=

∫

(a,b)

D2α
w p0hdλ =

∫

[a,b]
D2α

w pext
0 hextdλ = (−1)α

∫

[a,b]
Dα

wpext
0 Dα

whextdλ

= (−1)α
∫

(a,b)

Dα
wp0Dα

whdλ = (−1)α
〈
Dα

wp0, Dα
wh

〉
.

We now apply Part 1 of Corollary 4 and verify the respective conditions with
A = Wα

2 (�, λ) and parameters ω = 2 and r = α. We first show that the func-

tional � : Wα
2 (�, λ) → R given by [p]λ �−→ ∥

∥Dα
wp

∥
∥2

2,λ is Fréchet-differentiable

at [p0]λ, with derivative D�(p0)(·) = (−1)α
〈
2D2α

w p0, ·〉. Observe that

∣
∣
∣
∥
∥Dα

w(p0 + h)
∥
∥2

2,λ − ∥
∥Dα

wp0
∥
∥2

2,λ − D�(p0)(h)

∣
∣
∣

= ∣
∣〈Dα

w(p0 + h), Dα
w(p0 + h)

〉 − 〈
Dα

wp0, Dα
wp0

〉 − D�(p0)(h)
∣
∣

= ∣
∣2

〈
Dα

wp0, Dα
wh

〉 + 〈
Dα

wh, Dα
wh

〉 − D�(p0)(h)
∣
∣

= ∣
∣〈Dα

wh, Dα
wh

〉∣∣ = O(‖h‖2
α,2,λ)
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holds for all h with [h]λ ∈ Wα
2 (�, λ), because of (40). Fréchet differentiability

of � on Wα
2 (�, λ) at the point [p0]λ follows since D�(p0)(·) ∈ (L2 (�, λ))′ ⊆

(Wα
2 (�, λ))′ in view of the fact that [D2α

w p0]λ ∈ L2 (�, λ). Now the condition
t − 2α > 1/2 of this corollary is equivalent to the required inequality for ω

in Corollary 4, and also implies that there exists a continuous representative
of [−2D2α

w p0]λ, that is, −2D2α
w p0 ∈ Wt−2α

2 (�, λ). Proposition 1 now shows that
F = {−2D2α

w p0} satisfies Condition 2, completing the proof. 
�
Proof of Corollary 6 Note first that

√
n(p̂n ∗ p̂n − p0 ∗ p0) = 2

√
n(p̂n − p0) ∗ p0 + √

n(p̂n − p0) ∗ (p̂n − p0)

holds. The remainder term is asymptotically negligible, since

∥
∥(p̂n − p0) ∗ (p̂n − p0)

∥
∥∞ ≤ ∥

∥p̂n − p0
∥
∥2

2,λ|(0,1)
= OP(n−2t/2t+1) = oP(n−1/2)

holds by Young’s inequality and Proposition 6. It hence remains to show that
2
√

n(p̂n − p0) ∗ p0 converges in law in C((0, 1)). To do this, we apply Theorem
3 and a result in [22]: denote by Fp(u), u ∈ Z, the Fourier coefficients of a
continuous real-valued function p on T, and define, for s > 1/2 , the set

UT,s,1 =
{

f : T → R : f continuous,
∑

u∈Z

|Ff (u)|2 (1 + |u|2)t ≤ 1

}

,

let U(0,1),s,1 be the corresponding set of restrictions of elements of UT,s,1 to (0, 1),
and let Us,B be the set appearing in Theorem 3 with � = (0, 1). It follows (from
3.5.1/13 and 3.5.4/18,19 in [31] and 3.4.2/6 in [34]) that U(0,1),s,1 is contained in
Us,B for some 0 < B < ∞. Let now h be an element of the space UC((0, 1)) of
bounded uniformly continuous functions on (0, 1), and let hext : T → R denote
its (periodic) extension obtained by setting h(0) = limx→1 h(x) = 0. We then
have

∥
∥hext∥∥∞,UT,s,1

= sup
f∈UT,s,1

∣
∣
∣
∣
∣
∣

∫

T

hextf dλ

∣
∣
∣
∣
∣
∣
= sup

f∈UT,s,1

∣
∣
∣
∣
∣
∣
∣

∫

[0,1)

hextf dλ

∣
∣
∣
∣
∣
∣
∣

= sup
f∈UT,s,1

∣
∣
∣
∣
∣
∣
∣

∫

(0,1)

hf dλ

∣
∣
∣
∣
∣
∣
∣
≤ sup

f∈Us,B

∣
∣
∣
∣
∣
∣
∣

∫

(0,1)

hf dλ

∣
∣
∣
∣
∣
∣
∣
= ‖h‖∞,Us,B (41)

holds for every h ∈ UC((0, 1)). That is, the mapping h �−→ hext from UC((0, 1))

into the space L∞(T) of bounded measurable functions on T is continuous if
UC((0, 1)) and L∞(T) are viewed as linear (topological) subspaces of �∞(Us,B)

and �∞(UT,s,1), respectively. Consequently, since
√

n(p̂ndλ − p0dλ) converges
in law in the metric space (UC((0, 1)), ‖·‖∞,Us,B) for s > 1/2 by Theorem 3, we
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conclude that the (periodic) extensions
√

n(p̂ndλ − p0dλ) converge in law in
�∞(UT,s,1) for s > 1/2. To complete the proof, note that

∑
u∈Z

|Fp0(u)|2 (1 +
|u|2)t < ∞ holds by Condition 1, periodicity of p0, and again 3.5.1/13, 3.5.4/18,19
in [31] and 3.4.2/6 in [34]. Hence, by Part 1 of Theorem 1 in [22], 2

√
n(p̂n−p0)∗p0

converges in law in the space of continuous functions on T, and hence also in
C((0, 1)). 
�

Acknowledgements I am grateful to two anonymous referees whose detailed comments and sug-
gestions helped to improve the paper in every respect. I furthermore wish to thank my advisor and
teacher B.M. Pötscher for his constant support during the dissertation phase, for an uncountable
number of hours of discussions on the dissertation subject as well as for a meticulous and extensive
proof reading of the manuscript that led to numerous important improvements. In particular, he
suggested a much more well organized proof of Theorems 1 and 2. I am also indebted to my co-advi-
sor Viktor Losert for helpful remarks on the manuscript. Finally, I wish to thank the participants
of the 2005 Conference on High Dimensional Probability—in particular Richard Dudley, Evarist
Giné, and Jon Wellner; as well as Hannes Leeb and Sara van de Geer for interesting discussion on
the subject of the paper.

References

1. Adams, R.A., Fournier, J.F.: Sobolev spaces, 2nd edn. Academic, New York (2003)
2. Bickel, J.P., Ritov, Y.: Estimating integrated squared density derivatives: sharp best order of

convergence estimates. Sankhya Ser. A 50, 381–393 (1988)
3. Bickel, J.P., Ritov, Y.: Nonparametric estimators which can be ‘plugged-in’. Ann. Stat. 31,

1033–1053 (2003)
4. Birgé, L., Massart, P.: Rates of convergence of minimum contrast estimators. Probab. Theory

Relat. Fields 97, 113–150 (1993)
5. Birgé, L., Massart, P.: Estimation of integral functionals of a density. Ann. Stat. 23, 11–29 (1995)
6. Dieudonné, J.: Foundations of Modern Analysis. Academic, New York (1960)
7. Donoho, D.L., Liu R.C.: Geometrizing rates of convergence II, III. Ann. Stat. 19, 633–667,

668–701 (1991)
8. Dudley, R.M.: Uniform Central Limit Theorems. Cambridge University Press, Cambridge

(1999)
9. Dudley, R.M.: Real Analysis and Probability. Cambridge University Press, Cambridge (2002)

10. Dunford, N., Schwartz, J.T.: Linear Operators. Part I: General Theory. Interscience, New York
(1966)

11. Frees, E.W.: Estimating densities of functions of observations. J. Am. Stat. Assoc. 89, 517–525
(1994)

12. Giné, E.: Invariant tests for uniformity on compact Riemannian manifolds based on Sobolev-
norms. Ann. Stat. 3, 1243–1266 (1975)

13. Giné, E., Mason, D.M.: On local U-statistic processes and the estimation of densities of func-
tions of several variables. Ann. Stat. (in press) (2006)

14. Giné, E., Zinn, J.: Empirical processes indexed by Lipschitz functions. Ann. Probab. 14,
1329–1338 (1986)

15. Hall, P., Marron, J.S.: Estimation of integrated squared density derivatives. Stat. Probab. Lett.
6, 109–115 (1987)

16. Kiefer, J., Wolfowitz, J.: Asymptotically minimax estimation of concave and convex distribution
functions. Z. Wahrscheinlichkeitstheorie verw. Gebiete 34, 73–85 (1976)

17. Laurent, B.: Efficient estimation of integral functionals of a density. Ann. Stat. 24, 659–681
(1996)

18. Laurent, B.: Estimation of integral functionals of a density and its derivatives. Bernoulli 3,
181–211 (1997)

19. Leeb, H., Pötscher, B.M.: Performance limits for estimators of the risk or distribution of
shrinkage-type estimators, and some general lower risk-bound results. Econom. Theory 22,
69–97 (2006)



Donsker-type theorems for nonparametric maximum likelihood estimators 449

20. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications I.
Springer, Berlin Heidelberg New York (1972)

21. Nickl, R.: Empirical and Gaussian processes on Besov classes. In: Giné, E., Kolchinskii, V.,
Li, W., Zinn, J. (eds.) High Dimensional Probability IV, IMS Lecture Notes (in press) (2006a)

22. Nickl, R.: On convergence and convolutions of random signed measures (preprint) (2006b)
23. Nickl, R.: Uniform central limit theorems for density estimators (preprint) (2006c)
24. Nickl, R., Pötscher, B.M.: Bracketing metric entropy rates and empirical central limit theorems

for function classes of Besov- and Sobolev-type. J. Theor. Probab. (in press) (2005)
25. Pötscher, B.M., Prucha, I.R.: Dynamic Nonlinear Econometric Models. Asymptotic Theory.

Springer, Berlin Heidelberg New York (1997)
26. Radulovic, D., Wegkamp, M.: Weak convergence of smoothed empirical processes. Beyond

Donsker classes. In: Giné, E., Mason, D.M., Wellner, J.A. (eds.) High Dimensional Probability
II, Progr. Probab. 47, pp. 89–105 Birkhäuser, Boston (2000)

27. Radulovic, D., Wegkamp, M.: Necessary and sufficient conditions for weak convergence of
smoothed empirical processes. Stat. Probab. Lett.61, 321–336 (2003)

28. Rost, D.: Limit theorems for smoothed empirical processes. In: Giné, E., Mason, D.M., Wellner,
J.A. (eds.) High dimensional probability II, Progr. Probab. 47, pp. 107–113 Birkhäuser, Boston
(2000)

29. Rufibach, K., Dümbgen, L.: Maximum likelihood estimation of a log-concave density. Basic
properties and consistency (preprint) (2004)

30. Schick, A., Wefelmeyer, W.: Root n consistent density estimators for sums of independent
random variables. J. Nonparametr. Stat. 16, 925–935 (2004)

31. Schmeisser, H.-J., Triebel, H.: Topics in Fourier Analysis and Function Spaces. Wiley, New York
(1987)

32. Stone, C.J.: Optimal rates of convergence for nonparametric estimators. Ann. Stat. 8, 1348–1360
(1980)

33. Strassen, V., Dudley, R.M.: The central limit theorem and ε-entropy. Probability and informa-
tion theory. Lect. Notes Math. 1247, 224–231 (1969)

34. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)
35. van de Geer, S.: Hellinger-consistency of certain nonparametric maximum likelihood estima-

tors. Ann. Stat. 21, 14–44 (1993)
36. van de Geer, S.: Empirical Processes in M-estimation. Cambridge University Press, Cambridge

(2000)
37. van der Vaart, A.W.: Weak convergence of smoothed empirical processes. Scand. J. Stat. 21,

501–504 (1994)
38. van der Vaart, A.W., Wellner, J.A.: Weak Convergence and Empirical Processes. Springer,

Berlin Heidelberg New York (1996)
39. von Mises, R.: On the asymptotic distribution of differentiable statistical functions. Ann. Math.

Stat. 20, 309–348 (1947)
40. Wong, W.H., Severini, T.A.: On maximum likelihood estimation in infinite dimensional para-

meter spaces. Ann. Stat. 19, 603–632 (1991)
41. Wong, W.H., Shen, X.: Probability inequalities for likelihood ratios and convergence rates of

sieve MLEs. Ann. Stat. 23, 339–362 (1995)
42. Yukich, J.E.: Weak convergence of smoothed empirical processes. Scand. J. Stat. 19, 271–279

(1992)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


