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Abstract

Let X1, ..., Xn be a random sample from some unknown probability density f defined
on a compact homogeneous manifold M of dimension d ≥ 1. Consider a ’needlet frame’
{φjη} describing a localised projection onto the space of eigenfunctions of the Laplace
operator on M with corresponding eigenvalues less than 22j , as constructed in Geller
and Pesenson [2010]. We prove non-asymptotic concentration inequalities for the uniform
deviations of the linear needlet density estimator fn(j) obtained from an empirical esti-
mate of the needlet projection

∑

η φjη

∫

fφjη of f . We apply these results to construct
risk-adaptive estimators and nonasymptotic confidence bands for the unknown density f .
The confidence bands are adaptive over classes of differentiable and Hölder-continuous
functions on M that attain their Hölder exponents.

MSC 2000: 62G07, 60E15, 42C40

1 Introduction

We consider the problem of constructing confidence bands for an unknown probability density
f based on a sample X1, ...,Xn from f observed on the d-dimensional compact homogeneous
manifold M. The classical statistical applications occur when M equals the d-dimensional
unit sphere S

d of R
d+1: If d = 1 this corresponds to estimating a periodic univariate density,

and recent interest lies mostly in the case d = 2, strongly motivated by statistical problems
in astrophysics, see Baldi et al. [2009] for an account of typical problems and applications in
astrophysics and directional statistics more generally. In Baldi et al. [2009] a recent construc-
tion of wavelet type bases on S

d – due to Narcowich et al. [2006a,b], who called these new
basis functions needlets – was employed to construct risk-adaptive estimators for f(x), x ∈ S

d,
by a local needlet series with support concentrated in a neighborhood of x. See also Kerky-
acharian et al. [2011] for similar results in the spherical deconvolution problem. The main
advantages of this approach are that they share none of the drawbacks of classical approaches:
kernel methods do not take the manifold structure of the sphere well into account, orthogonal
series methods associated with spherical harmonics have very poor pointwise (and even worse
uniform) performance since spherical harmonics are not well localized but spread out all over
the sphere, and methods based on stereographic projections of the sphere onto the plane
use a distorted approximation-theoretic paradigm. In contrast needlets are a tight frame
constructed on the spherical harmonics which are highly localized and allow for optimal ap-
proximation not only in L2 but in general Lp-spaces, including in particular L∞, which is
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particularly relevant in the problem of constructing confidence bands for f . Moreover the
localization property is of crucial importance since in astrophysical data sets some parts of
the sphere (sky) may not be covered by the observations, so that non-local procedures may
suffer severely from missing data points.

The main contributions of the present article are three-fold. First, building on recent
results on wavelets and approximation of functions on manifolds in Geller and Mayeli [2009],
Geller and Pesenson [2010], we show how needlet estimators fn(j, y), y ∈ M, with resolution
level j ≥ 0, can be defined also on the more general class of compact homogeneous differen-
tiable manifolds M, which includes, next to d-dimensional unit spheres, also other relevant
examples such as real and complex projective spaces, or Grassmann and Stiefel manifolds.
The main idea behind this construction is to use tools from harmonic analysis on compact Lie
groups that allow to build a localized frame on the eigenfunctions of a second order elliptic
differential Laplace operator on M, which in the case of the sphere coincides with the con-
struction of Narcowich et al. [2006a,b], where these eigenfunctions are precisely the spherical
harmonics.

The second goal of this article is to prove non-asymptotic concentration inequalities for
the uniform fluctuations

sup
y∈M

|fn(j, y) − Efn(j, y)|

of needlet estimators fn(j) around the needlet projections Efn(j) = Aj(f) of the unknown
density f . The constants in these concentration inequalities depend in a natural way on
the manifold and we derive reasonably tight constants for the case M = S

d, d ≥ 1. We
present both Bernstein-type bounds and inequalities based on Rademacher-symmetrization
in a similar vein as in recent work in Koltchinskii [2006], Giné and Nickl [2010b], Lounici and
Nickl [2011].

The third goal is to use the above concentration inequalities to construct estimators and
confidence bands for the unknown density f : M → R. Even the problem of spherical
confidence bands seems not to have been addressed in the literature so far – one reason may
arise from the fact that the classical approach in the univariate case (Bickel and Rosenblatt
[1973]) via extreme value theory does not straightforwardly generalise to sample spaces with
a different geometric structure. Our concentration inequalities hold on arbitrary compact
homogeneous manifolds and can be used directly to construct estimators and nonasymptotic
confidence bands for the unknown density f if one has apriori control of the approximation
error of f by its needlet projection Aj(f) (the ’bias’ of estimation), which by results in Geller
and Pesenson [2010] is equivalent to classical Hölderian smoothness conditions for f on M.

Since knowledge of the bias is usually not available, the question of how to choose j
comes into sight, and to which extent adaptive estimators and confidence bands can be con-
structed. It is known on the one hand (Low [1997]) that adaptive and honest confidence
bands in nonparametric function estimation problems cannot exist over the entirety of the
usual smoothness classes (in our case, Hölder-balls on M). Recent work in this field, however,
can be interpreted as a new way of looking at this problem: One can devise statistically
relevant subsets of the usual smoothness function classes for which adaptive confidence bands
do exist. One example comes from shape constrained nonparametric regression, see, e.g.,
Dümbgen [2003]. Other examples are ’self-similar functions’ that attain their Hölder ex-
ponent – see Picard and Tribouley [2000] in the case of the Gaussian white noise model
and regression framework and Giné and Nickl [2010a] in density estimation on the real line.
Moreover, building on Jaffard [2000]’s work on the Frisch-Parisi conjecture (Frisch and Parisi
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[1985]), Giné and Nickl [2010a] proved that ’generic’ subsets (in the Baire-sense) of the class
of Hölder balls can be constructed for which asymptotically honest adaptive confidence bands
exist.

In the present paper we follow the line of Picard and Tribouley [2000] and Giné and Nickl
[2010a], but take a nonasymptotic approach. We propose an adaptive procedure ĵn based on
Lepski’s method (Lepskĭı [1991]) to choose the resolution level j for the needlet estimator fn(j)
in a data-driven way. The resulting estimator fn(ĵn) adapts to the unknown smoothness of
f in sup-norm risk. In our main result we devise an analytic condition on the approximation
errors of f by its needlet projections Aj(f) under which we can establish both an asymptotic
and a nonasymptotic coverage result for confidence bands for f over arbitrary subsets Ω of M
that are centered at fn(ĵn), and we show that this band adapts to the unknown smoothness
of f in the minimax sense. Intuitively the results in Giné and Nickl [2010a] suggest that
adaptation is possible for functions f : M → R that attain their Hölder exponent, and indeed
we prove that our analytic condition can be interpreted in terms of classical Hölder regularity
properties of f . The proof of this result is somewhat delicate and we detail it only in the case
S

d, where the representation of the projector onto spherical harmonics in terms of Gegenbauer
polynomials allows for explicit derivations.

Let us finally remark that even in the univariate case S
1 our nonasymptotic approach to

confidence bands gives an alternative to the more classical asymptotic techniques based on
extreme value theory, as initiated in the classical paper Bickel and Rosenblatt [1973], and
as also used in the adaptive context in Giné and Nickl [2010a]. Not surprisingly the results
obtained via a nonasymptotic approach have limitations, but in contrast to the classical
asymptotic theory referred to above, the present results give precise conditions for what is
necessary to obtain coverage in finite samples.

2 Compact Homogeneous Manifolds and Needlets

We summarize here some facts on compact homogeneous manifolds and Lie groups (see Hel-
gason [1978, 2000], Warner [1983], Faraut [2008] for general references), and the construction
and essential properties of the associated needlet frame due to Geller and Mayeli [2009], Geller
and Pesenson [2010], generalising the spherical case considered in Narcowich et al. [2006a].

2.1 Compact Lie Groups and the Laplace Operator

Let M be a compact connected differentiable (C∞-) manifold of dimension dim(M) = d. A
compact Lie group G of dimension τ is said to act on M via

(g, x) ∈ G× M 7→ g.x ∈ M

if a) this action is, for every g ∈ G, a diffeomorphism of M, if b) g1g2.x = g1.(g2.x) holds
for every g1, g2 ∈ G,x ∈ M, if c) the identity e ∈ G satisfies e.x = x and if d) for every
g ∈ G, g 6= e, there exists a point x ∈ M such that g.x 6= x. A group G acts transitively on
M if in addition

for every x, y ∈ M there exists g ∈ G s.t. g.x = y.

A compact manifold M is said to be homogeneous if it is a compact connected differentiable
manifold on which a compact Lie group acts transitively. Examples include the d-dimensional
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unit sphere S
d of R

d+1, projective spaces, Stiefel and Grassmann manifolds, see p.125 in
Warner [1983] and also Wang [1952] for the two-point homogeneous case.

Any compact homogeneous manifold M can be realised as a quotient G/K where K is
a closed subgroup of G. More precisely, if we fix once and for all a point x0 ∈ M, and let
K = {h ∈ G,h.x0 = x0} be the closed isotropy subgroup at x0, then M is diffeomorphic to
G/K and the canonical projection π : g ∈ G 7→ g = {gh, h ∈ K} ∈ G/K is continuous, onto
and verifies π(g1g2) = g1π(g2), see Warner [1983], p.123 onwards. Moreover the image of the
Haar measure on G under π,

∫

G
f(π(g))dg =

∫

G/K
f(x)dx =

∫

M

f(x)dx,

is a natural ”Haar” measure dx on M, invariant under the action of G. (It is the unique
G−invariant measure on M up to a scaling factor.) The usual Lebesgue spaces on M are
denoted by Lp(M) := Lp(M, dx), 1 ≤ p ≤ ∞. Since G is compact, dx is bi-invariant: for
f ∈ L1(M) and g ∈ G let us define Lg(f)(x) = f(g−1x), Rg(f)(x) = f(xg), then

∫

M

Lg(f)(x)dx =

∫

M

f(x)dx =

∫

M

Rg(f)(x)dx.

The Lie algebra Lie(G) of G is characterized by the fact that

X ∈ Lie(G) 7→ eX ∈ G,

and since G is compact, this mapping is onto. Let us recall that we have the Ad representation
of G in Lie(G) :

g ∈ G 7→ Ad(g)X ≡ gXg−1 ∈ Lie(G), and geXg−1 = eAd(g)X ,

and there exists an Euclidean structure 〈·, ·〉 on Lie(G) for which Ad is unitary, that is, such
that

∀g ∈ G, ∀X ∈ Lie(G), 〈Ad(g)X,Ad(g)Y 〉 = 〈X,Y 〉, |X|2 = 〈X,X〉, (1)

see Proposition 6.1.1 in Faraut [2008].
Every X ∈ Lie(G) generates a vector field on G so that we can define a one parameter

group
t 7→ etX ∈ G, t ∈ R,

and since G is connected we can define a metric on G by the ’length’ |X| of the ’shortest
geodesic’ joining two points g1, g2 ∈ G,

dG(g1, g2) = inf{|X|, eXg1 = g2} = inf{|X|, g1eX = g2}. (2)

The two previous definitions are equivalent, as :

eXg1 = g2 ⇐⇒ g1g
−1
1 eXg1 = g2 ⇐⇒ g1e

Ad(g−1

1
)X = g2, |Ad(g−1

1 )X| = |X|

and it is not difficult to verify that this metric is bi-invariant :

∀g1, g2, g ∈ G, dG(g1, g2) = dG(gg1, gg2) = dG(g1g, g2g).
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Every X ∈ Lie(G) also naturally generates a one parameter group on M :

t ∈ R 7→ etX .x ∈ M

which describes geodesics of the Riemannian structure on M associated to the Euclidean
structure 〈·, ·〉 on Lie(G). The metric on M is given by

dM(x, y) = inf{|X|, eX .x = y} = dG/H(x, y) = inf{dG(g1, g2), π(g1) = x, π(g2) = y}

So dM(π(g), π(g′)) ≤ dG(g, g′). Moreover

∀g ∈ G, x, y ∈ M, dM(g.x, g.y) = dM(x, y).

This is again due to (1) as

eX .x = y ⇐⇒ g.eXg−1.g.x = g.y ⇐⇒ eAd(g)Xg.x = g.y, and |X| = |Ad(g)X|.

Now similarly every X ∈ Lie(G) gives rise to a one-parameter group on Lp(M), 1 ≤ p < ∞,
given by

f 7→ Tt(f)(x) = f(etX .x); t ∈ R, x ∈ M, f ∈ Lp(M)

and we denote the infinitesimal generator of this one-parameter group by DX , so

DXf(x) =
d

dt
f(etX .x)|t=0, x ∈ M,

the derivative of f at x in the direction of the X-geodesic.
If Xi, i = 1, . . . , τ , is an orthonormal basis of Lie(G) with respect to the scalar product

induced by the adjoint representation, the sum

L =

τ
∑

i=1

X2
i

defines the Casimir operator, which is independent of the choice of the basis, and which is
a central element of the enveloping algebra of Lie(G). Associated to the Casimir operator is
the following operator on L2(M) (we keep the same notation L)

L = D2
X1

+D2
X2

+ · · · +D2
Xτ
.

The operator −L, which is often called the Laplace operator, is a second order, positive,
elliptic differential operator defined on the space C∞(M) of infinitely differentiable functions
on M. In fact −L can be closed to give a positive, self-adjoint second order elliptic differential
operator on L2(M) with a discrete spectrum of eigenvalues λk, k ∈ N, arranged in increasing
and divergent order. By the spectral theorem the corresponding eigenfunctions {ek}k∈N con-
stitute an orthonormal basis of L2(M), and we define, for n ∈ N, the closed finite-dimensional
subspaces En = En(M) of L2(M) spanned by eigenfunctions ek of L whose corresponding
eigenvalues λk do not exceed n, formally

En(M) :=







x 7→
∑

k:λk≤n

ckek(x) : ck ∈ R, λk an eigenvalue of ek







.
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2.2 Connection to the Laplace-Beltrami Operator

The operator L need not necessarily coincide with the Laplace-Beltrami operator on M, but
it does in several important cases. If M is a two-point homogeneous space then L equals, up
to a scaling constant, the Laplace-Beltrami operator, see Proposition 4.11 in Chapter II of
Helgason [2000]. By Wang [1952]’s classification of such spaces this includes, among others,
the d-dimensional unit sphere, real and certain complex projective spaces. Further examples
for manifolds where the Laplace-Beltrami operator coincides with −L are given in Geller and
Pesenson [2010]. Since this connection is of some interest in applications, we discuss this
point here in some more detail.

The Laplace operator L is left- and right invariant and symmetric with respect to the
inner product 〈·, ·〉 induced by the adjoint representation, see p.162 in Faraut [2008]. By the
general theory of irreducible unitary representation of compact Lie groups (e.g., Theorem
6.4.1 and Proposition 8.2.1 in Faraut [2008]) :

L2(M) =
⊕

j

Vj , Vj = ker(L − cjI)

for constants cj , and ∀g ∈ G, Lg(Vj) ⊂ Vj,

g ∈ G 7→ Lg ∈ Lin(Vj)

is a finite dimensional unitary irreducible representation of G, where Lin(Vj) denotes the
space of bounded linear operators on Vj .

Moreover, as a Riemannian manifold, M is equipped with a Laplace-Beltrami operator ∆
which commutes with the G− action: ∀g ∈ G, ∆Lg = Lg∆. If M is compact :

L2(M) =
⊕

k

Hk, Hk = ker(∆ − λkI).

Moreover Hk is G− invariant (∀g ∈ G, Lg(Hk) ⊂ Hk), so

g ∈ G 7→ Lg ∈ Lin(Hk)

is a finite dimensional unitary representation of G.
Clearly, if Φk(x, y) is the kernel of the projection operator onto Hk, then φk(y) = Φk(x0, y)

verifies ‖φk‖2
2 = φk(x0) = dim(Hk) and is moreover a zonal function (recall that f is zonal

if ∀h ∈ K, Lh(f) = f , see, e.g., Giné [1975], Helgason [2000]). If the space of zonal funtions
in Hk is of dimension 1 then g ∈ G 7→ Lg ∈ Lin(Hk) is an irreducible representation. If this
is the case for all Hk then L and the Laplace-Beltrami will coincide, if we can check that the
eigenvalues are the same.

Let us illustrate this in the case of M = S
d, where

G = SO(d+ 1) = {A ∈M(d+ 1 × d+ 1), A−1 = At},

Lie(G) = so(d+ 1) = {X ∈M(d+ 1 × d+ 1), −X = Xt}
and we can take

〈X,Y 〉 =
1

2
Tr(XY t).
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An orthonormal basis is then given by

Xi,j = Ei,j − Ej,i, 1 ≤ i < j ≤ d+ 1, Ej,i = (αi,j
k,l)k,l, α

i,j
k,l = δi,kδj,l.

We take x0 = (1, 0, . . . , 0) so K ≈ SO(d) and

∀x, y ∈M = S
d, dSd(x, y) = arccos(〈x, y〉Rd=1)

The eigenvalues of ∆ are λk = −k(k + d − 1) (Faraut [2008]), the space Hk equals the
space of spherical harmonic functions of degree k, and there is only one zonal function in
each Hk (which is given through Gegenbauer polynomials) so the induced representation are
irreducible (and not equivalent). To see that ∆ = −L it is enough to compute the eigenvalue
of L on Hk and this can be carried on in the case of the sphere using the explicit expression
of L = −∑i<j D

2
Xi,j

.

2.3 A Smoothed Projection onto the Span of the Eigenfunctions of −L
We shall write 〈g, h〉 from now on for the standard L2(M)-inner product of two functions
g, h ∈ L2(M) := L2(M, dx). We also denote by ‖g‖Ω = supy∈Ω |g(y)| the supremum norm of
g : M → R over Ω ⊆ M, and we shall write ‖g‖∞ when Ω = M.

Let 0 ≤ a ≤ 1 be an infinitely differentiable nonnegative function defined on [0,∞). We
require a to be identically 1 on [0, 1/2] and compactly supported on [0, 1]. Define the sequence
of linear operators Aj , j ≥ 0, with

A0f =

∫

M

f(x)dx, Ajf(x) := Aj(f)(x) =

∫

M

Aj(x, y)f(y)dy, j > 0,

where, for Lk(x, y) = ek(x)ek(y),

Aj(x, y) :=
∑

k

a

(

λk

22j

)

Lk(x, y) =
∑

k:λk<22j

a

(

λk

22j

)

ek(x)ek(y).

Clearly

〈Ajf, f〉 =
∑

k

a

(

λk

22j

)

〈Lkf, f〉 ≤ ‖f‖2
2, ‖Ajf‖2 ≤ ‖f‖2

from Parseval’s identity and since |a| ≤ 1. Since a is identically one on [0, 1/2]

h ∈ E22j−1(M) implies Aj(h) = h (3)

and since En(M), n ≥ 1, is dense in L2(M) we conclude

lim
j→∞

‖Ajf − f‖2 = 0

for every f ∈ L2(M). Thus Aj furnishes us with an approximation of the identity operator
on L2(M).

The kernel A can be ’split’ as follows: If we define

Cj(x, y) =
∑

k:λk<22j

√

a

(

λk

22j

)

Lk(x, y)

then due to the orthogonality properties of the Lk’s we see

Aj(x, y) =

∫

M

Cj(x, u)Cj(u, y)du. (4)
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2.4 Gauss Cubature Formula and Needlets on a Manifold

The following quadrature formula holds on Ek(M), see Theorem 5.3 in Geller and Pesenson
[2010]. For every k ∈ N there exists a finite subset χk of M of cardinality |χk| ≤ Ckd/2 and
positive real numbers bη := bηk > 0, indexed by the elements η of χk, such that

∀f ∈ Ek(M),

∫

M

f(x) dx =
∑

η∈Xk

bηf(η) . (5)

The kernel Cj defined above clearly satisfies z 7→ Cj(x, z) ∈ E22j (M) for every x ∈ M, and
Theorem 6.1 in Geller and Pesenson [2010] states that

f, g ∈ En(M) ⇒ fg ∈ E4τn(M), (6)

so we deduce z 7→ Cj(x, z)Cj(z, y) ∈ Eτ22j+2(M). Note that it is property (6) where homo-
geneity of the manifold is used crucially. It is in the same spirit as (but not equivalent to)
the addition formula for eigenfunctions of the Laplace-Beltrami operator on a Riemannian
manifold (see Giné [1975]). Combining (4) with (5) thus implies

Aj(x, y) =

∫

M

Cj(x, z)Cj(z, y)dz =
∑

η∈χ
τ22j+2

bηCj(x, η)Cj(η, y)

and the action of Aj on L2(M) can hence be represented as

Ajf(x) =

∫

M

Aj(x, y)f(y)dy =

∫

M

∑

η∈χ
τ22j+2

bηCj(x, η)Cj(η, y)f(y)dy

=
∑

η∈χ
τ22j+2

√

bηCj(x, η)

∫

M

√

bηCj(η, y)f(y)dy.

This motivates the definition of the needlet scaling function φjη indexed by the cubature
points η ∈ Zj,

φjη(x) :=
√

bη Cj(x, η); η ∈ Zj ≡ χτ22j+2 .

With this notation we can write

Ajf(x) =
∑

η∈Zj

〈φjη, f〉φjη(x), (7)

and call this approximation the needlet projection of f onto Eτ22j+2(M) at resolution level j.
We shall need below the following estimates on the cubature set, see Geller and Pesenson

[2010]

1
k1

1

2dj
≤ bηj ≤ k1

1

2dj
∀η ∈ Zj,

1
k2

2dj ≤ |Zj | ≤ k2 2dj (8)

for some explicit constants k1, k2 > 0.
Although we shall not explicitly use it in what follows, we can telescope the needlet

projections in the usual way to obtain a wavelet-type multiresolution approximation

Ajf = A0f +
∑

0≤l≤j−1

∑

η

〈f, ψlη〉ψlη
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of a function f on a compact homogeneous manifold by needlets

ψlη(x) =
√

bηl

∑

m

c(λm/2
2l)Lk(x, η), η ∈ Zl,

with c(y) =
√

a(y/2) − a(y). See Section 8 of Geller and Pesenson [2010] for details. In
particular

f ∈ L2(M) ⇒

∥

∥

∥

∥

∥

∥

f −
∑

l≤j

∑

η∈Zl

〈f, ψlη〉ψlη,

∥

∥

∥

∥

∥

∥

2

→ 0 as j → ∞,

and the (ψjη)’s form a tight frame of L2(M):

∀f ∈ L2(M), ‖f‖2
2 =

∑

j

∑

η

|〈f, ψjη〉|2. (9)

2.5 Properties of the Needlet Frame

We establish some key properties of needlets, including their near-exponential localization
property.

Proposition 1 We have, for some constant 0 < D1(M) <∞ and every j ≥ 0, η ∈ Zj ,

‖φjη‖2 ≤ 1, ‖φjη‖∞ ≤ D1(M)2jd/2. (10)

Moreover, for every x ∈ M, η ∈ Zj and every N ∈ N there exists a constant cN such that

|φjη(x)| ≤
cN2jd/2

(1 + 2jddM(η, x))N
. (11)

Proof. For the first inequality in (10), let η ∈ M, n ∈ N and note

∫

M





∑

k:λk≤n

Lk(x, η)





2

dx =
∑

k:λk≤n

Lk(η, η).

On the other hand

x 7→





∑

k:λk≤n

Lk(x, η)





2

∈ E4τn(M),

so if χ4τn is the set of cubature points of E4τn(M) and η ∈ χ4τn

∫

M





∑

k:λk≤n

Lk(x, η)





2

dx =
∑

ξ∈χ4τn

bξ





∑

k:λk≤n

Lk(ξ, η)





2

≥ bη





∑

k:λk≤n

Lk(η, η)





2

.

so, combining these estimates,

bη ≤ 1
∑

k:λk<n Lk(η, η)
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for every η ∈ χ4dn. This implies, for every η ∈ Zj ,

∫

M

φ2
jη(x)dx = bη

∑

k:λk<22j

a(λk/2
2j)Lk(η, η) ≤ 1.

To prove the remaining claims, recall that by definition

φjη(x) =
√

bη
∑

k:λk<22j

√

a(λk/22j)Lk(x, y).

For f a function from the Schwartz-class on R
+, Lemma 4.1 (and the remark after it) in Geller

and Mayeli [2009], applied to the elliptic operator f(L/22j) (notation of functional calculus,
t = 2−2j in their lemma), proves that for every integer N ≥ 0 there exists a constant cN (f)
such that

∑

k:λk<22j

f(λk/2
2j)Lk(x, η) ≤

cN (f)2jd

(1 + 2jdd(η, x))N
. (12)

Applying this to f =
√
a, we infer the second bound in (10) and (11) follows from (8) and

(12).

Proposition 2 We have

sup
x∈M

∫

M

A2
j(x, y)dy ≤ D2(M)2jd, sup

x,y∈M

|Aj(x, y)| ≤ D2(M)2jd (13)

for some finite positive constant D2(M) that depends only on the manifold.

Proof. As Aj(x, y) :=
∑

k a(λk/2
2j)Lk(x, y), the second claim follows from (12) with f = a.

For the first

∫

M

A2
j(x, y)dy =

∫

M

∑

k,l

a

(

λk

22j

)

Lk(x, y)a

(

λl

22j

)

Ll(x, y)dy

=
∑

k

a2

(

λk

22j

)

Lk(x, x)

and again using (12) with f = a2 gives the result.

2.6 The case of Sd

In the case of the d-dimensional unit sphere S
d of R

d+1 the above construction is effectively
the one in Narcowich et al. [2006a]. On S

d the differential operator L coincides with the usual
Laplace-Beltrami operator, and we have

L2(Sd) =
⊕

k

Hk, Hk ≡ Hk(S
d) = ker(∆ − λkI), λk = −k(k + d− 1).

The eigenfunctions ek in this case are the spherical harmonics with eigenvalues k(k + d − 1)
(e.g., Proposition 9.3.5 in Faraut [2008]). Thus if we take the subsequence N ≡ Nk of N

for which k(k + d − 1) = Nk as k runs through the nonnegative integers, then the spaces

10



EN (Sd) correspond to the spaces PN (Sd) of spherical polynomials of degree less than or equal
to N , which are spanned by the mutually orthogonal spaces Hk(S

d), 0 ≤ k ≤ n, of spherical
harmonics, see Faraut [2008], Stein and Weiss [1971].

If {eki } is any orthonormal basis of Hk, then we write, in slight abuse of notation,

Lk(x, y) =
∑

i

eki (x)e
k
i (y) = Lk(〈x, y〉d+1), 〈x, y〉d+1 =

d+1
∑

i=1

xiyi

|Sd|Lk(u) =

(

1 +
k

ν

)

Cν
k (u), ν =

d− 1

2
, u ∈ [−1, 1]

where Cν
k is the corresponding Gegenbauer polynomial, and |Sd| is the Lebesgue measure of

S
d, i.e., |Sd| =

∫

Sd dx = (2π(d+1)/2)/Γ((d + 1)/2). We have furthermore (p.144 in Stein and
Weiss [1971]) for every x ∈ S

d,

∑

i

|eki (x)|2dx =
dim(Hk(S

d))

|Sd|

and thus
|Sd|Lk(1) = dim(Hk(S

d)). (14)

Moreover, for d ≥ 2 and any n ∈ N, Pn(Sd) =
⊕n

k=0 Hk(S
d) and as a consequence, by Stein

and Weiss [1971],

dim(Hk(Sd)) = Cd
k+d − Cd

k−2+d =
(d+ k − 2)!(d + 2k − 1)

k!(d− 1)!

dim(Pn(Sd)) = Cd
n+d + Cd

n+d−1 =
2

d!
(n+ 1)(n + 2)..(n + d− 1)(n +

d

2
) =

2

d!
nd

(

1 +
1

n

)(

1 +
2

n

)

....

(

1 +
d− 1

n

)(

1 +
d

2n

)

= nd

(

2

d
+

1

n

) d−1
∏

j=1

(

1

j
+

1

n

)

.

So, for d ≥ 2, n ≥ 2,
2

d!
(n+ 1)d ≤ dim(Pn(Sd)) ≤ nd

(

n+ 1

n

)2

2

d!
nd ≤ dim(Pn−1(S

d)) ≤ nd and dim(Pn−1(S
1)) = n.

By virtue of these bounds the constants in Proposition 2 can be explicitly calculated. To
obtain a unified notation define, for j ∈ N, the integers k(j) = max{k ∈ N : λk = k(k+d−1) <
22j} so that k(j) < 2j always holds. Then

∫

Sd

A2
j(x, y)dx =

∑

k:λk<22j

[a(λk/2
2j)]2Lk(1) =

1

|Sd|
∑

k:λk<22j

[a(λk/2
2j)]2dim(Hk(S

d))

≤
dim(Pk(j)(S

d))

|Sd| ≤ 2jd

|Sd| ,

11



and these inequalities imply that the same bound holds for |Aj(x, y)|. We can also deduce,
as in the proof of Proposition 1

‖φjη‖∞ =
√

bη
∑

k:λk<22j

√

a(λk/22j)Lk(1) ≤
√

∑

k:λk<22j

Lk(1) ≤
√

2jd

|Sd| .

Conclude that the key constants D1(M),D2(M) in the last subsection can be taken to be

D1(S
d) =

√

1

|Sd| , D2(S
d) =

1

|Sd| (15)

in the case of the unit sphere. Finally we should remark that in the case of the unit sphere the
addition formula (6) holds with 4τn replaced by 2n as one is multiplying spherical polynomials.
[Indeed whenever the Laplace-Beltrami operator coincides with L one can use the addition
formula for eigenfunctions of the Laplacian in Giné [1975].] Moreover, if d = 2, for each
resolution level j, the HEALPix pixelisation (commonly used for astrophysical data) gives
12 · 22j cubature points, so k2 = 12 in (8).

3 Linear Needlet Density Estimators and Concentration Prop-

erties of their Uniform Fluctuations

Let X,X1, ...,Xn be i.i.d. random variables taking values in a compact homogeneous manifold
M of dimension d. Denote their common law by P and assume that P possesses a density
f : M → [0,∞) w.r.t. dx on M. Denote further by Pn = 1

n

∑n
i=1 δXi

the empirical measure
of the sample. Let Aj(x, y) be the needlet projection kernel. For j ∈ N, the linear needlet
density estimator of f is defined as

fn(j, y) =
1

n

n
∑

i=1

Aj(Xi, y) =

∫

M

Aj(x, y)dPn(x), y ∈ M. (16)

We shall often write, in slight abuse of notation, fn(j) for fn(·, j).

3.1 A Bernstein-type Concentration Inequality for Needlet Estimators

We define now some quantities that measure the ’Gaussian’ and ’Poissonian’ fluctuations
of the uniform deviations of the centered estimator fn(j). Recall the explicit constants
D1(M), |Zj | ≤ k22

jd from (8), (10) in the previous section. Note moreover that the sec-
ond estimate in Proposition 1 immediately implies

2jd/2c0(M, j) ≡ sup
x∈M

∑

η∈Zj

|φjη(x)| ≤ 2jd/2C(M). (17)

The constant c0(M, j) ≡ c0(M, j, a,Zj) (or an upper bound for it) can be computed explicitly
after the regularizing function a and the quadrature set Zj have been chosen, and a sharp
numerical evaluation of it is important in application of Proposition 3 below.

Define then

σ̄(n, l, x) := ᾱ(x, l)

√

2ld

n
+ ᾱ′(x, l)

2ld

n

12



where
ᾱ(x, l) := ᾱ(M, f, x, l) := c0(M, l)

√

2(log(2|Zl|) + x)‖f‖∞
and

ᾱ′(x, l) := ᾱ′(M, x, l) := c0(M, l)
2

3
D1(M)(log(2|Zl|) + x).

We now prove the following concentration inequality for the needlet density estimator.

Proposition 3 Let M be a compact homogeneous manifold and suppose f : M → [0,∞) is
bounded. We have, for every n ∈ N, every j ∈ N and every x ≥ 0

Pr

{

sup
y∈M

|fn(j, y) − Efn(j, y)| ≥ σ̄(n, j, x)

}

≤ e−x.

Proof. The explicit cubature formula for eigenfunctions of L allows to reduce the infinite
supremum supy∈M |fn(j, y) − Efn(j, y)| to one over a finite set, so that finite-dimensional
probabilistic methods can be applied. Indeed, the estimate (17) implies that the supremum
of any h ∈ E22j−1(M) over M can be bounded by the (finite) maximum of the needlet
coefficients of h: Clearly from (3)

∀h ∈ E22j−1(M), h(x) = Ajh(x) =
∑

η∈Zj

〈φjη, h〉φjη(x)

so that for Zj a cubature set of Eτ22j+2(M) one has

sup
x∈M

|h(x)| ≤ max
η∈Zj

|〈φjη, h〉| sup
x∈M

∑

η∈Zj

|φjη(x)| = 2jd/2c0(M, j)max
η∈Zj

|〈φjη, h〉| . (18)

Now using 〈·, ·〉 notation also acting on finite signed measures,

‖fn(j) − Efn(j)‖∞ = sup
y∈M

∣

∣

∣

∣

∣

∣

∑

η∈Zj

φjη(y)〈φjη , Pn − P 〉

∣

∣

∣

∣

∣

∣

≤ 2jd/2c0(M, j)max
η∈Zj

|〈φjη, Pn − P 〉|

by (17) above. Consider the finite empirical process indexed by the class of functions {φjηk
}|Zj |

k=1
which has envelope U = 2jd/2D1(M) in view of (10). The class of functions

G :=
{

φjη1
/2U, ..., φjη|Zj |

/2U
}

,

is thus uniformly bounded by 1/2 and its weak variances σ2 satisfy

sup
g∈G

Eg2(X) ≤ σ2 =
‖f‖∞

2jd+2D2
1(M)

since ‖φjη‖2 ≤ 1 (again (10)). Recall Bernstein’s inequality (e.g., p.26 in Massart [2007]): If
Z1, ..., Zn are i.i.d. centered random variables bounded in absolute value by 1 then

Pr

{∣

∣

∣

∣

∣

1

n

n
∑

i=1

Zi

∣

∣

∣

∣

∣

≥
√

2tv

n
+

t

3n

}

≤ 2e−t (19)

13



where v ≥ EZ2
i . Therefore, using the notation ‖µ‖G ≡ supg∈G |

∫

gdµ| for signed measures µ,

Pr

{

‖fn(j) − Efn(j)‖∞ ≥ c0(M, j)

(

√

2(log(2|Zj |) + x)2jd‖f‖∞
n

+
2U2jd/2(log(2|Zj |) + x)

3n

)

}

≤ Pr

{

max
η∈Zj

|〈φj,η, Pn − P 〉| ≥
√

2(log(2|Zj |) + x)‖f‖∞
n

+
2U(log(2|Zj |) + x)

3n

}

≤ Pr

{

‖Pn − P‖G ≥
√

2(log(2|Zj |) + x)‖f‖∞
D2

1(M)2jd+2n
+

log(2|Zj |) + x

3n

}

= Pr

{

max
m=1,...,|Zj|

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(gm(Xi) − Egm(X))

∣

∣

∣

∣

∣

≥
√

2(log(2|Zj |) + x)σ2

n
+

log(2|Zj |) + x

3n

}

≤
|Zj |
∑

m=1

Pr

{∣

∣

∣

∣

∣

1

n

n
∑

i=1

(gm(Xi) −Egm(X))

∣

∣

∣

∣

∣

≥
√

2(log(2|Zj |) + x)σ2

n
+

log(2|Zj |) + x

3n

}

≤ 2|Zj | exp {− log(|Zj |) − log 2 − x)} = e−x,

which completes the proof of Proposition 3.

We should mention that a minor modification of the proof of Proposition 3 combined with
the usual blocking arguments (as, e.g., in Theorem 1 in Giné and Nickl [2009]) implies under
standard conditions on jn (including 2jn ≈ nη for some 0 < η < 1) that

lim sup
n

√

2jndjn
n

sup
y∈M

|fn(j, y) − Efn(y, d)| ≤ D almost surely (20)

where the constant D depends only on M, k2 and ‖f‖∞.
In some proofs below we shall need that σ̄(n, l, x) is monotone increasing in l ∈ N. In

general whether this holds true or not depends on the cubature Zl as well as on the function
a. Monotonicity of σ̄(n, l, x) can be easily ensured if we replace ᾱ(x, l) and ᾱ′(x, l) by their
upper bounds α(x, l), α′(x, l) obtained from the inequalities |Zl| ≤ k22

ld, c0(M, l) ≤ C(M).
While we do not advocate this in practice, for the theoretical development we define

σ(n, l, x) = α(x, l)

√

2ld

n
+ α′(x, l)

2ld

n
, A(n, l, x) :=

[

α(x, l) + α′(x, l)
√

2ld/n

]

. (21)

The constant A(n, l, x) allows for σ(n, l, x) to be written as a constant multiple of the ’Gaus-
sian component’

√

2ld/n, that is, σ(n, l, x) = A(n, l, x)
√

2ld/n.

3.2 Concentration Inequalities via Rademacher Processes on Manifolds

Despite its conceptual simplicity the approach from the previous section has one drawback:
the uniform deviations of fn − Efn are controlled globally on M by the function σ(n, l, x) –
constant on M. For functions f that exhibit spatially inhomogeneous regularity properties it
is of interest to have a ’localised’ version of σ(n, l, x). This could be achieved in Proposition
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3 by means of proving a ’local’ analogue of (18), which, however, is a rather intricate matter
that we do not pursue here. Instead we show how a simple symmetrization technique can be
used to deal with this problem. This is inspired by Koltchinskii [2006] and also Giné and Nickl
[2010b]. For Ω any subset of M, define a Rademacher process {(1/n)

∑

i εiAj(Xi, y)}y∈Ω and
set

Rn(Ω, j) = sup
y∈Ω

∣

∣

∣

∣

∣

1

n

n
∑

i=1

εiAj(Xi, y)

∣

∣

∣

∣

∣

with (εi)
n
i=1 an i.i.d. Rademacher sequence, independent of the Xi’s (and defined on a large

product probability space). Rn(Ω, j) can be computed in practice by first simulating n
i.i.d. random signs, applying these signs to the summands Aj(Xi) of the needlet density esti-
mator, and maximizing the resulting function. The idea is that the supremum Rn(Ω, j) of the
symmetrized process serves as a random surrogate for the unknown supremum supy∈Ω |fn(j, y)−
Efn(j, y)| of the centered process. Indeed Proposition 4 shows that supy∈Ω |fn(y) − Efn(y)|
concentrates around (a constant multiple of) Rn(Ω, j). Define the deviation term

σR(Ω, n, j, x) = 6Rn(Ω, j) + 10

√

2jdD2(M)‖f‖∞(x+ log 2)

n
+ 22

2jdD2(M)(2x+ 2 log 2)

n
.

Proposition 4 Let M be a compact homogeneous manifold and suppose f : M → [0,∞) is
bounded. We have for every n ∈ N, every j ∈ N, every Ω ⊆ M and every x > 0 that

Pr

{

sup
y∈Ω

|fn(y, j) − Efn(y, j)| ≥ σR(Ω, n, j, x)

}

≤ e−x.

Proof. We use the following general result for empirical processes.

Proposition 5 Let F be a countable class of real-valued measurable functions defined on M,
uniformly bounded by 1/2. We have for every n ∈ N and x > 0

Pr

{∥

∥

∥

∥

∥

1

n

n
∑

i=1

(f(Xi) − Pf)

∥

∥

∥

∥

∥

F

≥ 6

∥

∥

∥

∥

∥

1

n

n
∑

i=1

εif(Xi)

∥

∥

∥

∥

∥

F

+ 10

√

(x+ log 2)σ2

n
+ 22

x+ log 2

n

}

≤ e−x

The proof, which is based on Talagrand [1996]’s inequality with constants (e.g., Massart
[2007]), is inspired by ideas in Koltchinskii [2006], Giné and Nickl [2010b], and can be found
in Proposition 5 in Lounici and Nickl [2011]. Now to prove Proposition 4 note that

‖fn(j) − Efn(j)‖Ω = sup
y∈Ω

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Aj(Xi, y) − EAj(X, y))

∣

∣

∣

∣

∣

for Ω ⊆ M. This amounts to studying the empirical process indexed by the class of functions
{Aj(·, y) : y ∈ Ω} for Ω ⊆ M. This class has envelope 2jdD2(M) in view of Proposition 2.
Define thus

G := Gj =
{

Aj(·, y)/(2jd+1D2(M)) : y ∈ Ω
}

(22)

which is uniformly bounded by 1/2. [In fact, by continuity of the mapping y 7→ Aj(x, y) for
every x ∈ M we can restrict ourselves to a countable subset of Ω, which we still denote by
Ω.] Furthermore the upper bound for the weak variances can be taken to be

sup
g∈G

Eg2(X) ≤ ‖f‖∞
D2

2(M)22jd+2
sup
y∈M

∫

M

A2
j (x, y)dx ≤ ‖f‖∞

D2(M)2jd+2
=: σ2 (23)
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in view of Proposition 2. Then, recalling the notation ‖ · ‖G from the proof of Proposition 3

Pr

{

‖fn(j, ·) − Efn(j, ·)‖Ω ≥ 6Rn(Ω, j) + 10

√

2jdD2(M)‖f‖∞(x+ log 2)

n

+ 22
2jdD2(M)(2x + 2 log 2)

n

}

= Pr







∥

∥

∥

∥

∥

1

n

n
∑

i=1

(g(Xi) − Pg)

∥

∥

∥

∥

∥

G

≥ 6Rn(Ω, j)

2jd+1D2(M)
+ 10

√

‖f‖∞(x+ log 2)

D2(M)2jd+2n
+ 22

x+ log 2

n







= Pr







∥

∥

∥

∥

∥

1

n

n
∑

i=1

(g(Xi) − Pg)

∥

∥

∥

∥

∥

G

≥ 6

∥

∥

∥

∥

∥

1

n

n
∑

i=1

εig(Xi)

∥

∥

∥

∥

∥

G

+ 10

√

(x+ log 2)σ2

n
+ 22

x+ log 2

n







and the last expression is less than or equal to e−x using Proposition 5 with G as in (22) and
σ specified by (23).

It is interesting to compare σR to σ from Proposition 3. On the one hand the second and
third terms defining σR(Ω, n, j, x) are of a smaller asymptotic order than σ(n, j, x) for j → ∞
due to the absence of |Zj| in σR. On the other hand the term Rn(Ω, j) is random, and one is
led to ask whether in average σR will be larger or smaller than σ. Our proofs imply, for some
constant C independent of j, n, that

ERn(Ω, j) ≤ C

(
√

2jdj

n
+

2jdj

n

)

so that σR has the same size as σ as a function of j, n, up to constants.
Inspection of the proofs and arguments similar to those in the proof of Proposition 2 in

Giné and Nickl [2010b] show that Rn(Ω, j) in Proposition 4 can be replaced by its (conditional)
expectation EεRn(Ω, j) – a quantity that may be more stable in applications. Moreover, the
constants appearing in the definition of σR may still be fairly conservative: the proof is based
on an application of Talagrand [1996]’s inequality with explicit constants (see Massart [2007]),
and in the lower deviation version thereof the optimal constants are not known yet.

4 Confidence Bands

If the size of the bias ‖Efn(j) − f‖∞ were known, one could directly use Propositions 3 or 4
and a suitable choice of j to obtain confidence bands with prescribed finite sample coverage.
For instance, if f is the uniform distribution (volume element) on M, the bias A0(f) − f of
the estimate fn(0) is exactly zero. In analogy, if f ∈ En(M) is a finite linear combination
of eigenfunctions of L (so in the spherical case a polynomial) then the estimator fn(J) for
sufficiently large but finite J also has bias zero (cf. (3)). As usual, going beyond finite-
dimensional smoothness classes is possible by considering spaces of differentiable functions
on M. For instance one defines Ck(M) as the set of continuous functions f ∈ C(M) such
that for all X1,X2, . . . ,Xk in Lie(G), DX1

DX2
. . . DXk

f ∈ C(M). It is a Banach space when
equipped with the following norm:

‖f‖Ck = sup
|X1|≤1,...,|Xk|≤1

‖DX1
DX2

. . . DXk
f‖∞ + ‖f‖∞,
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and C∞(M) is the intersection of all the spaces Ck(M), k ∈ N. One can define such spaces also
for noninteger k by introducing a modulus of continuity along vectorial directions X, and the
resulting scale of Hölder-Zygmund function spaces Ck(M) can be characterized by the decay
of their needlet coefficients in very much the same way as in the case of Hölder-Zygmund
spaces on Euclidean spaces: A k-regular function in Ck(M), k > 0 then satisfies the estimate

‖Aj(f) − f‖∞ ≤ C2−jk. (24)

See Geller and Pesenson [2010] for these results. If the smoothness degree t of f is known
such bounds can be used, together with Propositions 3, 4, in the construction of asymptotic
confidence sets, proceeding in the same way as in the classical paper Bickel and Rosenblatt
[1973] via choosing a resolution level jn that leads to ’undersmoothing’, i.e., a bias of smaller
order as a function of n than the random fluctuations of the centered estimators.

However, in the typical nonparametric function estimation problem the size of the bias is
not known, and the above assumptions are far from realistic. So we have the more ambitious
goal to obtain confidence sets for the needlet estimator with an automatic choice of the
resolution level j.

4.1 Estimate of the Resolution Level

Split the sample into two parts S1 and S2, each of (integer) size n1 > 0 and n2 > 0 respectively.
For asymptotic considerations we shall require that n1/n2 is bounded away from zero and
infinity as n→ ∞. Denote by

Pn1
=

1

n1

n1
∑

i=1

δXi
, and Pn2

=
1

n2

n2
∑

i=1

δXn1+i

the empirical measures associated with the first and the second subsample, respectively, and
define the associated needlet density estimators

fnv(j, y) =

∫

M

Aj(x, y)dPnv (x), y ∈ M, v = 1, 2.

We use the sample S2 to choose the resolution level j. For n2 > 1, choose an integer
jmax := jmax,n and define the grid of candidate bandwidths as

J := Jn = {[0, jmax] ∩ N} .

For asymptotic considerations we shall only require

2jmax ≃
(

n2

(log n2)2

)1/d

, (25)

but a practical choice is to first choose l∗ such that α(x, l∗)
√

2l∗/n2 = α′(x, l∗)(2l∗/n2) and
to define jmax such that 2jmax = 2l∗/(log n2)

1/d. Such a choice of jmax is just slightly below
the boundary where the Poissonian term starts to dominate the Gaussian term in σ(n2, l, x)
in Proposition 3, and choosing j > jmax would then result in inconsistent estimators, so that
jmax is a natural upper bound for J .

The goal is to select a data-driven bandwidth ĵn from Jn. Heuristically, for l > j,

fn2
(j) − fn2

(l) = [fn2
(j) − Efn2

(j)] − [fn2
(l) − Efn2

(l)] + [Aj(f) − f ]− [Al(f) − f ]
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and with large probability the first two terms should not exceed 2σ(n2, l, x), a quantity that
increases in l, and we would like to choose ĵn to be the smallest j such that the approximation
error 2(Aj(f) − f) (which decreases in j) does not exceed the size 2σ(n2, l, x) of the random
fluctuations.

We shall use the subsample S2 to select ĵn following this idea, which is due to Lepskĭı
[1991], formalised as follows:

ĵn = min

{

j ∈ J : ‖fn2
(j) − fn2

(l)‖Ω ≤ 4σ(n, l) ∀l > j, l ∈ J
}

. (26)

where σ(n, l) = σ(n2, l, κlog n2), cf. (21), where κ > 0 is any numerical constant (see Remark 3
for discussion). By definition ĵn = jmax if ∀j, ∃ l > j, l, j ∈ J , ‖fn2

(j)− fn2
(l)‖Ω > 4σ(n, l).

A few remarks about the constants involved in the definition of σ(n, l) are in order: All
these constants are explicit once the function a and the cubature Zj have been chosen, except
for the quantity ‖f‖∞. If no upper bound for ‖f‖∞ is known we advocate that ‖f‖∞ be
replaced by ‖fn(jmax)‖∞. Standard arguments imply that this random quantity exponentially
concentrates around ‖f‖∞, see for instance Giné and Nickl [2010b]. Consequently we neglect
the case of ‖f‖∞ unknown in what follows in order to reduce technicalities. Moreover we shall
see below how the choice of the numerical constant κ influences the finite-sample performance,
but our results hold for any choice κ > 0, in particular it does not have to be ’large enough’
(as is often assumed in the adaptive estimation literature).

4.2 Confidence Bands with Random Sizes

To construct the center of the corridor of the confidence band over Ω ⊆ M we evaluate the
linear estimator fn1

(·, y) from (16) at the random bandwidth ĵn. It turns out that some
undersmoothing is useful – in fact crucial – so let un be a sequence of natural numbers and
define

f̂n(y) = fn1
(ĵn + un, y), y ∈ Ω.

We shall see below how the sequence un influences our results but heuristically, and for
asymptotic considerations, one may think of un of the order log log n.

The confidence band we propose is centered at f̂n(y), y ∈ Ω, and has random size

sn(x) = 1.01σ(n1, ĵn + un, x),

cf. (21), more precisely

Cn := Cn(x, y) =
[

f̂n(y) − sn(x), f̂n(y) + sn(x)
]

, x > 0, y ∈ Ω ⊆ M. (27)

Alternatively one can use the band size sR
n (Ω, x) = 1.01σR(Ω, n1, ĵn + un, x), and all results

proved below go through by virtue of Proposition 4 and using techniques from Rademacher
processes (as in Giné and Nickl [2010b]), but we abstain from this to reduce technicalities.

4.3 Coverage and Adaptation Properties of Cn

4.3.1 Coverage over Eigenspaces of L – the Finite Dimensional Case

We first consider here the important case where f is a very smooth function, that is, a fixed
linear combination of eigenfunctions of L, so f ∈ E2J−1(M) for some fixed J . For simplicity of
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exposition let us consider the case of global confidence bands Ω = M only in this subsection.
We start with the case where f equals the volume element of M.

Theorem 1 If f is the volume element of M,
∫

M
f(x)dx = 1, then we have, for every n ∈ N

Pr(ĵn = 0) ≥ 1 − 2jmaxn
−2κ
2 .

Furthermore, for every n ∈ N and every x > 0 we have

Pr {f(y) ∈ Cn(x, y) for every y ∈ M} ≥ 1 − e−x (28)

and, if 2und/n→ 0 as n→ ∞ then sn(x) = OPr

(

2und/2/
√
n
)

.

In other words our automatic band Cn attains exact finite sample coverage if f is uniformly
distributed, and in the usual situation where un = log log n the size of the band shrinks almost
at the parametric rate 1/

√
n.

It is instructive to consider next the case where f ∈ E22J−1(M) \ E22J−2(M) for some
fixed J ∈ N. We would then hope that ĵn = J with large probability, as then AJ(f) − f = 0
(see (3) above). In the following theorem we restrict ourselves to asymptotic considerations
to highlight the main ideas.

Theorem 2 Suppose f ∈ E22J−1(M) \E22J−2(M) for some fixed J ∈ N. We then have that

Pr(ĵn /∈ [J − 1, J ]) = O(n−2κ + e−cn)

as n→ ∞ for some constant c that depends on f only through ‖f‖∞ and through

b1(f) ≡ inf
p∈E

22J−2(M)
‖p − f‖∞ > 0.

Moreover if un > 1 ∀n ∈ N then

Pr {f(y) ∈ Cn(x, y) for every y ∈ M} = 1 − e−x −O(e−cn) (29)

and if 2und/n→ 0 as n→ ∞ then sn(x) = OPr

(

2und/2/
√
n
)

.

Thus the confidence band Cn has asymptotic coverage for any fixed spherical polynomial,
and the asymptotic size of the band Cn is of order 1/

√
n up to the undersmoothing factor.

Clearly we have neglected the question of honesty of Cn, that is we have not addressed
the question whether (29) holds uniformly in f ∈ ∪0≤j≤J−1E2j (M). Inspection of the proof
implies that Cn is honest over linear combinations of eigenfunctions of L for which the sepa-
ration constants b1(f) are bounded below by a constant multiple of 1/

√
n. That uniformity

over all densities between E22J−1 and E22J−2 cannot be attained for our ’adaptive’ procedure
is related to impossibility results for post-model selection estimators in finite-dimensional
models, see Leeb and Pötscher [2006].
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4.3.2 Asymptotic Coverage over Hölder Balls

Theorem 2 just resembles the finite dimensional situation, and if it were indeed known apriori
that f ∈ E2J−1(M) for a fixed J one could simply use fn(J) as an estimator, circumventing
the uniformity problems raised in the previous subsection. However if no finite-dimensional
model seems realistic for f we may accept these uniformity problems for which b1(f) is not
well-behaved if in return our procedure performs well in the infinite-dimensional setting. Note
that in the usual infinite-dimensional nonparametric models the default estimator fn(jmax)
has only a logarithmic rate of convergence to zero in supremum norm risk, and will lead to
unneccesarily large confidence bands. In contrast our confidence band Cn adapts over an
infinite-dimensional class of Hölder continuous densities f as we show in this section.

Our first main result is that the size of the band Cn equals, with large probability, the
optimal band size that one would obtain from balancing approximation error Aj(f) − f
and random fluctuations fn(j) − Aj(f). For asymptotic considerations this will imply that
our band shrinks at the optimal rate of convergence depending on the regularity of f . To
formalize this statement we shall impose a regularity condition on the density f , namely
that its approximation errors ‖Aj(f) − f‖Ω are bounded by a constant multiple of 2−jt for
some unknown t > 0. As mentioned in (24) above this is tantamount to assuming a classical
t-Hölder condition on f . The theoretical bandwidth that balances bias and variance is then,
up to additive constants (see (38) below for an exact definition)

j∗n(t) =
1

2t+ d
(log2 n− log2 log n).

Theorem 3 (Size of the band) Let Ω be any subset of M. Suppose f : M → [0,∞) is
bounded and that ‖Aj(f) − f‖Ω ≤ b22

−jt for some b2 > 0 and some t > 0. Let 2sn(x) be the
diameter of the band Cn(x, y). Then, for every n ∈ N, x > 0,

Pr {sn(x) > 1.01σ(n1, j
∗
n(t) + un + 1, x)} ≤ 2(jmax − j∗n(t))n−κ

2 .

In particular, if the undersmoothing constants un are such that

rn(t) :=

(

log n

n

)
t

2t+d

2
und
2 = o(1)

as n→ ∞ then sn(x) = OPr(rn(t)).

Note that the proof of the theorem, combined with standard arguments from adaptive
estimation (e.g., Giné and Nickl [2010b]), implies as well that f̂n is rate-adaptive in sup-norm
loss, that is, for every t > 0,

sup
f :‖Aj(f)−f‖M≤b22−jt

E sup
x∈M

|f̂n(x) − f(x)| = O(rn(t)). (30)

The rate of convergence rn(t) cannot be improved over classes of functions that are t-Hölder,
see for instance Klemelä [1999] in the case M = S

d, and since these Hölder classes are, up to
constants, sets of the form {f : ‖Ajf −f‖∞ ≤ b22

−jt} for suitable b2 (see the results in Geller
and Pesenson [2010]), this implies that (30) is optimal, and that the band Cn in Theorem 3
shrinks at the optimal rate in a minimax sense (up to the undersmoothing factor, which will
typically be of size

√
log n).
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Clearly without a sharp evaluation of the probability of the event {f ∈ Cn} Theorem
3 is useless for statistical inference. It is known (see Low [1997]) that adaptive confidence
bands for densities on R cannot have coverage over a continuous scale

⋃

t>0 Σ(t, b2) of Hölder
balls Σ(t, b2). In a way Low’s results can be seen as an infinite-dimensional analogue of the
pathologies in finite dimensions mentioned above. On the other hand recent results in Giné
and Nickl [2010a] show that adaptation is possible over ’generic’ subsets of

⋃

t>0 Σ(t, b2) when
densities are estimated on the real line. The idea is that even if some pathologies cannot be
avoided there are still exhaustive classes of densities for which adaptation is possible, and we
show how this applies to density estimation on M.

To this end we assume the following crucial approximation condition. While the upper
bound is standard, the quantity occurring in the lower bound can be viewed as an infinite-
dimensional analogue to the constant b1 that appeared in Theorem 2. Note that whereas b1
is always positive the lower bound in the following condition may fail to hold for any t for a
given continuous function f , at least for large enough j. We discuss this in Section 4.4.

Condition 1 Assume that f : M → [0,∞) is bounded and let t, b2 > 0 be real numbers.
Suppose that there exists a sequence b(n) such that 0 < b(n) ≤ b2 for every n ∈ N and such
that f satisfies, for every j ∈ Jn, the inequalities

b(n)2−jt ≤ ‖Aj(f) − f‖Ω ≤ b22
−jt. (31)

Under this condition we can prove asymptotic coverage of our nonparametric confidence
band. We should note that inspection of the proof reveals that this coverage result is ’honest’:
it holds uniformly over classes of densities satisfying Condition 1.

Theorem 4 (Asymptotic Coverage) Let Ω be any subset of M. Suppose f satisfies Con-
dition 1 and that the undersmoothing sequence un ∈ N is such that un + 1

t log2(b(n)) → ∞ as
n→ ∞. Then we have, for every x > 0,

lim inf
n

Pr {f(y) ∈ Cn(x, y) for every y ∈ Ω} ≥ 1 − e−x. (32)

For instance if one knows that lim infn b(n) > 0 (we shall see generic examples for this
below) then any undersmoothing sequence un → ∞ gives asymptotic coverage of the band.
On the other hand if un → ∞ then bn → 0 is admissible and the lower bound requirement
in Condition 1 becomes more and more lenient as sample size increases. This result and
the discussion in Subsection 4.4 below shows that our nonparametric procedure does well
asymptotically for ’typical’ Hölder-continuous functions on the unit sphere.

4.3.3 A Nonasymptotic Coverage Result

The asymptotic Theorem 4 is in fact a consequence of the following finite-sample result.
While the stochastic terms are similarly well-behaved as in Theorems 1 and 2, the presence of
nonnegligible approximation error is the reason why the following theorem is more intricate.

Theorem 5 (Finite Sample Coverage) Let Ω be any subset of M. Suppose f satisfies
Condition 1 and let m∗ := m∗

n(f) be the smallest integer such that b(n)2tm∗ ≥ 7b2. Set
m := mn(f) = min(j∗n(t),m∗). Then we have, for every n ∈ N and every x > 0

Pr {f(y) ∈ Cn(x, y) for every y ∈ Ω} ≥ 1 − e−x − vn (33)
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where
vn = 2(jmax −m)n−κ

2 + In

with

In = I

{

100

√

n1

n2

A(n2, j
∗
n(t) + 1, κ log n2)

A(n1, j∗n(t) + un −m,x)
> 2(un−m−1)( d

2
+t)

}

,

with κ > 0 equal to the constant from after (26) and where A(n, l, x) was defined in (21).

Remark 1 [Undersmoothing in finite samples] Note first that if un ≥ m, then the fraction on
the l.h.s. of the inequality in the definition of In is bounded away from zero and infinity. Conse-
quently the tradeoff between the constants un and b(n) is such that if un+t−1 log2(b(n)) → ∞
then In = 0 for all n from some n0 onwards, which in particular implies Theorem 4. Not
surprisingly obtaining coverage in finite samples is more delicate, as n0 depends on f : The
undersmoothing constant un should be chosen so large that In = 0 for every n. Closer in-
spection of In shows that this is possible if an upper bound for m is available, which can
be obtained by requiring an apriori lower bound for the sequence b(n) as well as for t. The
discussion in Section 4.4 will show that such apriori bounds can indeed be obtained in relevant
cases.

Remark 2 [Admissible lower bounds in Condition 1] Another point of view is to start with
an undersmoothing sequence un and to ask which sequences of b(n)’s are admissible to obtain
coverage. Assume for simplicity that the sample size is 2n and that n1 = n2 = n. Let
Cn(κ log n, y) be the confidence band from (27) with undersmoothing sequence un ∈ N and
x = κ log n. If f satisfies Condition 1 and if

b(n) ≥ 7b2 · (100)t/(t+d/2)2(−un+2)t,

then
Pr {f(y) ∈ Cn(κ log n, y) for every y ∈ Ω} ≥ 1 − (2jmax + 3)n−κ. (34)

For instance if d = 2 and f is at least once differentiable, then finite sample coverage holds
for the set of densities that satisfy Condition 1 for 1 ≤ t <∞ and b(n) ≥ b2 · 28.2−un .

Remark 3 [The role of the thresholding constant κ] The thresholding constant κ plays an
important role in the construction of ĵn. Our results are presented for fixed κ without any
restriction on this constant. This is an advantage since this constant has to be carefully
chosen in applications. Our bounds typically contain a term of the form n−κ, and one could
be tempted to choose κ as large as possible, however it is important to notice that choosing
κ very large will increase the difficulty of cancelling In in Theorem 5. An adaptive choice of
this tuning constant is possible but beyond the scope of this paper.

4.4 Regularity of Functions on the Sphere and Condition 1

Condition 1 can be characterized in terms of classical Hölder regularity properties of the
unknown density f : M → R. We shall only discuss the case M = S

d, which is the case of
primary statistical interest, but all findings below generalize to M with suitable modifications.

There are several ways to approximate unknown functions defined on S
d, but it is a

fortiori not clear whether a given method retrieves the natural intuition that the degree of
smoothness of a function f is the driving quantity of the approximation properties of f . For
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instance, while L2(M)-projections onto spherical harmonics constitute a way of approximating
a continuous function f : S

d → R, it is well known already from the special case d = 1 that
this approximation may diverge at any given point x, which is particularly worrying when one
is interested in the local or even uniform behavior of the approximation errors. Furthermore
the important question arises whether the approximation method allows for very smooth (for
instance infinitely differentiable) functions to be approximated in an optimal way.

The fact that needlets form a tight frame of L2(Sd) implies good approximation properties
in that space, similar to those of the spherical harmonics. Moreover, these approximations are
also optimal approximands for differentiable and Hölder-continuous functions in the uniform
norm on S

d (as follows from the results in Geller and Pesenson [2010]), so the upper bound
in Condition 1 has a natural interpretation in terms of Hölder-Zygmund-norms on S

d.
The lower bound in Condition 1 is more intricate. The results in Jaffard [2000] and

Giné and Nickl [2010a] for functions on R suggest that this condition should be satisfied
if f ’attains t as its Hölder exponent’ viewed as a function on the unit sphere (in fact a
slightly stronger requirement is necessary). In the simplest case, if a real-valued function f
defined on R scales like |x − x0|t at some point x0 (if t > 1 a similar property has to hold
for the highest existing derivative), then f attains the Hölder exponent t, and the results
in Jaffard [2000] imply that ’quasi every’ function (in a Baire sense) in Ct(R) does this.
Indeed Proposition 4 in Giné and Nickl [2010a] implies that quasi-every function in Ct(R)
satisfies the lower bound in the R-analogue of Condition 1 (where Aj(f) has to be replaced
by a corresponding wavelet projection). Proving such general results in the case where f is
defined on the sphere is technical, mostly since needlets only form a tight frame but not an
orthonormal basis. We therefore return to the intuition of Hölder exponents and show that
’typical’ α-Hölder functions on S

d satisfy Condition 1: let us consider spherical analogues
of functions on R that scale like |x − x0|: If x0 is any point in S

d, then the zonal functions

dSd(x, x0) or (1 − 〈x, x0〉d+1)
1/2 are natural candidates for the class C1(Sd). More generally

fα(x) = (1 − 〈x, x0〉d+1)
α/2

for 0 < α <∞, α/2 /∈ N, is a natural candidate for Cα(Sd). We prove in Proposition 6 below

b12
−jα ≤ ‖Aj(fα) − fα‖∞ ≤ b22

−jα

for some fixed constants 0 < b1 < b2 < ∞. Note that obviously, for α = 2k, k ∈ N, fα(x) =
(1 − 〈x, x0〉d+1)

k = 1 − cos(dSd(x, x0))
k is actually a polynomial on S

d.

5 Proofs for Section 3

5.1 Proof of Theorem 1

If f is the volume element of M, then

‖Aj(f) − f‖∞ = 0 (35)

for every j ≥ 0. Clearly by definition of ĵn

Pr
{

ĵn 6= 0
}

≤
∑

l∈J :l>0

Pr {‖fn2
(0) − fn2

(l)‖∞ > 4σ(n, l)} .
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Now since Efn(l) = Al(f) = f for every l ≥ 0, the l-th probability is bounded by

Pr {‖fn2
(0) − fn2

(l) − Efn2
(0) + Efn2

(l)‖∞ > 4σ(n, l)}
≤ Pr {‖fn2

(0) − Efn2
(0)‖∞ > 2σ(n, l)} + Pr {‖fn2

(l) − Efn2
(l)‖∞ > 2σ(n, l)} ≤ 2n−2κ

2

in view of Proposition 3, so that Pr{ĵn 6= 0} ≤ 2jmaxn
−2κ
2 follows. To prove the second claim

of the theorem, we have from independence of ĵn and fn1
, from (35) and from Proposition 3

Pr {f(y) ∈ Cn(x, y) for every y ∈ M}

= Pr

{

sup
y∈M

∣

∣

∣
f̂n(y) − f(y)

∣

∣

∣
≤ sn(x)

}

≥ 1 − Pr

{

sup
y∈M

∣

∣

∣
fn1

(ĵn + un, y) − E1fn(ĵn + un, y)
∣

∣

∣
> σ(n1, ĵn + un, x)

}

= 1 −
∑

0≤l≤jmax

Pr {‖fn1
(l + un, ·) − E1fn1

(l + un, ·)‖∞ > σ(n1, l + un, x)}Pr{ĵn = l}

≥ 1 − e−x
∑

0≤l≤jmax

Pr{ĵn = l} = 1 − e−x.

The last claim of Theorem 1 follows from the first and definition of σ(n, l, x).

5.2 Proof of Theorem 2

Since jmax → ∞ as n → ∞ and since this theorem is of an asymptotic nature we assume
J ≤ jmax in what follows. We recall from (3) that f ∈ E22J−1 implies

‖Al(f) − f‖∞ = 0 (36)

for every l ≥ J . Then

Pr
{

ĵn > J
}

≤
∑

l∈J :l>J

Pr {‖fn2
(J) − fn2

(l)‖∞ > 4σ(n, l)} ,

and the l’th summand is bounded by

Pr {‖fn2
(J) − fn2

(l) − Efn2
(J) + Efn2

(l)‖∞ > 4σ(n, l)}
≤ Pr {‖fn2

(J) − Efn2
(J)‖∞ > 2σ(n, l)} + Pr {‖fn2

(l) − Efn2
(l)‖∞ > 2σ(n, l)} ≤ 2n−2κ

2

in view of (36) and Proposition 3.
For integer l < J − 1 (so that 2l < 2J−1) we have

‖Al(f) − f‖∞ ≥ inf
p∈E

2J−2

‖p − f‖∞ ≡ b1 > 0

since Al(f) ∈ E22J−2 and since E22J−2 is a closed proper subspace of E22J−1 . By definition we
have

Pr(ĵn = l) ≤ Pr (‖fn2
(l) − fn2

(J)‖∞ ≤ 4σ(n, J)) . (37)

The triangle inequality and (36) now give

‖fn2
(l) − fn2

(J)‖∞ ≥ ‖Al(f) − f‖∞ − ‖fn2
(l) − Efn2

(l) − fn2
(J) + Efn2

(J)‖∞
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so that the probability in (37) is bounded by

Pr (‖fn2
(l) − Efn2

(l) − fn2
(J) +Efn2

(J)‖∞ ≥ b1 − 4σ(n, J)) ≤

Pr

(

‖fn2
(l) − Efn2

(l)‖∞ ≥ b1
2

− 2σ(n, J)

)

+ Pr

(

‖fn2
(J) − Efn2

(J)‖∞ ≥ b1
2

− 2σ(n, J)

)

.

For n large enough depending on b1 we have 2σ(n, J) ≤ b1/4 so that Proposition 3 implies, for
J fixed, Pr{ĵn < J −1} ≤∑0≤l<J−1 Pr{ĵn = l} ≤ 2Je−cn for some constant c > 0 depending
on b1, J and those constants appearing in the definition of σ(n, l, x) that do not depend on
n, l. Summarizing we deduce Pr{ĵn /∈ [J − 1, J ]} ≤ 2jmaxn

−2κ
2 + 2Je−cn for n large enough.

To prove coverage we proceed as in Theorem 1, noting un > 1,

Pr {f(y) ∈ Cn(x, y) for every y ∈ M}

≥ 1 − Pr

{

sup
y∈M

∣

∣

∣fn1
(ĵn + un, y) − f(y)

∣

∣

∣ > σ(n1, ĵn + un, x)

}

≥ 1 − 2Je−cn −
∑

J−1≤l≤jmax

Pr {‖fn1
(l + un, ·) − E1fn1

(l + un, ·)‖∞ > σ(n1, l + un, x)}Pr{ĵn = l}

≥ 1 − 2Je−cn − e−x
∑

J−1≤l≤jmax

Pr{ĵn = l} ≥ 1 − e−x − 2Je−cn

where we used (36) and Proposition 3. The last claim of the theorem is proved as in Theorem
1.

5.3 Proof of Theorems 4 and 5

We first prove Theorem 5. For f satisfying Condition 1 there exists a unique t := t(f) such
that f satisfies Condition 1 for this t. Define

B(j, t) = b22
−jt, j∗n(t) = min {j ∈ J \ {0} : B(j, t) ≤ σ(n2, j)} − 1. (38)

If no j ∈ J exists such that B(j, t) ≤ σ(n2, j) we set j∗n(t) = jmax − 1. We shall assume
without loss of generality that b2 is large enough such that b2 ≥ σ(1, 0). In this way B(j∗n(t)) ≥
σ(n2, j

∗
n(t)) also holds when j∗n(t) = 0.

It is easy to see that j∗n(t) satisfies

2j∗n(t) ≃
(

n2

log n2

) 1

2t+d

, (39)

so is a ’rate optimal’ resolution level for estimating f satisfying Condition 1 for the given t.
The constants in the definition of j∗n(t) depend only on b2, t, a, d, k2 and ‖f‖∞.

Lemma 1 a) For every n ∈ N,

Pr(ĵn > j∗n(t) + 1) ≤ 2(jmax − j∗n(t))n−κ
2 . (40)

b) Let m := min(j∗n(t),m∗) where m∗ is the smallest integer such that (b(n)/b2)2
tm∗ ≥ 7.

Then, for every j ∈ J satisfying 0 ≤ j < j∗n(t) −m and every n ∈ N we have Pr(ĵn = j) ≤
2n−κ

2 . As a consequence, for every n ∈ N,

Pr
(

ĵn < j∗n(t) −m
)

≤ 2(j∗n(t) −m)n−κ
2 (41)
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Proof. Since this lemma only involves the sample S2, we set n = n2 for notational simplicity.
We also put j∗+n = j∗n(t) + 1. If j∗+n = jmax Part a) is proved. Otherwise one has

Pr(ĵn > j∗+n ) ≤
∑

l∈J :l>j∗+n

Pr
(∥

∥fn(j∗+n ) − fn(l)
∥

∥

Ω
> 4σ(n, l)

)

.

We first observe that by Condition 1 (noting also Efn(j) = Aj(f))

∥

∥fn(j∗+n ) − fn(l)
∥

∥

Ω
≤
∥

∥fn(j∗+n ) − fn(l) − Efn(j∗+n ) + Efn(l)
∥

∥

Ω
+B(j∗+n , t) +B(l, t),

and that
B(j∗+n , t) +B(l, t) ≤ 2B(j∗+n , t) ≤ 2σ(n, j∗+n ) ≤ 2σ(n, l)

by definition of j∗n(t) and since l > j∗+n . Consequently, the l-th probability in the last sum is
bounded by

Pr
(∥

∥fn(j∗+n ) − fn(l) − Efn(j∗+n ) + Efn(l)
∥

∥

Ω
> 2σ(n, l)

)

≤ Pr
(∥

∥fn(j∗+n ) − Efn(j∗+n )
∥

∥

Ω
> σ(n, l)

)

+ Pr (‖fn(l) − Efn(l)‖Ω > σ(n, l)) ≤ 2n−κ

where we have used Proposition 3.
To prove the second claim, fix j < j∗n(t) −m. Clearly we only have to consider the case

m = m∗. Observe that

Pr(ĵn = j) ≤ Pr (‖fn(j) − fn(j∗n(t))‖Ω ≤ 4σ(n, j∗n(t))) . (42)

Now using Condition 1 and the triangle inequality we deduce

‖fn(j) − fn(j∗n(t))‖Ω ≥ b(n)

b2
B(j, t)−B(j∗n(t), t)−‖fn(j) −Efn(j) − fn(j∗n(t)) + Efn(j∗n(t))‖Ω

so that the probability in (42) is bounded by

Pr

(

‖fn(j) − Efn(j) − fn(j∗n(t)) + Efn(j∗n(t))‖Ω ≥ b(n)

b2
B(j, t) −B(j∗n(t), t) − 4σ(n, j∗n(t))

)

.

By definition of j∗n(t) and B(j, t), we have

b(n)

b2
B(j, t) −B(j∗n(t), t) =

b(n)

b2
2t(j∗n(t)−j)B(j∗n(t), t) −B(j∗n(t), t)

>

(

b(n)

b2
2tm − 1

)

B(j∗n(t), t)

as well as B(j∗n(t), t) ≥ σ(n, j∗n(t)) ≥ σ(n, j) so that the last probability is bounded by

Pr

(

‖fn(j) − Efn(j) − fn(j∗n(t)) + Efn(j∗n(t))‖Ω ≥
[(

b(n)

b2
2tm − 1

)

− 4

]

σ(n, j∗n(t))

)

≤ Pr

(

‖fn(j) − Efn(j)‖Ω ≥ 2−1

(

b(n)

b2
2tm − 5

)

σ(n, j)

)

+ Pr

(

‖fn(j∗n(t)) − Efn(j∗n(t))‖Ω ≥ 2−1

(

b(n)

b2
2tm − 5

)

σ(n, j∗n(t))

)
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By definition of m, the term in brackets is greater than or equal to two, and then – using
Proposition 3 – the last two probabilities do not exceed 2n−κ. Moreover,

Pr
(

ĵn < j∗n(t) −m
)

=
∑

0≤j<j∗n(t)−m

Pr(ĵn = j) ≤ 2
∑

0≤j<j∗n(t)−m

n−κ

≤ 2(j∗n(t) −m)n−κ,

which completes the proof.

Combining (40) with (41) we have, for every n ∈ N and for m as in the lemma

Pr{ĵn /∈ [j∗n(t) −m, j∗n(t) + 1]} ≤ 2[(j∗n(t) −m) + (jmax − j∗n(t))]n−κ
2

= 2(jmax −m)n−κ
2 := Zn, (43)

a fact we shall use below.
We now prove Theorem 5. Denoting by E1 expectation w.r.t. S1, one has by definition of

sn(x) that

Pr {f(y) ∈ Cn(x, y) for every y ∈ Ω}

= Pr

{

sup
y∈Ω

∣

∣

∣
f̂n(y) − f(y)

∣

∣

∣
≤ sn(x)

}

= 1 − Pr

{

sup
y∈Ω

∣

∣

∣
f̂n(y) − E1f̂n(y) + E1f̂n(y) − f(y)

∣

∣

∣
> 1.01σ(n1, ĵn + un, x)

}

≥ 1 − Pr
{

‖f̂n − E1f̂n‖Ω > σ(n1, ĵn + un, x)
}

− Pr
{

‖E1f̂n − f‖Ω > 0.01σ(n1, ĵn + un, x)
}

= 1 − I − II

About term I: This probability equals, by independence of fn1
(j, y) and ĵn,

Pr
{

‖fn1
(ĵn + un, ·) − E1fn1

(ĵn + un, ·)‖Ω > σ(n1, ĵn + un, x)
}

=
∑

0≤l≤jmax

Pr {‖fn1
(l + un, ·) − E1fn1

(l + un, ·)‖Ω > σ(n1, l + un, x)}Pr{ĵn = l}

≤ e−x
∑

0≤l≤jmax

Pr{ĵn = l} = e−x

in view of Proposition 3.
About term II: Using Condition 1 as well as (43), and recalling (21), this quantity equals

Pr
{∥

∥

∥Efn1
(ĵn + un) − f

∥

∥

∥

Ω
> 0.01σ(n, ĵn + un, x)

}

≤ Pr
{

100b22
−t(ĵn+un) > σ(n1, ĵn + un, x)

}

= Pr
{

100
√
n1b2 > 2(ĵn+un)(d

2
+t)A(n1, ĵn + un, x)

}

≤
∑

j∗n(t)−m≤l≤j∗n(t)+1

I
{

100
√
n1b2 > 2(l+un)(d

2
+t)A(n1, l + un, x)

}

Pr{ĵn = l} + Zn
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≤ I

{

100b2
√
n1

A(n1, j∗n(t) + un −m,x)
> 2(j∗n(t)+1)( d

2
+t)2(un−m−1)( d

2
+t)

}

+ Zn

≤ I

{

100

√

n1

n2

A(n2, , j
∗
n(t) + 1, κ log n2)

A(n1, j∗n(t) + un −m,x)
> 2(un−m−1)( d

2
+t)

}

+ Zn

where we have used that (38) implies

2(j∗n(t)+1)( d
2
+t) ≥

√
n2b2

A(n2, j∗n(t) + 1, κ log n2)

in the last inequality. This proves Theorem 5. Theorem 4 follows from Theorem 5 using that
tradeoff between b(n) and un through the constant m (cf. also Remark 1).

5.4 Proof of Theorem 3

The size of the band is 2.02σ(n1, ĵn + un, x). In view of (40) – whose proof only requires the
hypotheses of Theorem 3 – we have ĵn ≤ j∗n(t) + 1 with probability larger than 1 − 2(jmax −
j∗n(t))n−κ

2 , so the size of this band is less than or equal to 2.02σ(n1, j
∗
n(t) + un + 1, x) with

the same probability bound. The second claim of Theorem 3 then follows from definition of
σ(n, l, x) (cf. (21)) and of j∗n(t) (cf. (39)).

6 Precise Validity of Condition (31)

In this section we investigate examples of functions verifying condition (31) if M = S
d. Let

us recall that the projection kernel on Hk(S
d) is given by

Lk(〈x, y〉d+1) =
1

|Sd|

(

1 +
k

ν

)

Cν
k (〈x, y〉d+1), ν =

d− 1

2

where Cν
k (x) is the corresponding Gegenbauer polynomial. For ease of notation we shall

redefine Aj(x, y) =
∑

k<2j a(k/2j)Lk(x, y), to be in line with the notation in Narcowich et al.
[2006a,b], Baldi et al. [2009]. [For j → ∞ this modification is immaterial.] We shall use the
classical symbol

∀k ∈ N, (a)k = a(a+ 1)..(a + k − 1)(=
Γ(a+ k)

Γ(a)
if − a 6∈ N), (a)0 = 1.

The following Olindes Rodrigues formula defines the Gegenbauer polynomials and is useful
for integration by parts: for t ∈ I = [−1, 1]

Cν
k (t) = (−1)k

1

k!2k

(2ν)k

(ν + 1
2)k

Dk{(1 − t2)k)ων(t)}
ων(t)

, ων(t) = (1 − t2)ν−1/2. (44)

Proposition 6 For 0 < α <∞, α
2 6∈ N, we define the following functions:

fα(x) =
(

√

1 − 〈x, x0〉d+1

)α
=
(

√

1 − cos(dSd(x, x0))
)α

where dSd is the geodesic distance on S
d. Then there exist constants c1 > 0, c2 > 0 independent

of j such that
c12

−jα ≤ ‖Aj(fα) − fα‖∞ ≤ c22
−jα.
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Proof of the upper bound: Let us consider first the case 0 < α ≤ 1. We have

|Aj(fα)(x) − fα(x)| = |
∫

Sd−1

Aj(x, y)fα(y)dy − fα(x)|

= |
∫

Sd

Aj(x, y)(fα(y) − fα(x))dy|

≤
∫

Sd

|Aj(x, y)||fα(y) − fα(x)|dy

But

∀θ, θ′ ∈ [0, π], |
√

1 − cos θ −
√

1 − cos θ′| =
√

2| sin θ
2
− sin

θ′

2
| ≤ 1√

2
|θ − θ′|,

so

|f1(x) − f1(y)| = |
√

1 − cos(dSd(x, x0)) −
√

1 − cos(dSd(y, x0))|

≤ 1√
2
|dSd(x, x0) − dSd(y, x0)| ≤

1√
2
dSd(x, y)

And, by the subadditivity of x 7→ xα for 0 < α ≤ 1

|fα(x) − fα(y)| = |fα
1 (x) − fα

1 (y)| ≤ |f1(x) − f1(y)|α ≤ 1

2α/2
(dSd(x, y))α

So, by the integration formula for zonal functions on the sphere (Section 9.1 in Faraut [2008]):

∀x ∈ S
d,

∫

Sd

|Aj(x, y)||fα(y) − fα(x)|dy ≤ 2−α/2

∫

Sd

|Aj(〈x, y〉d+1))|(dSd(x, y))αdy

= 2−α/2|Sd−1|
∫ π

0
Aj(cos θ)θ

α(sin θ)d−1dθ ≤ 2−α/2|Sd−1|
∫ π

0
Aj(cos θ)θ

d−1+αdθ

But using the concentration result Narcowich et al. [2006b]

∀K > 0,∃ CK <∞, Aj(cos θ) ≤ CK2jd[1 ∧ 1/(2jθ)K ]

Taking K > d+ α, we obtain

‖Aj(f) − f‖∞ ≤ 2−α/2|Sd−1|CK2jd

(

∫ 2−j

0
θd−1+αdθ +

∫ 1

2−j

θd−1+α 1

(2jθ)K
dθ

)

≤ 2−α/2|Sd−1|CK2−jα K

(d+ α)(K − d− α)

Let us now consider the case α > 1. Taking d = 2 the previous proof shows that, on
the classical torus T , for 0 < α ≤ 1 , the 2π−periodical function φα(θ) = (

√
1 − cos θ)α =

2α| sin θ
2 |α belongs to Cα(T). But, if for k in N, α equals α = k + β ≤ k + 1, it is clear

that φα(θ) is k−times differentiable, and Dkφα(θ) as a linear combination of C∞ periodical
funtions times | sin θ

2 |β+j , j = 0, 1, ..., k belongs to Cβ(T). So, φα ∈ Cα(T), and, as moreover
φα(θ) is even, there exists Pj(cos θ), a sequence of trigonometrical polynomials of degree less
than 2j such that :

‖(
√

1 − cos θ)α − Pj(cos θ)‖∞ ≤ C2−jα
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But Pj(cos〈x, x0〉d+1) is a polynomial on the sphere of degree less than 2j and

‖(
√

1 − cos〈x, x0〉d+1)
α − Pj(〈x, x0〉d+1)‖∞ ≤ C2−jα.

Proof of the lower bound We only have to consider the case j large enough since fα is not
a spherical polynomial and thus not in EN (Sd) for any finite N . Using again the integration
fomulae for zonal functions

‖Aj(fα) − fα‖∞ ≥ |Aj(fα)(x0) − fα(x0)|

= |
∫

Sd

Aj(x0, y)(fα(y) − fα(x0))dy|

= |
∫

Sd

Aj(x0, y)(
√

1 − 〈y, x0〉d+1)
αdy|

= |Sd−1|
∫ π

0
Aj(cos θ)(

√
1 − cos θ)α(sin θ)d−1dθ|

= |Sd−1|
∫

I
Aj(t)(1 − t)α/2(1 − t2)ν−1/2dt|

=
|Sd−1|
|Sd| |

∑

0≤k<2j

a(
k

2j
)(1 +

k

ν
)

∫

I
Cν

k (t)(1 − t)α/2(1 − t2)ν−1/2dt|

But, using (44)

∫

I
Cν

k (t)(1 − t)α/2(1 − t2)ν−1/2dt =

∫

I
Cν

k (t)(1 − t)α/2ων(t)dt

= (−1)k
1

k!2k

(2ν)k

(ν + 1
2)k

∫

I
(1 − t)α/2Dk{(1 − t2)kων(t)}dt

=
1

k!2k

(2ν)k

(ν + 1
2 )k

∫

I
Dk{(1 − t)α/2}(1 − t2)kων(t)dt

=
1

k!2k

(2ν)k

(ν + 1
2 )k

(−α
2

)k

∫

I
(1 − t)α/2−k(1 − t2)kων(t)dt =

=
1

k!2k

(2ν)k

(ν + 1
2 )k

(−α
2

)k

∫

I
(1 − t)α/2(1 + t)kων(t)dt = uk

Clearly ∀k ≥ 0, uk 6= 0 (because α
2 6∈ N), uk = (−1)k|uk| for 0 ≤ k < α

2 + 1 and uk =

−(−1)[α/2]|uk| for k > α
2 + 1. By the upper bound, and for j large enough :

C2−j ≥ ‖Ajfα − fα‖∞ ≥ |Sd−1|
|Sd| |

∑

0≤k<2j

a(
k

2j
)(1 +

k

ν
)uk|

=
|Sd−1|
|Sd| |

∑

0≤k<α/2+1

a(
k

2j
)(1 +

k

ν
)(−1)k|uk| − (−1)[α/2]

∑

α/2+1<k<2j

a(
k

2j
)(1 +

k

ν
)|uk| |

=
|Sd−1|
|Sd| |

∑

0≤k≤[α/2]

(1 +
k

ν
)uk − (−1)[α/2]

∑

α/2+1<k<2j

a(
k

2j
)(1 +

k

ν
)|uk| |
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So if [α/2] is even, and j large enough

|
∑

0≤k<2j

a(
k

2j
)(1 +

k

ν
)uk| =

∑

0≤k≤[α/2]

(1 +
k

ν
)uk −

∑

α/2+1<k<2j

a(
k

2j
)(1 +

k

ν
)|uk|

=
∑

0≤k≤[α/2]

(1 +
k

ν
)uk +

∑

α/2+1<k<2j

a(
k

2j
)(1 +

k

ν
)uk.

So
∑

0≤k<2j

(1 +
k

ν
)uk ≤ |

∑

0≤k<2j

a(
k

2j
)(1 +

k

ν
)uk| ≤

∑

0≤k<2j−1

(1 +
k

ν
)uk.

Now, if [α/2] is odd, and j large enough

|
∑

0≤k<2j

a(
k

2j
)(1 +

k

ν
)uk| = −(

∑

0≤k≤[α/2]

(1 +
k

ν
)uk +

∑

α/2+1<k<2j

a(
k

2j
)(1 +

k

ν
)|uk|)

= −(
∑

0≤k≤[α/2]

(1 +
k

ν
)uk +

∑

α/2+1<k<2j

a(
k

2j
)(1 +

k

ν
)uk)

So

−
∑

0≤k<2j

(1 +
k

ν
)uk ≤ |

∑

0≤k<2j

a(
k

2j
)(1 +

k

ν
)uk| ≤ −

∑

0≤k<2j−1

(1 +
k

ν
)uk,

and in any case

|
∑

0≤k<2j

a(
k

2j
)(1 +

k

ν
)uk| ∼ |

∑

0≤k<2j

(1 +
k

ν
)

∫

I
Cν

k (t)(1 − t)α/2(1 − t2)ν−1/2dt|

Denote now by 〈·, ·〉ν the L2([−1, 1])-inner product w.r.t. ων and recall (see Andrews et al.
[1999] p.343)

∑

0≤k≤n

(1 +
k

ν
)Cν

k (x) =
(n+ 2ν)Cν

n(x) − (n+ 1)Cν
n+1(x)

2ν(1 − x)

so that

2ν〈
∑

0≤k≤n

(1+
k

ν
)Cν

k (x), (1−x)α/2〉ν = (n+2ν)〈Cν
n(x), (1−x)α/2−1〉ν−(n+1)〈Cν

n+1(x), (1−x)α/2−1〉ν

〈Cν
k (x), (1 − x)α/2〉ν = (−1)k

1

k!2k

(2ν)k

(ν + 1
2)k

∫

I
(1 − t)α/2−1Dk((1 − t2)kων(t))dt

=
1

k!2k

(2ν)k

(ν + 1
2 )k

(1 − α

2
)k

∫

I
(1 − t)α/2−1−k(1 − t2)k(1 − t2)ν−1/2dt

=
1

k!2k

Γ(2ν + k)

Γ(2ν)

Γ(ν + 1
2)

Γ(ν + k + 1
2 )

Γ(−α
2 + k + 1)

Γ(1 − α
2 )

∫

I
(1 − t)ν+α/2−3/2(1 + t)ν−1/2+kdt

=
sin πα

2

π
Γ(α/2)

1

k!2k

Γ(2ν + k)

Γ(2ν)

Γ(ν + 1
2)

Γ(ν + k + 1
2 )

Γ(−α
2

+k+1)22ν+k−1+ α
2

Γ(ν + α
2 − 1

2)Γ(ν + k + 1
2)

Γ(2ν + k + α
2 )
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=
2α/2 sin(πα

2 )Γ(ν + α
2 − 1

2)Γ(α/2)

Γ(ν)
√
π

Γ(k + 1 − α
2 )Γ(2ν + k)

k!Γ(2ν + k + α
2 )

.

Using the following standard formulaes

Γ(1 − α/2)Γ(α/2) =
π

sinπα/2
; Γ(2ν)

√
π = 22ν−1Γ(ν)Γ(ν + 1/2).

We we deduce

〈
∑

0≤k≤n

(1 +
k

ν
)Cν

k (x), (1 − x)α/2〉ν =

=
2α/2 sin(πα

2 )Γ(ν + α
2 − 1

2 )Γ(α/2)

2νΓ(ν)
√
π

1

n!
.
(n+ 2ν)Γ(n+ 1 − α

2 )Γ(2ν + n)

Γ(2ν + n+ α
2 )

{1 − (n+ 1 − α
2 )

(2ν + n+ α
2 )

}

=
(2ν − 1 + α)2α/2 sin(πα

2 )Γ(ν + α
2 − 1

2)Γ(α/2)

2νΓ(ν)
√
π

(n+ 2ν)Γ(n+ 1 − α
2 )Γ(2ν + n)

(n+ 2ν + α/2)n!Γ(2ν + n+ α
2 )

sin(
πα

2
)C(α, ν)

(n+ 2ν)

(n + 2ν + α/2)

Γ(n+ 1 − α
2 )Γ(2ν + n)

n!Γ(2ν + n+ α
2 )

Clearly sin(πα
2 ) determines the sign, and by Stirling’s formula :

Γ(n+ 1 − α
2 )Γ(2ν + n)

n!Γ(2ν + n+ α
2 )

∼ n−α

So the lower bound of ‖Aj(fα) − fα‖∞ is of order 2−jα.
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