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Abstract

The problem of constructing nonparametric confidence sets that are adaptive in
L2-loss over a continuous scale of Sobolev classes is considered. Adaptation holds,
where possible, with respect to both the radius of the Sobolev ball and its smoothness
degree, and over maximal parameter spaces for which adaptation is possible. Two
key regimes of parameter constellations are identified: one where full adaptation is
possible, and one where adaptation requires critical regions be removed. The phase
transition between these regimes is analysed separately. Key ideas needed to derive
these results include a general nonparametric minimax test for infinite-dimensional
null- and alternative hypotheses, and new lower bound techniques for L2-adaptive
confidence sets.

1 Introduction

The paradigm of adaptive nonparametric inference has developed a fairly complete the-
ory for estimation and testing – we mention the key references [24, 10, 9, 26, 2, 3, 31] –
but the theory of adaptive confidence statements has not succeeded to the same extent,
and consists in a significant part of negative results that are in a somewhat puzzling con-
trast to the fact that adaptive estimators exist. The topic of confidence sets is, however,
of vital importance, since it addresses the question of whether the accuracy of adaptive
estimation can itself be estimated, and to what extent the abundance of adaptive risk
bounds and oracle inequalities in the literature are useful for statistical inference.

The parameter spaces for which adaptive confidence statements exist are sensitive to
the geometry of the functional space in which the nonparametric problem is embedded:
for instance, if the diameter of a confidence set is measured in the uniform norm then
the admissible parameter spaces are severely more constrained than in the case where
the diameter is measured in a L2-type metric. Indeed in the L2-theory – which has been
created and significantly advanced in the papers Lepski [25], Hoffmann and Lepski [17],

∗Department of Pure Mathematics and Mathematical Statistics, Statistical Laboratory, Wilberforce

Road CB30WB Cambridge, UK. Email: a.bull@statslab.cam.ac.uk, r.nickl@statslab.cam.ac.uk.

1



Juditsky and Lambert-Lacroix [22], Baraud [1], Cai and Low [7] and Robins and van
der Vaart [30] – partial positive results have been obtained, see also Theorem 3 below.
In contrast in the context of the L∞-theory Low’s [28] by now almost classical negative
result (see also [6]) has only recently been revisited: In the papers [14, 18, 23, 5],
a ’separation approach’ to the problem of adaptive confidence bands was introduced,
which attempts to find ’maximal’ subsets of the usual parameter spaces of adaptive
estimation for which honest confidence statements can be constructed.

In this article we give a complete set of necessary and sufficient conditions for when
confidence sets that are adaptive in L2-diameter exist. We should note that, even though
L2-type confidence sets do not have as clear a geometric interpretation as confidence
bands do, they involve the most commonly used loss function in adaptive estimation
problems, and so deserve special attention in the theory of adaptive inference.

As a starting point let us illustrate the situation with a simple example of two
fixed Sobolev-type classes. Let X1, . . . ,Xn be i.i.d. with common probability density f
contained in the space L2 of square-integrable functions on [0, 1]. Let Σ(r) = Σ(r,B) be
a Sobolev ball of probability densities on [0, 1], of Sobolev-norm radius B – see Section
2.1 for precise definitions – and consider adaptation to the nested models Σ(s) ⊂ Σ(r),
s > r. An adaptive estimator f̂n exists, achieving the optimal rate n−s/(2s+1) for f ∈ Σ(s)
and n−r/(2r+1) otherwise, in L2-risk; see for instance Theorem 2 below.

A confidence set is a random subset Cn = C(X1, . . . ,Xn) of L2, perhaps depending
on r, s and for the moment also on B. Define the L2-diameter of a norm-bounded subset
C of L2 as

|C| = inf
{

ρ : C ⊂ {h : ‖h− g‖2 ≤ ρ} for some g ∈ L2
}

, (1)

equal to the radius of the smallest L2-ball containing C. For a metric space (M,d),
f ∈ M , G ⊂ M , set, as usual, d(f,G) = infg∈G d(f, g), and define, for ρn a sequence of
nonnegative real numbers, the separated sets

Σ̃(r, ρn) ≡ Σ̃(r, s,B, ρn) = {f ∈ Σ(r) : ‖f − Σ(s)‖2 ≥ ρn}.

Obviously Σ̃(r, 0) = Σ(r), but for ρn > 0 these sets are proper subsets of Σ(r) \ Σ(s).
We are interested in adaptive inference for the model

Pn ≡ Σ(s) ∪ Σ̃(r, ρn).

Following [7], we shall say that the confidence set Cn is L2-adaptive and honest for Pn

if there exists a constant M such that for every n ∈ N,

sup
f∈Σ(s)

Prf

{

|Cn| > Mn−s/(2s+1)
}

≤ α′, (2)

sup
f∈Σ̃(r,ρn)

Prf

{

|Cn| > Mn−r/(2r+1)
}

≤ α′ (3)

and if
inf

f∈Pn

Prf {f ∈ Cn} ≥ 1 − α− rn (4)
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where rn → 0 as n→ ∞. We regard the constants α,α′ as given ’coverage levels’.
Part Ai) of the following theorem is a main finding of the L2-theory developed by

the authors mentioned above, and follows, for instance, from the results in Robins and
van der Vaart [30]. Part B) is a refinement of a negative result in Juditsky and Lambert-
Lacroix [22]. Part Aii) is novel and provides a certain converse to part B.

Theorem 1. Let 0 < α,α′ < 1, s > r > 1/2 and B > 1 be given.
A) An adaptive and honest confidence set for Σ̃(r, ρn)∪Σ(s) exists if one of the following
conditions is satisfied:
i) s ≤ 2r and ρn ≥ 0
ii) s > 2r and

ρn ≥Mn−r/(2r+1/2)

for every n ∈ N and some constant M that depends on α,α′, r, B.
B) If s > 2r and Cn is an adaptive and honest confidence set for Σ̃(r, ρn) ∪ Σ(s), for
every α,α′ > 0, then necessarily

lim inf
n

ρnn
r/(2r+1/2) > 0.

Thus for s ≤ 2r adaptive confidence sets exist without any additional restrictions,
but for s > 2r one has to separate the two classes as in [18] for the L∞-case, up to
multiplicative constants, by the minimax rate of testing for the composite hypotheses

H0 : f ∈ Σ(s) against H1 : f ∈ Σ̃(r, ρn),

which equals n−r/(2r+1/2). A phase transition occurs at s = 2r, when this rate is equal
to n−s/(2s+1), the rate of estimation in the submodel H0.

While the case of two fixed smoothness classes in Theorem 1 is appealing in its
conceptual simplicity, it does not describe the typical adaptation problem, where one
wants to adapt to a continuous smoothness parameter. As shown in the work of Bull
[5], confidence bands that adapt to a continuum of smoothness parameters pose a more
difficult problem than in the case of two (or finitely many) classes, and strong qualitative
assumptions must be made to make adaptation possible. Bull’s results are in the L∞-
setting, and a main point of the present article is to to solve the continuous adaptation
problem in the L2-case. The solution is different from the L∞-case, and Theorem 1 turns
out to have a full analogue for the continuous scale of Sobolev balls Σ(t), t < r, if the
radius B is known. (See Theorems 5 and 6 below.)

The usual practice of ’undersmoothing’ in the construction of confidence sets ac-
commodates the fact that B is, unlike in Theorem 1, typically unknown, but incurs a
rate-penalty for adaptation. Instead, we shall address the question of simultaneous exact
adaptation to the radius B and the smoothness s. We prove that confidence sets that
simultaneously adapt to a continuous smoothness parameter and to the unknown radius
exist if s < 2r, but cannot exist, without additional assumptions, when s > 2r. We also
analyse the phase transition at s = 2r, where separate arguments are needed. We prove
in fact the closely related result that for s > 2r even ’dishonest’ inference is impossible
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for the full parameter space of probability densities in the r-Sobolev space, see Theorem
7. In other words, even asymptotically one has to remove certain subsets of the max-
imal parameter space if one wants to construct confidence sets that adapt to arbitrary
smoothness degrees. One way to remove is to restrict the space to a fixed ball of known
radius as discussed above, but other assumptions come to mind, such as ’self-similarity’
conditions employed in Picard and Tribouley [29], Giné and Nickl [14], Kerkyacharian,
Nickl and Picard [23] and Bull [5] for confidence intervals and bands. We discuss briefly
how this applies in the L2-setting.

A key technical result needed in the proofs, that seems of independent interest, is a
general nonparametric test for composite null-hypotheses that lie in a fixed Sobolev ball.
It is based on concentration inequalities for U -statistics, on Talagrand’s [32] inequality,
and on tools from empirical process theory. It requires an entropy condition on the null-
hypothesis (see Proposition 1). Applied to the cases relevant in the present paper this test
is minimax in the sense of Ingster [20, 21], a fact that is crucial to establish optimality of
our confidence procedures. Another mathematical innovation is that we show how lower
bound techniques for ’dishonest’ confidence bands from Bull [5] apply to the L2-situation
(Theorem 7) – this amounts to deriving performance limits for confidence procedures
under ’pointwise in f ’ coverage assumptions only, so in a way goes beyond the minimax
paradigm of analysing adaptive procedures.

We state all main results other than Theorem 1 above in Section 2, and proofs are
given, in a unified way, in Section 4

2 The Setting

2.1 Wavelets and Sobolev-Besov Spaces

Denote by L2 := L2([0, 1]) the Lebesgue space of square integrable functions on [0, 1],
normed by ‖ · ‖2. For integer s the classical Sobolev spaces are defined as the spaces of
functions f ∈ L2 whose (distributional) derivatives Dαf, 0 < α ≤ s, all lie in L2. One
can define these spaces, for s > 0 any real number, in terms of the natural sequence
space isometry of L2 under an orthonormal basis. We opt here to work with wavelet
bases: for index sets Z ⊂ Z,Zl ⊂ Z and J0 ∈ N, let

{φm, 2
l/2ψk(2l·) : m ∈ Z, k ∈ Zl, l ≥ J0 + 1, l ∈ N}

be a compactly supported orthonormal wavelet basis of L2 of regularity S, and write,
as usual, ψlk = 2l/2ψk(2l·). We shall only consider Cohen-Daubechies-Vial [8] wavelet
bases where |Zl| = 2l, |Z| ≤ c(S) < ∞, J0 ≡ J0(S). We define, for 〈f, g〉 =

∫ 1
0 fg the

usual L2-inner product, and for 0 ≤ s < S, the Sobolev (-type) norms

‖f‖s,2 := max



2J0s

√

∑

k∈Z

〈f, φk〉2, sup
l≥J0+1

2ls

√

∑

k∈Zl

〈f, ψlk〉2




= max

(

2J0s‖〈f, φ·〉‖2, sup
l≥J0+1

2ls‖〈f, ψl·〉‖2

)

(5)
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where in slight abuse of notation we use the symbol ‖ · ‖2 for the sequence norms on
ℓ2(Zl), ℓ

2(Z) as well as for the usual norm on L2. Define moreover the Sobolev (-type)
spaces W s ≡ Bs

2∞ = {f ∈ L2 : ‖f‖s,2 < ∞}. We note here that W s is not the
classical Sobolev space – in this case the supremum over l ≥ J0 + 1 would have to be
replaced by summation over l – but the present definition gives rise to the slightly larger
Besov space Bs

2∞, which will turn out to be the natural exhaustive class for our results
below. We still refer to them as Sobolev spaces for simplicity, and since the main idea
is to measure smoothness in L2. We understand W s as spaces of continuous functions
whenever s > 1/2 (possible by standard embedding theorems). We shall moreover set,
in abuse of notation, φk ≡ ψJ0k (which does not equal 2−1/2ψJ0+1,k(2−1·)) in order for
the wavelet series of a function f ∈ L2 to have the compact representation

f =

∞
∑

l=J0

∑

k∈Zl

ψlk〈ψlk, f〉,

with the understanding that ZJ0
= Z. The wavelet projection ΠVj

(f) of f ∈ L2 onto
the span Vj in L2 of

{φm, 2
l/2ψk(2l·) : m ∈ Z, k ∈ Zl, J0 + 1 ≤ l ≤ j}

equals

Kj(f)(x) ≡
∫ 1

0
Kj(x, y)f(y)dy ≡ 2j

∫ 1

0
K(2jx, 2jy)f(y)dy =

j−1
∑

l=J0

∑

k∈Zl

〈f, ψlk〉ψlk(x)

where K(x, y) =
∑

k φk(x)φk(y) is the wavelet projection kernel.

2.2 Adaptive Estimation in L
2

Let X1, . . . ,Xn be i.i.d. with common density f on [0, 1], with joint distribution equal to
the first n coordinate projections of the infinite product probability measure Prf . Write
Ef for the corresponding expectation operator. We shall throughout make the minimal
assumption that f ∈ W r for some r > 1/2, which implies in particular, by Sobolev’s
lemma, that f is continuous and bounded on [0, 1]. The adaptation problem arises from
the hope that f ∈W s for some s significantly larger than r, without wanting to commit
to a particular a priori value of s. In this generality the problem is still not meaningful,
since the regularity of f is not only described by containment in W s, but also by the size
of the Sobolev norm ‖f‖s,2. If one defines, for 0 < s <∞, 1 ≤ B <∞, the Sobolev-balls
of densities

Σ(s,B) :=

{

f : [0, 1] → [0,∞),

∫

T
f = 1, ‖f‖s,2 ≤ B

}

, (6)

then Pinsker’s minimax theorem (for density estimation) gives, as n→ ∞,

inf
Tn

sup
f∈Σ(s,B)

Ef‖Tn − f‖2
2 ∼ c(s)B2/(2s+1)n−2s/(2s+1) (7)
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for some constant c(s) > 0 depending only on s, and where the infimum extends over
all measurable functions Tn of X1, . . . ,Xn (cf., e.g., the results in Theorem 5.1 in [11]).
So any risk bound, attainable uniformly for elements f ∈ Σ(s,B), cannot improve on
B2/(2s+1)n−2s/(2s+1) up to multiplicative constants. If s,B are known then constructing
estimators that attain this bound is possible, even with the asymptotically exact constant
c(s). The adaptation problem poses the question of whether estimators can attain such
a risk bound without requiring knowledge of B, s.

The paradigm of adaptive estimation has provided us with a positive answer to this
problem, and one can prove the following result.

Theorem 2. Let 1/2 < r ≤ R < ∞ be given. Then there exists an estimator f̂n =
f(X1, . . . ,Xn, r, R) such that, for every s ∈ [r,R], every B ≥ 1, and every n ∈ N,

sup
f∈Σ(s,B)

Ef‖f̂n − f‖2
2 ≤ cB2/(2s+1)n−2s/(2s+1)

for a constant 0 < c <∞ that depends only on r,R and on U ≡ supf∈Σ(r,B) ‖f‖∞ <∞.

More elaborate techniques allow for c to depend only on s, and even to obtain the
exact asymptotic minimax (’Pinsker’-) constant, see for instance Theorem 5.1 in [11]. We
shall not study exact constants here, mostly to simplify the exposition and to focus on
the main problem of confidence statements, but also since exact constants are asymptotic
in nature and we prefer to give nonasymptotic bounds.

From a dishonest – ’pointwise in f ’ – perspective we can conclude from Theorem 2
that adaptive estimation is possible over the full continuous Sobolev scale

⋃

s∈[r,R],B≥1

Σ(s,B) = W r ∩
{

f : [0, 1] → [0,∞),

∫ 1

0
f = 1

}

;

for any probability density f ∈W s, s ∈ [r,R], the single estimator f̂n satisfies

Ef‖f̂n − f‖2
2 ≤ c‖f‖2/(2s+1)

s,2 n−s/(2s+1),

and this result is uniform in any fixed ball of W s. Since f̂n depends on neither B nor s
we can say that f̂n adapts to both s ∈ [r,R] and B ≥ 1 simultaneously. Our interest here
is to understand what remains of this remarkable result if one is interested in adaptive
confidence statements rather than in risk bounds.

3 Adaptive Confidence Sets for Sobolev Classes

3.1 Honest and Dishonest Inference

We aim to characterise those sets Pn consisting of probability densities f ∈W r for which
we can construct adaptive confidence sets. More precisely, we seek random subsets Cn

of L2 that depend only on known quantities, cover f ∈ Pn at least with prescribed
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probability 1−α, and have L2-diameter adaptive with respect to radius and smoothness
with prescribed probability at least 1 − α′. Recall the definition of the diameter |C| of
a subset of L2 from (1) above, and of the constant U from Theorem 2.

Definition 1 (L2-adaptive confidence sets.). Let X1, . . . ,Xn be i.i.d. on [0, 1] with
common density f . Let 0 < α,α′ < 1 and 1/2 < r ≤ R be given and let Cn =
C(X1, . . . ,Xn, r, R, α, α

′) be a random subset of L2 .
i) Cn is called L2-adaptive and honest for a sequence of (nonempty) models Pn ⊂W r if
there exists a constant L = L(r,R,U) such that for every n ∈ N

sup
f∈Σ(s,B)∩Pn

Prf

{

|Cn| > LB1/(2s+1)n−s/(2s+1)
}

≤ α′ for every s ∈ [r,R], B ≥ 1, (8)

(the condition being void if Σ(s,B) ∩ Pn is empty) and

inf
f∈Pn

Prf {f ∈ Cn} ≥ 1 − α− rn (9)

where rn → 0 as n→ ∞.
ii) Cn is called L2-adaptive and dishonest for a model P ⊂W r if (8) and (9) in part i)
of the definition are replaced by

lim sup
n

Prf

{

|Cn| > L‖f‖1/(2s+1)
s,2 n−s/(2s+1)

}

≤ α′ ∀f ∈W s ∩ P, s ∈ [r,R], (10)

where now L = L(r,R, ‖f‖∞), and

lim inf
n

Prf {f ∈ Cn} ≥ 1 − α ∀f ∈ P. (11)

respectively.

Some discussion is in order. We shall often only say that Cn is ’adaptive and hon-
est/dishonest for Pn/P’ when no confusion may arise. Note that in Definition 1 the set
Cn is not allowed to depend on the radius B, but we require the sharp dependence on B
in (8), so that the usual ’undersmoothed’, near-adaptive, confidence sets are excluded in
our setting. The natural ’maximal’ choice in the honest case would be Pn = Σ(r,B) ∀n
with B ≥ 1 arbitrary but fixed, whereas in the ’dishonest’ case one would ideally want
the full parameter space P = W r ∩ {f : [0, 1] → [0,∞),

∫ 1
0 f = 1}. Dishonest confidence

sets are mostly of theoretical interest: they have the uniformity requirements of honesty
relaxed to asymptotic ’pointwise in f ’ statements, so cannot be used for valid asymp-
totic inference as the index n from which onwards coverage holds depends on f . We
study them because they showcase the subtleties of certain situations where dishonest
inference is possible but honest inference is not. They further serve as a benchmark to
which the limit sets limn Pn of any sequence of models Pn for which honest inference
can be established should be compared to. Any honest confidence set for a sequence of
increasing models Pn automatically gives rise to ’dishonest’ confidence statements for
the limit set limn Pn, and given two models it seems reasonable to prefer the one with
the larger limit set.
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The interval [r,R] describes the range of smoothness parameters one wants to adapt
to. Besides the restriction 1/2 < r ≤ R < ∞ the choice of this window of adaptation
is arbitrary (although the values of R, r influence the constants). The results below will
show that whether L2-adaptive confidence sets exist – honest or dishonest – depends
crucially on whether R exceeds 2r or not, with a phase transition at R = 2r.

3.2 The Case R < 2r.

A first result, the key elements of which have been discovered and discussed in [25, 17, 22,
7, 30], is that L2-adaptive confidence statements that parallel the situation of Theorem
2 exist without any additional restrictions whatsoever, in the case where R < 2r, so
that the window of adaptation is [r, 2r). The following theorem is a simple extension of
results in Robins and van der Vaart [30] in that it shows that adaptation is possible not
only to the smoothness s, but also to the radius B, in particular B does not have to be
known for the construction of the procedure.

Theorem 3. Let R < 2r.
i) An honest and adaptive confidence set in the sense of Definition 1 exists for every
fixed Sobolev ball, i.e., for the choice Pn ≡ Σ(r,B) ∀n where B ≥ 1 is arbitrary.
ii) An adaptive and dishonest confidence set in the sense of Definition 1 exists for the
full model P = W r ∩ {f : [0, 1] → [0,∞),

∫ 1
0 f = 1}.

The main idea of the proof is that, if R < 2r, the squared L2-risk of f̂n from Theorem
2 can be estimated at a rate compatible with adaptation, by a suitable U -statistic. Note
that the sequence rn from Definition 1 (bot not Cn) depends on B in the above theorem
– one may thus use Cn without any prior choice of parameters, but evaluation of its
coverage is still relative to the model Σ(r,B).

3.3 The Case R > 2r

The obvious question arises as to what happens when the requirement R < 2r is dropped.
Let us consider firstR > 2r, the phase transition R = 2r will be treated separately below.

On the one hand we have, in view of Part B of Theorem 1, an immediate negative
result concerning honest inference. Note that we even allow Cn to depend on B in the
following theorem.

Theorem 4. If an honest and adaptive confidence set Cn in the sense of Definition 1
exists for the choice Pn ≡ Σ(r,B) ∀n and some B > 1, then necessarily R ≤ 2r.

On the other hand we have the following result. While implied by Theorem 3 in
case R < 2r, it shows that for R ≥ 2r, perhaps surprisingly, dishonest inference is still
possible when an upper bound for the radius B of the Sobolev ball is known.

Theorem 5. Let R ≥ r be arbitrary and let B ≥ 1 be given. A dishonest and adaptive
confidence set Cn = C(X1, . . . ,Xn, B, r,R, α, α

′) in the sense of Definition 1 exists for
P = Σ(r,B).
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We see that there exists a genuine discrepancy between honest and dishonest adaptive
confidence sets in the case R > 2r. Moreover Theorem 5 is specific to confidence sets
that are L2-adaptive, and a corresponding result for confidence bands over a continuous
scale of Hölder balls cannot be proved, cf. the results in [5]. We wish to understand the
mechanisms behind Theorem 5 in more detail.

The proof of Theorem 5 is based on the idea of constructing a subset Pn of Σ(r,B)
which grows dense in Σ(r,B) and for which honest inference is possible. This approach
follows the ideas in Hoffmann and Nickl [18] in the L∞-case for two fixed Hölder balls,
and works as follows in the L2-setting: Assume without loss of generality that R = 2Nr
for some N ∈ N, N > 1, and define the grid

S = {sm}N
m=1 = {r, 2r, 4r, . . . , 2(N − 1)r}.

Note that S is independent of n. Since B will be known in what follows we will sometimes
write Σ(s) for Σ(s,B) to expedite notation. Define, for s ∈ S \ {sN},

Σ̃(s, ρ) := Σ̃(s,B,S, ρ) = {f ∈ Σ(s) : ‖f − Σ(t)‖2 ≥ ρ ∀t > s, t ∈ S} .

We will choose the separation rates

ρn(s) ∼ n−s/(2s+1/2),

equal to the minimax rate of testing between Σ(s) and any submodel Σ(t) for t ∈ S, t > s,
see Section 4.2 below. The resulting model is therefore, for M some positive constant,

Pn(M,S) = Σ(sN )
⋃





⋃

s∈S\{sN}

Σ̃(s,Mρn(s))



 .

The main idea behind the following theorem, which is a main result of the paper, is to
construct a minimax test for the nested hypotheses {Hs : f ∈ Σ̃(s,Mρn(s))}s∈S\{sN}

and then use the confidence set from Theorem 3 for the smoothness hypothesis selected
by the test.

Theorem 6. Let R > 2r be arbitrary and let B ≥ 1 be given. An honest and adaptive
confidence set Cn = C(X1, . . . ,Xn, B, r,R, α, α

′) in the sense of Definition 1 exists for
Pn = Pn(M,S), n ∈ N, with M a large enough constant depending on α,α′.

Theorem 6 is optimal in the following sense: First note that, since S is independent
of n, Pn(M,S) ր Σ(r) as n→ ∞, so that the model Pn(M,S) grows dense in the fixed
Sobolev ball, which for known B is the full model. This implies in particular Theorem 5
for R > 2r. Another question is whether Pn(M,S) was taken to grow as fast as possible
as a function of n, or in other words, whether a smaller choice of ρn(s) would have been
possible. The lower bound in Theorem 1 implies that any faster choice for ρn(s) makes
honest inference impossible. Indeed, if Cn is an honest confidence set over Pn(M,S)
with a faster separation rate ρ′n = o(ρn(s)) for some s ∈ S \ {sN}, then we can use Cn
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to test H0 : f ∈ Σ(s′) against H1 : f ∈ Σ̃(s, ρ′n) for some s′ > 2s, which by the proof of
Theorem 1 gives a contradiction.

The proof of Theorem 6 via testing smoothness hypotheses is strongly tied to knowl-
edge of the radius B, and the question arises whether adaptation to unknown B is also
possible, as in the case R < 2r, in particular if, as a consequence, dishonest inference
is possible over the full model W r for arbitrary R ≥ r. The answer to this question is
negative, as the following lower bound for dishonest confidence sets shows.

Theorem 7. Fix 0 < α < 1/2 and let s ≥ r be arbitrary. A random subset Cn of L2

cannot satisfy
i) lim infn Prf (f ∈ Cn) ≥ 1 − α for every probability density f ∈W r

ii) |Cn| = OPrf
(rn) for every probability density f ∈W s

at any rate rn = o(n−r/(2r+1/2)).

Since n−R/(2R+1) = o(n−r/(2r+1/2)) for R > 2r we cannot possibly hope for an adap-
tive dishonest confidence set for all of W r. In fact Theorem 7 reveals substantial limita-
tions for L2-adaptive inference over the full Sobolev scale with general R, r: It implies
that any sequence of models Pn over which honest adaptive inference is possible must
asymptotically remove elements from W r. One way to remove from W r was given in
Theorem 6 by restricting the radius, another one is discussed in Subsection 3.5.

3.4 The Phase Transition at R = 2r

In the critical case R = 2r the situation can be described as follows. If B is known, honest
confidence sets that are L2-adaptive exist, but simultaneous adaptation to unknown
B is impossible. Dishonest inference is, however, possible for the full Sobolev space,
illustrating further the discrepancy between honest and dishonest inference.

Theorem 8. Let R = 2r.
a) A confidence set Cn that is honest and adaptive in the sense of Definition 1 for
Pn = Σ(r,B) ∀n for arbitrary B > 1 does not exist.
b) Let B ≥ 1 be given. An honest and adaptive confidence set Cn = C(X1, . . . ,Xn, B, r,R, α, α

′)
in the sense of Definition 1 exists for Pn = Σ(r,B) ∀n.
c) A dishonest and adaptive confidence set in the sense of Definition 1 exists for the full
model P = W r ∩ {f : [0, 1] → [0,∞),

∫ 1
0 f = 1}.

3.5 Self-Similarity Conditions

Alternative ways to restrict W r, which may be practically more relevant, are given in
[29, 14, 23, 5]. The authors instead restrict to ‘self-similar’ functions, whose regularity
is similar at large and small scales. As the results [14, 23, 5] prove adaptation in L∞,
they naturally imply adaptation also in L2; however, in the more favourable L2 case,
their assumptions are stronger than necessary. Define the truncated wavelet expansion

fi,j :=

j
∑

l=i

∑

k∈Zl

〈ψlk, f〉ψlk,

10



using the notation from Section 2.1. For J0 ≤ J ≤ K, ε ∈ (0, 1), consider the class of
functions

Σ(t, J,K, ε) =
{

f ∈W t : f a density, min (‖fj0,J‖t,2, ‖fK,∞‖t,2) ≥ ε‖f‖t,2

}

.

Using similar arguments to Bull [5], one may construct confidence sets which are honest
and adaptive over classes

P =
⋃

s∈[r,R]

Σ(s, J,K, ε),

for any 0 < r ≤ R, and large enough K. These classes are again smaller than the full
space W r, and require the choice of parameters J, K and ε. The functions we exclude,
however, are now those whose norm is hard to estimate, rather than those whose norm
is merely large.

4 Proofs

4.1 Some Concentration Inequalities

Let Xi, i = 1, 2, . . . , be the coordinates of the product probability space (S,S, P )N, where
P is any probability measure on (S,S), Pn = n−1

∑n
i=1 δXi

the empirical measure, E ex-
pectation under PN ≡ Pr. For M any set and H : M → R, set ‖H‖M = supm∈M |H(m)|.
We also write Pf =

∫

S fdP for f : S → R.
The following Bernstein-type inequality for canonical U -statistics of order two is due

to Giné, Latala and Zinn [13], with refinements about the numerical constants in Houdré
and Reynaud-Bouret [19]: Let R(x, y) be a symmetric real-valued function defined on
S × S, such that ER(X,x) = 0 for all x, and let

Λ2
1 =

n(n− 1)

2
ER(X1,X2)2,

Λ2 = n sup{E[R(X1,X2)ζ(X1)ξ(X2)] : Eζ2(X1) ≤ 1, Eξ2(X1) ≤ 1},
Λ3 = ‖nER2(X1, ·)‖1/2

∞ , Λ4 = ‖R‖∞.
Let moreover U

(2)
n (R) = 2

n(n−1)

∑

i<j R(Xi,Xj) be the corresponding degenerate U -
statistic of order two. Then, there exists a universal constant 0 < C < ∞ such that for
all u > 0 and n ∈ N:

Pr

(

n(n− 1)

2
|U (2)

n (R)| > C(Λ1u
1/2 + Λ2u+ Λ3u

3/2 + Λ4u
2)

)

≤ 6 exp{−u}. (12)

We will also need Talagrand’s [32] inequality for empirical processes. Let F be a
countable class of measurable functions on S that take values in [−1/2, 1/2], or, if F
is P -centered, in [−1, 1]. Let σ ≤ 1/2, or σ ≤ 1 if F is P -centered, and V be any two
numbers satisfying

σ2 ≥ ‖Pf2‖F , V ≥ nσ2 + 2E

∥

∥

∥

∥

∥

n
∑

i=1

(f(Xi) − Pf)

∥

∥

∥

∥

∥

F

.

11



Bousquet’s [4] version of Talagrand’s inequality then states: For every u > 0,

Pr

{∥

∥

∥

∥

∥

n
∑

i=1

(f(Xi) − Pf)

∥

∥

∥

∥

∥

F

≥ E

∥

∥

∥

∥

∥

n
∑

i=1

(f(Xi) − Pf)

∥

∥

∥

∥

∥

F

+ u

}

≤ exp

(

− u2

2V + 2
3u

)

. (13)

A consequence of this inequality, derived in Section 3.1 in [16], is the following. If
S = [0, 1], P has bounded Lebesgue density f on S, and fn(j) =

∫ 1
0 Kj(·, y)Pn(y), then

for M large enough, every j ≥ 0, n ∈ N and some positive constants c, c′,

Pr

(

‖fn(j) − Efn(j)‖2 > M

√

‖f‖∞
2j

n

)

≤ c′e−cM22j

. (14)

4.2 A General Purpose Test for Composite Nonparametric Hypotheses

In this subsection we construct a general test for composite nonparametric null hy-
potheses that lie in a fixed Sobolev ball, under assumptions only on the entropy of the
null-model. While of independent interest, the result will be a key step in the proofs of
Theorems 1 and 6, where minimax optimal tests between two nested Sobolev-balls are
required.

Let X,X1, . . . ,Xn be i.i.d. with common probability density f on [0, 1], let Σ be any
subset of a fixed Sobolev ball Σ(t) = Σ(t, B) for some t > 1/2 and consider testing

H0 : f ∈ Σ against H1 : f ∈ Σ(t) \ Σ, ‖f − Σ‖2 ≥ ρn, (15)

where ρn ≥ 0 is a sequence of nonnegative real numbers. For {ψlk} a S-regular wavelet
basis, S > t, Jn ≥ J0 a sequence of positive integers such that 2Jn ≃ n1/(2t+1/2) and for
g ∈ Σ, define the U -statistic

Tn(g) =
2

n(n− 1)

∑

i<j

Jn−1
∑

l=J0

∑

k∈Zl

(ψlk(Xi) − 〈ψlk, g〉)(ψlk(Xj) − 〈ψlk, g〉) (16)

and, for τn some thresholds to be chosen below, the test statistic

Ψn = 1

{

inf
g∈Σ

|Tn(g)| > τn

}

. (17)

We shall neglect measurability issues here, but Proposition 1 below holds without mea-
surability by using outer expectation. In the cases relevant below where Σ equals Σ(s),
a Sobolev ball contained in Σ(t), measurability of the infimum in (17) can be established
by standard compactness/continuity arguments.

We shall prove a bound on the sum of the type-one and type-two errors of this test
under some entropy conditions on Σ, more precisely, on the class of functions

G(Σ) =
⋃

J>J0







J−1
∑

l=J0

∑

k∈Zl

ψlk(·)〈ψlk, g〉 : g ∈ Σ







.
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Recall the usual covering numbersN(ε,G, L2(P )) and bracketing metric entropy numbers
N[](ε,G, L2(P )) for classes G of functions and probability measures P on [0, 1] (e.g.,
[33, 34]).

Definition 2. Say that Σ is s-regular if one of the following conditions is satisfied for
some fixed finite constants A and every 0 < ε < A:
a) For any probability measure Q on [0, 1] (and A independent of Q) we have

logN(ε,G(Σ), L2(Q)) ≤ (A/ε)1/s.

b) For P such that dP = fdλ with Lebesgue density f : [0, 1] → [0,∞) we have

logN[](ε,G(Σ), L2(P )) ≤ (A/ε)1/s.

Note that a ball Σ(s,B) satisfies this condition for the given s, 1/2 < s < S, since any
element of G(Σ(s,B)) has ‖ · ‖s,2-norm no more than B, and since logN(ε,Σ(s,B), ‖ ·
‖∞) ≤ (A/ε)1/s, see, e.g., p.506 in [27].

Proposition 1. Let

τn = Ldn max(n−2s/(2s+1), n−2t/(2t+1/2)), ρ2
n =

L0

L
τn

for real numbers 1 ≤ dn ≤ d(log n)γ and positive constants L,L0, γ, d. Let the hypotheses
H0,H1 be as in (15), the test Ψn as in (17), and assume Σ is s-regular for some s > 1/2.
Then for L = L(B, t, S), L0 = L0(L,B, t, S) large enough and every n ∈ N there exist
constants ci, i = 1, . . . , 3 depending only on L,L0, t, B such that

sup
f∈H0

Ef Ψn + sup
f∈H1

Ef (1 − Ψn) ≤ c1e
−d2

n + c2e
−c3nρ2

n .

Proof. 1) We first control the type-one errors. Since f ∈ H0 = Σ we see

EfΨn = Prf

{

inf
g∈Σ

|Tn(g)| > τn

}

≤ Prf {|Tn(f)| > τn} . (18)

Tn(f) is a U -statistic with kernel

Rf (x, y) =

Jn−1
∑

l=J0

∑

k∈Zl

(ψlk(x) − 〈ψlk, f〉)(ψlk(y) − 〈ψlk, f〉),

which satisfies ERf (x,X1) = 0 for every x, since Ef (ψlk(X) − 〈ψlk, f〉) = 0 for every
k, l. Consequently Tn(f) is a degenerate U -statistic of order two, and we can apply
inequality (12) to it, which we shall do with u = d2

n. We thus need to bound the
constants Λ1, . . . ,Λ4 occurring in inequality (12) in such a way that, for L large enough,

2C

n(n− 1)
(Λ1dn + Λ2d

2
n + Λ3d

3
n + Λ4d

4
n) ≤ Ldnn

−2t/(2t+1/2) ≤ τn, (19)

13



which is achieved by the following estimates, noting that n−2t/(2t+1/2) ≃ 2Jn/2/n.
First, by standard U -statistic arguments, we can bound ER2

f (X1,X2) by the second
moment of the uncentred kernel, and thus, using orthonormality of ψlk,

ER2
f (X1,X2) ≤

∫ ∫





∑

k,l

ψlk(x)ψlk(y)





2

f(x)f(y)dxdy

≤ ‖f‖2
∞

Jn−1
∑

l=J0

∑

k∈Zl

∫ 1

0
ψ2

lk(x)dx

∫ 1

0
ψ2

lk(y)dy

≤ C(S)2Jn‖f‖2
∞

for some constant C(S) that depends only on the wavelet basis. We obtain Λ2
1 ≤

C(S)n(n− 1)2Jn‖f‖2
∞/2 and it follows, using

sup
f∈Σ(t,B)

‖f‖∞ ≤ C(B, t), (20)

that for L large enough and every n,

2CΛ1dn

n(n− 1)
≤ C(S,B, t)

2Jn/2dn

n
≤ τn/4.

For the second term note that, using the Cauchy-Schwarz inequality and that Kj is a
projection operator
∣

∣

∣

∣

∣

∣

∫ ∫ Jn−1
∑

l=J0

∑

k∈Zl

ψlk(x)ψlk(y)ζ(x)ξ(y)f(x)f(y)dxdy

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

KJn(ζf)(y)ξ(y)f(y)dy

∣

∣

∣

∣

≤ ‖KJn(ζf)‖2‖ξf‖2 ≤ ‖f‖2
∞,

and similarly

|E[EX1
[KJn(X1,X2)]ζ(X1)ξ(X2)]| ≤ ‖f‖2

∞, |EKJn(X1,X2)| ≤ ‖f‖2
∞.

Thus
E[Rf (X1,X2)ζ(X1)ξ(X2)] ≤ 4‖f‖2

∞

so that, using (20),
2CΛ2d

2
n

n(n− 1)
≤ C ′(B, t)d2

n

n
≤ τn/4

again for L large enough and every n.
For the third term, using the decomposition Rf (x1, x) = (r(x1, x) − EX1

r(X,x)) +
(EX,Y r(X,Y ) − EY r(x1, Y )) for r(x, y) =

∑

k,l ψlk(x)ψlk(y), the inequality (a + b)2 ≤
2a2 + 2b2 and again orthonormality, we have that for every x ∈ R,

n|EX1
R2

f (X1, x)| ≤ 2n



‖f‖∞
Jn−1
∑

l=J0

∑

k∈Zl

ψ2
lk(x) + ‖f‖∞‖ΠVJn

(f)‖2
2




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so that, using ‖ψlk‖∞ ≤ d2l/2, again for L large enough and by (20),

2CΛ3d
3
n

n(n− 1)
≤ C ′′(B, t)

2Jn/2d3
n

n

1√
n
≤ τn/4.

Finally, we have Λ4 = ‖Rf‖∞ ≤ c2Jn and hence

2CΛ4d
4
n

n(n− 1)
≤ C ′ 2

Jnd4
n

n2
≤ τn/4,

so that we conclude for L large enough and every n ∈ N, from inequality (12),

Prf {|Tn(f)| > τn} ≤ 6 exp
{

−d2
n

}

(21)

which completes the bound for the type-one errors in view of (18).
2) We now turn to the type-two errors. In this case, for f ∈ H1

Ef (1 − Ψn) = Prf

{

inf
g∈Σ

|Tn(g)| ≤ τn

}

. (22)

and the typical summand of Tn(g) has Hoeffding-decomposition

(ψlk(Xi) − 〈ψlk, g〉)(ψlk(Xj) − 〈ψlk, g〉)
= (ψlk(Xi) − 〈ψlk, f〉 + 〈ψlk, f − g〉)(ψlk(Xj) − 〈ψlk, f〉 + 〈ψlk, f − g〉)
= (ψlk(Xi) − 〈ψlk, f〉)(ψlk(Xj) − 〈ψlk, f〉))

+ (ψlk(Xi) − 〈ψlk, f〉)〈ψlk, f − g〉 + (ψlk(Xj) − 〈ψlk, f〉)〈ψlk, f − g〉
+ 〈ψlk, f − g〉2

so that by the triangle inequality, writing

Ln(g) =
2

n

n
∑

i=1

Jn−1
∑

l=J0

∑

k∈Zl

(ψlk(Xi) − 〈ψlk, f〉)〈ψlk, f − g〉 (23)

for the linear terms, we conclude

|Tn(g)| ≥
Jn−1
∑

l=J0

∑

k∈Zl

〈ψlk, f − g〉2 − |Tn(f)| − |Ln(g)|

= ‖ΠVJn
(f − g)‖2

2 − |Tn(f)| − |Ln(g)| (24)

for every g ∈ Σ.
We can find random g∗n ∈ Σ such that infg∈Σ |Tn(g)| = |Tn(g∗n)|. (If the infimum is not

attained the proof below requires obvious modifications; for the case Σ = Σ(s,B), s > t,
relevant below, the infimum can be shown to be attained at a measurable minimiser by
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standard continuity and compactness arguments.) We bound the probability in (22),
using (24), by

Prf

{

|Ln(g∗n)| > ‖ΠVJn
(f − g∗n)‖2

2 − τn

2

}

+ Prf

{

|Tn(f)| > ‖ΠVJn
(f − g∗n)‖2

2 − τn

2

}

.

Now by the standard approximation bound (cf. (5)) and since g∗n ∈ Σ ⊂ Σ(t),

‖ΠVJn
(f − g∗n)‖2

2 ≥ inf
g∈Σ

‖f − g‖2
2 − c(B)2−2Jnt ≥ 4τn (25)

for L0 large enough depending only on B and the choice of L from above. We can thus
bound the sum of the last two probabilities by

Prf{|Ln(g∗n)| > ‖ΠVJn
(f − g∗n)‖2

2/4} + Prf{|Tn(f)| > τn}.

For the second degenerate part the proof of Step 1 applies, as only boundedness of f
was used there. In the linear part somewhat more care is necessary. We have

Prf{|Ln(g∗n)| > ‖ΠVJn
(f − g∗n)‖2

2/4} ≤ Prf

{

sup
g∈Σ

|Ln(g)|
‖ΠVJn

(f − g)‖2
2

>
1

4

}

. (26)

Note that the variance of the linear process from (23) can be bounded, for fixed g ∈ Σ,
using independence and orthonormality, by

V arf (|Ln(g)|) ≤ 4

n

∫





Jn−1
∑

l=J0

∑

k∈Zl

ψlk(x)〈ψlk, f − g〉





2

f(x)dx

≤ 4‖f‖∞
n

Jn−1
∑

l=J0

∑

k∈Zl

∫

ψ2
lk(x)dx · 〈ψlk, f − g〉2

≤ 4‖f‖∞‖ΠVJn
(f − g)‖2

2

n
(27)

so that the supremum in (26) is one of a self-normalised ratio-type empirical process.
Such processes can be controlled by slicing the supremum into shells of almost constant
variance, cf. Section 5 in [33] or [12]. Define, for g ∈ Σ,

σ2(g) := ‖πVJn
(f − g)‖2

2 ≥ ‖f − g‖2
2 − c(B)2−2Jnt ≥ cρ2

n,

the inequality holding for L0 large enough and some c > 0. Define moreover, for m ∈ Z,
the class of functions

Gm,Jn =







2

Jn−1
∑

l=J0

∑

k∈Zl

ψlk(·)〈ψlk, f − g〉 : g ∈ Σ, σ2(g) ≤ 2m+1







,
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which is uniformly bounded by a constant multiple of ‖f‖t,2 + supg∈Σ(t,B) ‖g‖t,2 ≤ 2B
in view of (5) and since t > 1/2. Then clearly, in the notation of Subsection 4.1,

sup
g∈Σ:σ2(g)≤2m+1

|Ln(g)| = ‖Pn − P‖Gm,Jn

and we bound the last probability in (26) by

Prf

{

max
m∈Z:c′ρ2

n≤2m≤C
sup

g∈Σ:2m≤σ2(g)≤2m+1

|Ln(g)|
σ2(g)

>
1

4

}

≤
∑

m∈Z:c′ρ2
n≤2m≤C

Prf

{

sup
g∈Σ:σ2(g)≤2m+1

|Ln(g)| > 2m−2

}

(28)

≤
∑

m∈Z:c′ρ2
n≤2m≤C

Prf

{

‖Pn − P‖Gm,Jn
− E‖Pn − P‖Gm,Jn

> 2m−2 − E‖Pn − P‖Gm,Jn

}

where we may take C < ∞ as Σ ⊂ Σ(t) is bounded in L2, and where c′ is a positive
constant such that c′ρ2

n ≤ 2m ≤ cρ2
n for some m ∈ Z. We bound the expectation of

the empirical process. Both the uniform and the bracketing entropy condition for G(Σ)
carry over to ∪J≥0GJ,m since translation by f preserves the entropy. Using the standard
entropy-bound plus chaining moment inequality (3.5) in Theorem 3.1 in [12] in case a)
of Definition 2, and the second bracketing entropy moment inequality in Theorem 2.14.2
in [34] in case b), together with the variance bound (27) and with (20), we deduce

E‖Pn − P‖Gm,Jn
≤ C

(

√

2m

n
(2m)−1/4s +

(2m)−1/2s

n

)

. (29)

We see that
2m−2 − E‖Pn − P‖Gk

≥ c02m

for some fixed c0 precisely when 2m is of larger magnitude than (2m)
1

2
− 1

4sn−1/2 +
(2m)−1/2sn−1, equivalent to 2m ≥ c′′n−2s/(2s+1) for some c′′ > 0, which is satisfied
since 2m ≥ c′ρ2

n ≥ c′′n−2s/(2s+1) if L0 is large enough, by hypothesis on ρn. We can thus
rewrite the last probability in (28) as

∑

m∈Z:c′ρ2
n≤2m≤C

Prf

{

n‖Pn − P‖Gm,Jn
− nE‖Pn − P‖Gm,Jn

> c0n2m
}

.

To this expression we can apply Talagrand’s inequality (13), noting that the supremum
over Gm,Jn can be realised, by continuity, as one over a countable subset of Σ, and since Σ
is uniformly bounded by supf∈Σ(t) ‖f‖∞ ≤ U ≡ U(t, B). Renormalising by U and using
(13), (27), (29) we can bound the expression in the last display, up to multiplicative
constants, by

∑

m∈Z:c′ρ2
n≤2m≤C

exp

{

−c1
n2(2m)2

n2m + nE‖Pn − P‖Gm,Jn
+ n2m

}

≤
∑

m∈Z:c′ρ2
n≤2m≤C

e−c2n2m

≤ c3e
−c4nρ2

n
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since 2m ≥ c′ρ2
n >> n−1, which completes the proof.

4.3 Proof of Theorem 2

Proof. We construct a standard Lepski type estimator: Choose integers jmin, jmax such
that J0 ≤ jmin < jmax,

2jmin ≃ n1/(2R+1) and 2jmax ≃ n1/(2r+1)

and define the grid
J := Jn = [jmin, jmax] ∩ N.

Let fn(j) ≡ fn(j, ·) =
∫ 1
0 Kj(·, y)dPn(y) be a linear wavelet estimator based on wavelets

of regularity S > R. To simplify the exposition we assume here that ‖f‖∞ (or U)
is known, otherwise the result follows from the same proof, with ‖f‖∞ replaced by
‖fn(jmax)‖∞, a consistent estimator that satisfies sufficiently tight exponential error
bounds (cf., e.g., [15]), and whose accuracy depends on U . Set

j̄n = min

{

j ∈ J : ‖fn(j) − fn(l)‖2
2 ≤ C(S)(‖f‖∞ ∨ 1)

2l

n
∀l > j, l ∈ J

}

(30)

where C(S) is a large enough constant, to be chosen below, in dependence of the wavelet
basis. The adaptive estimator is f̂n = fn(j̄n). We shall need the standard estimates

E‖fn(j) − Efn(j)‖2
2 ≤ D

2j

n
:= Dσ2(j, n) (31)

and, for f ∈W s, s ∈ [r,R],

‖Efn(j) − f‖2 ≤ 2−jsD′‖f‖s,2 := B(j, f) (32)

for constants D,D′ that depend only on the wavelet basis and on r,R. Define j∗ := j∗(f)
by

j∗ = min
{

j ∈ J : B(j, f) ≤
√
Dσ(j, n)

}

so that, for every f ∈ Σ(s,B) and D′′ = D′′(D,D′)

D−1B2(j∗, f) ≤ σ2(j∗, n) ≤ D′′‖f‖2/(2s+1)
s,2 n−2s/(2s+1) ≤ D′′B2/(2s+1)n−2s/(2s+1). (33)

We will consider the cases {j̄n ≤ j∗} and {j̄n > j∗} separately. First, by the definition
of j̄n, j

∗ and (31), (32), (33),

E ‖fn(j̄n) − f‖2
2 I{j̄n≤j∗} = E

(

‖fn(j̄n) − fn(j∗)‖2
2 + E‖fn(j∗) − f‖2

2

)

I{j̄n≤j∗}

≤ C(S)(‖f‖∞ ∨ 1)
2j∗

n
+ C ′σ2(j∗, n) ≤ C ′′B2/(2s+1)n−2s/2s+1

18



which is the desired bound. On the event {j̄n > j∗} we have, using (31) and the definition
of j∗,

E ‖fn(j̄n) − f‖2 I{ĵn>j∗} ≤
∑

j∈J :j>j∗

(

E ‖fn(j) − f‖2
2

)1/2 (

EI{ĵn=j}

)1/2

≤
∑

j∈J :j>j∗

C ′′′σ(j, n) ·
√

Prf{ĵn = j}

≤ C ′′′′
∑

j∈J :j>j∗

√

Prf{ĵn = j}

since σ(jmax, n) is bounded in n. Now pick any j ∈ J so that j > j∗ and denote by j−

the previous element in the grid (i.e. j− = j − 1). One has, by definition of j̄n,

Prf{j̄n = j} ≤
∑

l∈J :l≥j

Prf

{

∥

∥fn(j−) − fn(l)
∥

∥

2
>

√

C(S)(‖f‖∞ ∨ 1)
2l

n

}

, (34)

and we observe that, by the triangle inequality,

∥

∥fn(j−) − fn(l)
∥

∥

2
≤
∥

∥fn(j−) − fn(l) − Efn(j−) + Efn(l)
∥

∥

2
+B(j−, f) +B(l, f),

where,
B(j−, f) +B(l, f) ≤ 2B(j∗, f) ≤ cσ(j∗, n) ≤ c′σ(l, n)

by definition of j∗ and since l > j− ≥ j∗. Consequently, the probability in (34) is
bounded by

Prf

(

∥

∥fn(j−) − fn(l) −Efn(j−) + Efn(l)
∥

∥

2
> (
√

C(S)(‖f‖∞ ∨ 1) − c′)σ(l, n)
)

, (35)

and by inequality (14) above this probability is bounded by a constant multiple of e−2l

if we choose C(S) large enough. This gives the overall bound

∑

l∈J :l≥j

c′′e−d2l ≤ d′e−d′′2jmin ,

which is smaller than a constant multiple times B1/(2s+1)n−s/(2s+1), uniformly in s ∈
[r,R], n ∈ N and for B ≥ 1, by definition of jmin. This completes the proof.

4.4 Proof of Theorem 3

Proof. Suppose for simplicity that the sample size is 2n, and split the sample into two
halves with index sets S1,S2, of equal size n, write E1, E2 for the corresponding expec-
tations, and E = E1E2. Let f̂n = fn(j̄n) be the adaptive estimator from the proof of
Theorem 2 based on the sample S1. One shows by a standard bias-variance decomposi-
tion, for every f ∈ W r, using j̄n ∈ J and ‖Kj(f)‖r,2 ≤ ‖f‖r,2 since Kj is a projection
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operator, that for every ε > 0 there exists a finite positive constant B′ = B′(ε,B)
satisfying

inf
f∈Σ(r,B)

Prf (‖f̂n‖r,2 ≤ B′) ≥ 1 − ε.

It therefore suffices to prove the theorem on the event {‖f̂n‖r,2 ≤ B′}. For a wavelet basis
of regularity S > R and for Jn ≥ J0 a sequence of integers such that 2Jn ≃ n1/(2r+1/2),
define the U -statistic

Un(f̂n) =
2

n(n− 1)

∑

i<j,i,j∈S2

Jn−1
∑

l=J0

∑

k∈Zl

(ψlk(Xi) − 〈ψlk, f̂n〉)(ψlk(Xj) − 〈ψlk, f̂n〉) (36)

which has expectation

E2Un(f̂n) =
Jn−1
∑

l=J0

∑

k∈Zl

〈ψlk, f − f̂n〉2 = ‖ΠVJn
(f − f̂n)‖2

2.

Using Chebychev’s inequality and that, by definition of the norm (5)

sup
h∈Σ(r,b)

‖ΠVJn
(h) − h‖2

2 ≤ c(b)2−2Jnr

for every 0 < b <∞ and some finite constant c(b), we deduce

inf
f∈Σ(r,B)

Prf,2

{

Un(f̂n) − ‖f − f̂n‖2
2 ≥ −(c(B) + c(B′))2−2Jnr − z(α)τn(f)

}

≥ inf
f∈Σ(r,B)

Prf,2

{

Un(f̂n) − ‖ΠVJn
(f − f̂n)‖2

2 ≥ −z(α)τn(f)
}

≥ 1 − sup
f∈Σ(r,B)

V ar2(Un(f̂n) − E2Un(f̂n))

(z(α)τn(f))2
.

We now show that the last quantity is greater than or equal to 1 − z(α)−2 ≥ 1 − α for
quantile constants z(α) and with

τ2
n(f) =

C(S)2Jn‖f‖2
∞

n(n− 1)
+

4‖f‖∞
n

‖ΠVJn
(f − f̂n)‖2,

which in turn gives the honest confidence set under Pr

Cn(‖f‖∞, B) =

{

f ∈ Σ(r,B) : ‖f − f̂n‖2 ≤
√

zατn(f) + Un(f̂n) + (c(B) + c(B′))2−2Jnr

}

.

(37)
We shall comment on the role of the constants ‖f‖∞, c(B) at the end of the proof.
To establish the last claim, note that the Hoeffding decomposition for the centered U -
statistic with kernel

R(x, y) =
Jn−1
∑

l=J0

∑

k∈Zl

(ψlk(x) − 〈ψlk, f̂n〉)(ψlk(y) − 〈ψlk, f̂n〉)
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is (cf. the proof of Theorem 4.1 in [30])

Un(f̂n) − E2Un(f̂n) =
2

n

n
∑

i=1

(π1R)(Xi) +
2

n(n− 1)

∑

i<j

(π2R)(Xi,Xj) ≡ Ln +Dn

where

(π1R)(x) =
Jn−1
∑

l=J0

∑

k∈Zl

(ψlk(x) − 〈ψlk, f〉)〈ψlk, f − f̂n〉

and

(π2R)(x, y) =
Jn−1
∑

l=J0

∑

k∈Zl

(ψlk(x) − 〈ψlk, f〉)(ψlk(y) − 〈ψlk, f〉)

The variance of Un(f̂n) − E2Un(f̂n) is the sum of the variances of the two terms in the
Hoeffding decomposition. For the linear term we bound the variance V ar2(Ln) by the
second moment, using orthonormality of the ψlks,

4

n

∫





Jn−1
∑

l=J0

∑

k∈Zl

ψlk(x)〈ψlk, f̂n − f〉





2

f(x)dx ≤ 4‖f‖∞
n

Jn−1
∑

l=J0

∑

k∈Zl

〈ψlk, f̂n − f〉2,

which equals the second term in the definition of τ2
n(f). For the degenerate term we can

bound V ar2(Dn) analogously by the second moment of the uncentered kernel (cf. after
(19)), i.e., by

2

n(n− 1)

∫





Jn−1
∑

l=J0

∑

k∈Zl

ψlk(x)ψlk(y)





2

f(x)dxf(y)dy ≤ C(S)2Jn‖f‖2
∞

n(n− 1)
,

using orthonormality and the cardinality properties of Zl.
The so constructed confidence set has an adaptive expected maximal diameter: Let

f ∈ Σ(s,B) for some s ∈ [r,R] and some B ≥ 1. The nonrandom terms are of order

√

c(B) + c(B′)2−Jnr + ‖f‖1/2
∞ 2Jn/4n−1/2 ≤ C(S,B, r,B′)n−r/(2r+1/2)

which is o(n−s/(2s+1)) since s ≤ R < 2r. The random component of τn(f) has order

‖f‖1/4
∞ n−1/4E1‖ΠVJn

(f̂n − f)‖1/2
2 which is also o(n−s/(2s+1)) for s < 2r, since ΠVJn

is a

projection operator and in view of adaptivity of f̂n established in Theorem 2. Moreover,
by Theorem 2 and again the projection properties,

EUn(f̂n) = E1‖ΠVJn
(f̂n − f)‖2

2 ≤ E1‖f̂n − f‖2
2 ≤ cB2/(2s+1)n−2s/(2s+1),

where c depends on ‖f‖∞. The term in the last display is the leading term in our bound
for the diameter of the confidence set, and shows that Cn adapts to both B and s in the
sense of Definition 1, using Markov’s inequality.
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The confidence set Cn(‖f‖∞, B) is not feasible if B is unknown, so in particular under
the assumptions of Theorem 3, but Cn independent of ‖f‖∞, B can be constructed as
follows: If B is not known, we replace c(B)+c(B′) in the definition of (37) by a divergent
sequence of positive real numbers cn, which can still be accommodated in the diameter
estimate from the last paragraph since n−2r/(2r+1/2)cn is still o(n−2s/(2s+1)) as long as
s ≤ R < 2r for cn diverging slowly enough (e.g., like logn). Define thus the confidence
set

Cn =

{

f ∈ Σ(r) : ‖f − f̂n‖2 ≤
√

zατn(f) + Un(f̂n) + cn2−2Jr

}

, (38)

with ‖f‖∞ replaced by ‖fn(jmax)‖∞ (as at the beginning of the proof of Theorem 2) in
all expressions where ‖f‖∞ occurs. The ’honest’ part of Theorem 3 then holds for Cn,
using that ‖fn(jmax)‖∞ concentrates around ‖f‖∞ (arguing as in [15]), with accuracy
of concentration depending on ‖f‖∞ ≤ U . For the dishonest part let f be such that
‖f‖s,2 <∞, and apply the ’honest’ result with B = ‖f‖s,2.

4.5 Proof of Theorem 1

Proof. That an L2-adaptive confidence set exists when s ≤ 2r follows from Theorem 3;
The case s < 2r is immediate, and the case s = 2r follows using the confidence set (37).
This set is feasible since B and thus also an upper bound for ‖f‖∞ (cf. (20)) is known
under the hypothesis of the theorem, and adaptive since n−r/(2r+1/2) = n−s/(2s+1) for
s = 2r.

For part Aii we use the test Ψn from Proposition 1 with Σ = Σ(s), t = r, – cf. also
the remark after Definition 2 – and define a confidence ball as follows. Take f̂n = fn(j̄n)
to be the adaptive estimator from the proof of Theorem 2, and let, for 0 < L′ <∞,

Cn =

{

{f ∈ Σ(r) : ‖f − f̂n‖2 ≤ L′n−s/(2s+1)} if Ψn = 0

{f ∈ Σ(r) : ‖f − f̂n‖2 ≤ L′n−r/(2r+1)} if Ψn = 1

We first prove that Cn is honest for Σ(s) ∪ Σ̃(r, ρn) if we choose L′ large enough. For
f ∈ Σ(s) we have from Theorem 2, by Markov’s inequality,

inf
f∈Σ(s)

Prf (f ∈ Cn) ≥ 1 − sup
f∈Σ(s)

Prf

(

‖f̂n − f‖2 > L′n−s/(2s+1)
)

≥ 1 − ns/(2s+1)

L′
sup

f∈Σ(s)
Ef‖f̂n − f‖2

≥ 1 − c(B, s, r)

L′

which can be made greater than 1 − α for any α > 0 by choosing L′ large enough
depending only on B,α, r, s. When f ∈ Σ̃(r, ρn), using again Markov’s inequality

inf
f∈Σ̃(r,ρn)

Prf (f ∈ Cn) ≥ 1 −
supf∈Σ(r)Ef‖f̂n − f‖2

L′n−r/(2r+1)
− sup

f∈Σ̃(r,ρn)

Prf (Ψn = 0).
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The first subtracted term can be made smaller than α/2 for L′ large enough as before.
The second subtracted term can also be made less than α/2 in view of Proposition 1 for
suitable M,dn large enough but bounded in n. This proves that Cn is honest. We now
turn to adaptivity of Cn: By the definition of Cn we always have |Cn| ≤ L′n−r/(2r+1),
so the case f ∈ Σ̃(r, ρn) is proved. If f ∈ Σ(s) then using Proposition 1 again, for M,dn

large enough depending on α′ but bounded in n,

Prf (|Cn| > L′n−s/(2s+1)) = Prf (Ψn = 1) ≤ α′,

which completes the proof of part A.
To prove part B of Theorem 1 we argue by contradiction and assume that the limit

inferior equals zero. We then pass to a subsequence of n for which the limit is zero,
and still denote this subsequence by n. Let f0 ≡ 1 ∈ Σ(s), suppose Cn is adaptive and
honest for Σ(s) ∪ Σ̃(r, ρn) for every α,α′, and consider testing

H0 : f = f0 against H1 : f ∈ Σ̃(r, ρn)

where ρn ≤ ǫn−r/(2r+1/2) for any ǫ > 0, and every n ≥ n(ǫ) large enough. Since s > 2r
we can find a sequence ρ′n such that n−s/(2s+1) = o(ρ′n) = o(ρn) for every ǫ > 0. Accept
H0 if Cn ∩ Σ̃(r, ρn) is empty and reject otherwise, formally

Ψn = 1{Cn ∩ Σ̃(r, ρn) 6= ∅}.

The type-one errors of this test satisfy

Ef0
Ψn = Prf0

{

Cn ∩ Σ̃(r, ρn) 6= ∅
}

≤ Prf0
{f0 ∈ Cn, |Cn| ≥ ρ′n} + Prf0

{f0 /∈ Cn}
≤ α+ α′ + rn → α+ α′

as n → ∞ by the hypothesis of coverage and adaptivity of Cn. The type-two errors
satisfy, by coverage of Cn, as n→ ∞

Ef (1 − Ψn) = Prf{Cn ∩ Σ̃(r, ρn) = ∅} ≤ Prf{f /∈ Cn} ≤ α+ rn → α,

uniformly in f ∈ Σ̃(r, ρn). We conclude that this test satisfies

lim sup
n

[

Ef0
Ψn + sup

f∈H1

Ef (1 − Ψn)

]

≤ 2α+ α′

for arbitrary α,α′ > 0. Since balls in W s = Bs
2∞([0, 1]) contain Hölder balls we have a

contradiction to Theorem 1i in [20] which states that the limit inferior of the term in
brackets in the last display, even with an infimum over all tests, exceeds a fixed positive
constant. Conclude that for such a sequence of ρn an adaptive and honest confidence
set cannot exist.
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4.6 Proof of Theorem 6

Let us use the shorthand Σ̃n(s) for Σ̃(s, ρn(s)). For i = 1, . . . ,N, let Ψ(i) be the test
from (17) with Σ = Σ(si+1) and t = si, cf. also the remark after Definition 2. Starting
from the largest model we first test H0 : f ∈ Σ(s2) against H1 : f ∈ Σ̃n(s1), accepting
H0 if Ψ(1) = 0. If H0 is rejected we set ŝn = s1 = r, otherwise we proceed to test H0 :
f ∈ Σ(s3) against H1 : f ∈ Σ̃n(s2) using Ψ(2) and iterating this procedure downwards
we define ŝn to be the first element si in S for which Ψ(i) = 1 rejects. If no rejection
occurs we set ŝn equal to sN , the last element in the grid.

For f ∈ Pn(M,S) define the unique si0 := si0(f) = {s ∈ S : f ∈ Σ̃n(s)}. We now
show that for M large enough

sup
f∈Pn(M,S)

Prf (ŝn 6= si0(f)) < max(α,α′)/2. (39)

Indeed, if ŝn < si0 then the test Ψ(i) has rejected for some i < i0. In this case f ∈
Σ̃n(si0) ⊂ Σ(si0) ⊆ Σ(si+1) for every i < i0, and thus,

Prf (ŝn < si0) = Prf

(

⋃

i<i0

{Ψ(i) = 1}
)

≤
∑

i<i0

sup
f∈Σ(si+1)

Ef Ψ(i)

≤ C(N)e−cd2
n < max(α,α′)/2

by Proposition 1 for constants M,dn large enough but bounded in n. On the other
hand if ŝn > si0 (ignoring the trivial case si0 = sN) then Ψ(i0) has accepted despite
f ∈ Σ̃n(si0). Thus

Prf (ŝn > si0) ≤ sup
f∈Σ̃n(si0

)

Ef (1 − Ψ(i0)) ≤ Ce−cd2
n ≤ max(α,α′)/2

again by Proposition 1, for M,dn large enough.
Denote now by Cn(si) the confidence set (37) constructed in the proof of Theorem 3

with r there being si and R = 2si = si+1 such that the asymptotic coverage level is α/2
for any f ∈ Σ(si), and set Cn = Cn(ŝn). We use the knowledge of B and thus an upper
bound for ‖f‖∞ under the hypotheses of the theorem. We then have, from the proof of
Theorem 3, for f ∈ Σ̃n(si0) ⊂ Σ(si0),

Prf (f ∈ Cn(ŝn)) ≥ Prf (f ∈ Cn(si0)) − α/2 ≥ 1 − α.

Moreover, if f ∈ Σ(s) for s ∈ [si0 , si0+1) and also for s ∈ [sN , R] if si0 = sN , the expected
diameter of Cn satisfies, by the estimates in the proof of Theorem 3

Prf (|Cn(ŝn)| > Cn−s/(2s+1)) ≤ Prf (|Cn(si0)| > Cn−s/(2s+1)) + α′/2 < α′

for C large enough, so that this band is adaptive as well.
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4.7 Proof of Theorem 7

Proof. Suppose such Cn exists. For m = 0, 1, 2, . . . ,∞, we will construct functions
f0 = 1,

fm = 1 + ε

m
∑

i=1

∑

k∈Zji

2−ji(r+1/2)βikψjik.

We will choose j1, j2, . . . ∈ N satisfying ji/ji−1 ≥ 1 + 1/2r, and βik = ±1 at random.
Pick ε > 0 small enough that ‖fm − fm−1‖∞ ≤ 2−(m+1) for all m < ∞, and any choice
of ji, βik. Then

fm = 1 +

m
∑

i=1

(fi − fi−1) ≥ 1
2 ,

and
∫

fm = 〈1, fm〉 = 1, so the fm are densities. By (5), fm ∈W r, and for m <∞, also
fm ∈W s. We will further choose a subsequence nm so that, for δ = 1

5(1 − 2α),

sup
m

Prf∞(f∞ ∈ Cnm) ≤ 1 − α− δ,

contradicting our assumptions on Cn.
Inductively, suppose we have defined fm−1, nm−1. For nm > nm−1 and D > 0 large,

we have:

1. Prfm−1
(fm−1 6∈ Cnm) ≤ α+ δ; and

2. Prfm−1
(|Cnm | ≥ Drnm) ≤ δ.

Setting Tn = 1(∃ f ∈ Cn : ‖f − fm−1‖2 ≥ 2Drn), we then have

Prfm−1
(Tnm = 1) ≤ Prfm−1

(fm−1 6∈ Cnm) + Prfm−1
(|Cnm | ≥ Drnm) ≤ α+ 2δ. (40)

We claim it is possible to choose jm, βmk and nm so that also, for m > 1,

3Drnm ≤ ‖fm − fm−1‖2 ≤ 1
4‖fm−1 − fm−2‖2, (41)

and for any further choice of ji, βik,

Prf∞(Tnm = 0) ≥ 1 − α− 4δ. (42)

We may then conclude that, since all further choices will satisfy (41),

‖f∞ − fm−1‖2 ≥ ‖fm − fm−1‖2 −
∞
∑

i=m+1

‖fi − fi−1‖2 ≥ 2Drnm ,

so
Prf∞(f∞ ∈ Cnm) ≤ Prf∞(Tnm = 1) ≤ α+ 4δ = 1 − α− δ

as required.
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It remains to verify the claim. For j ≥ (1 + 1/2r)jm−1, βk = ±1, set

gβ = ε2−j(r+1/2)
∑

k∈Zj

βkψjk,

and fβ = fm−1 + gβ . Allowing j → ∞, set n ∼ C2j(2r+1/2), for C > 0 to be determined.
Then

‖gβ‖2 = ε2−jr ≈ n−r/(2r+1/2),

so for j large enough, fβ satisfies (41) with any choice of β.
The density of X1, . . . ,Xn under fβ, w.r.t. under fm−1, is

Zβ =

n
∏

i=1

fβ

fm−1
(Xi).

Set Z = 2−j
∑

β Zβ, so Efm−1
[Z] = 1, and

Efm−1
[Z2] = 2−2j

∑

β,β′

n
∏

i=1

Efm−1

[

fβfβ′

f2
m−1

(Xi)

]

= 2−2j
∑

β,β′

〈

fβ
√

fm−1

,
fβ′

√

fm−1

〉n

= 2−2j
∑

β,β′

(

1 +

〈

gβ
√

fm−1

,
gβ′

√

fm−1

〉)n

≤ 2−2j
∑

β,β′

(1 + 2〈β, β′〉)n

= E[(1 + ε221−j(2r+1)Y )n],

where Y =
∑2j

i=1Ri, for i.i.d. Rademacher random variables Ri,

≤ E[exp(nε221−j(2r+1)Y )]

= cosh
(

D2−j/2(1 + o(1))
)2j

,

as j → ∞, for some D > 0,

=
(

1 +D22−j(1 + o(1))
)2j

≤ exp
(

D2(1 + o(1))
)

≤ 1 + δ2,

for j large, C small. Hence Efm−1
[(Z − 1)2] ≤ δ2, and we obtain

Prfm−1
(Tn = 1) + max

β
Prfβ

(Tn = 0) ≥ Prfm−1
(Tn = 1) + 2−j

∑

β

Prfβ
(Tn = 0)

= 1 +Efm−1
[(Z − 1)1(Tn = 0)]

≥ 1 − δ.
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Set fm = fβ, for β maximizing this expression. The density of X1, . . . ,Xn under f∞,
w.r.t. under fm, is

Z ′ =
n
∏

i=1

f∞
fm

(Xi).

Now, Efm
[Z ′] = 1, and

‖f∞ − fm‖2
2 =

∞
∑

i=m+1

ε22−2jir ≤ E′2−2jm+1r ≤ E′2−j(2r+1),

for some constant E′ > 0, so similarly

Efm
[Z ′2] ≤ (1 + 2‖f∞ − fm‖2

2)n

≤ (1 + E′21−j(2r+1))n

≤ exp(E′n21−j(2r+1))

= exp
(

F2−j/2(1 + o(1))
)

,

for some F > 0,

≤ 1 + δ2,

for j large. Hence Efm
[(Z ′ − 1)2] ≤ δ2, and

Prfm−1
(Tn = 1) + Prf∞(Tn = 0) = Prfm−1

(Tn = 1) + Efm
[Z ′1(Tn = 0)]

≥ 1 − δ + Efm
[(Z ′ − 1)1(Tn = 0)]

≥ 1 − 2δ.

If we take jm = j, nm = n large enough also that (40) holds, then f∞ satisfies (42), and
our claim is proved.

4.8 Proof for Theorem 8

Proof. Part b) follows from the proof of Theorem 3, as the confidence set (37) can be
used also for R = 2r when B is known. Part c) is proved as follows: We use the standard
estimate

E
(

‖fn(j)‖2
r,2 − ‖Efn(j)‖2

r,2

)2 ≤ C(2(2r+1/2)j/n)2,

for some constant C > 0. Then for any 2J ′

n = o(n1/(2r+1/2)), by Chebyshev’s inequality
‖fn(J ′

n)‖r,2 is a consistent estimate of ‖Efn(J ′
n)‖r,2. Fix δ > 0, and set

B̂n := (1 + δ)‖fn(J ′
n)‖r,2.

If also J ′
n → ∞, then for n large enough depending on f, with high probability,

‖f‖r,2 ≤ B̂n ≤ (1 + 2δ)‖f‖r,2,
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and we may thus replace B with B̂n in the proof of Part b). Cn is then a dishonest
confidence set for the full model P.

To prove part a), suppose Cn exists. Set f0 = 1, and

f1 = 1 +B2−j(r+1/2)
∑

k∈Zj

βjkψjk,

for B > 0, j > j0, and βjk = ±1 to be determined. Having chosen B, we will pick j
large enough that f1 ≥ 1

2 . Since
∫

f1 = 〈f1, 1〉 = 1, f1 is then a density.
Set δ = 1

4(1 − 2α). As f0 ∈ Σ(R, 1), for n and L large we have:

1. Prf0
(f0 6∈ Cn) ≤ α+ δ; and

2. Prf0
(|Cn| ≥ Ln−R/(2R+1)) ≤ δ.

Setting Tn = 1(∃ f ∈ Cn : ‖f − f0‖2 ≥ 2Ln−R/(2R+1)), we then have

Prf0
(Tn = 1) ≤ α+ 2δ,

as in the proof of Theorem 7.
For a constant C = C(δ) > 0 to be determined, set B = (3L)2R+1C−R. Allowing

j → ∞, set n ∼ CB−22j(R+1/2). Then

‖f1 − f0‖2 = B2−jr ≃ 3Ln−R/(2R+1),

so for j large, ‖f1 − f0‖2 ≥ 2Ln−R/(2R+1). Arguing as in the proof of Theorem 7, the
density Z of f1 w.r.t. f0 has second moment

Ef0
[Z2] ≤ cosh(nB221−j(2r+1))2

j

= cosh(C21−j/2(1 + o(1)))2
j

= (1 + C222−j(1 + o(1)))2
j

≤ exp(4C2(1 + o(1)))

≤ 1 + δ2,

for C(δ) small, j large. Hence

Prf0
(Tn = 1) + max

β
Prf1

(Tn = 0) ≥ 1 − δ.

and for all j (and n) large enough, we obtain, for suitable β,

Prf1
(f1 ∈ Cn) ≤ Prf1

(Tn = 1) ≤ α+ 3δ = 1 − α− δ.

Since f1 ∈ Σ(r,B + 1) for all n, βjk this contradicts the definition of Cn.
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[16] E. Giné and R. Nickl. Rates of contraction for posterior distributions in lr-metrics,
1 ≤ r ≤ ∞. Ann. Statist., 2011. to appear.

[17] M. Hoffmann and O.V. Lepski. Random rates in anisotropic regression. Ann.
Statist., 30(2):325–396, 2002. With discussions and a rejoinder by the authors.

[18] M. Hoffmann and R. Nickl. On adaptive inference and confidence bands. Ann.
Statist., 2011. to appear.
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