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Abstract Let μn be a sequence of random finite signed measures on the locally com-
pact group G equal to either T

d or R
d . We give weak conditions on the sequence μn

and on functions K such that the convolution product μn ∗K , and its derivatives, con-
verge in law, in probability, or almost surely in the Banach spaces C0(G) or Lp(G).
Examples for sequences μn covered are the empirical process (possibly arising from
dependent data) and also random signed measures

√
n(P̃n − P) where P̃n is some

(nonparametric) estimator for the measure P, including the usual kernel and wavelet
based density estimators with MISE-optimal bandwidths. As a statistical application,
we apply the results to study convolutions of density estimators.
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1 Introduction

Consider two independent random variables Y and Z that take values in the locally
compact group G equal to the d-dimensional Torus T

d or Euclidean space R
d . The

law of Y + Z is equal to the convolution P
Y ∗ P

Z of the laws of Y and Z. Recently,
in [17, 18] as well as [7], results of the following type were obtained: If the densities
of Y and Z exist and satisfy mild smoothness assumptions and if P̃

Y
n and P̃

Z
n are the

random measures obtained from (nonparametric) kernel density estimators for the
densities of Y and Z, then the (centered) convolution products P̃

Y
n ∗ P̃

Z
n − P

Y ∗ P
Z
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were shown to converge in law at rate
√

n in the space C0(R
d) of bounded continuous

functions on R
d that vanish at infinity; and also in Lp(Rd)-spaces.

Motivated by these results, the aim of the present paper is to shed some light
on the general question of convergence behavior of convolutions of density estima-
tors. From a mathematical point of view, this question can be phrased in general
terms of convergence properties of convolution products of sequences of random fi-
nite signed measures. As is well known, regularity (e.g., smoothness or integrability)
properties of a function K are typically inherited by the convolution product of this
function with another integrable function or finite measure. For example, the map-
ping μ �→ μ ∗ K from the space M(G) of finite signed measures on G into C0(G)

(or Lp(G)) is continuous for arbitrary K ∈ C0(G) (or Lp(G)) if both spaces are
equipped with the respective norm topologies. Consequently, limiting properties of a
(possibly random) sequence μn of finite signed measures in the total variation norm
carry over to limiting properties of convolution products μn∗K in C0(G) (or Lp(G)).
Hence a first attempt to reproduce the results by the abovementioned authors might be
to set μn = √

n(P̃Y
n − P

Y ) and K equal to the Lebesgue density of P
Z . (We consider

here for the moment the even simpler case where P
Z is known.) The continuous map-

ping argument just given would then work if we could establish that
√

n(P̃Y
n − P

Y ) is
uniformly tight in (the norm topology of) M(G). But this is impossible if the postu-
lated statistical model for P

Y is genuinely infinite-dimensional: In this case, the total
variation norm of

√
n(P̃Y

n − P
Y ) will become unbounded with positive probability

as n increases, since it is well known that the best rate of convergence in the total
variation norm of a nonparametric estimator for P

Y is, in general, strictly slower than
1/

√
n. We refer to Chap. 15 in [2] for a detailed discussion of this fact.

A second attempt might be to use the fact that convolution with an arbitrary func-
tion K in C0(G) (or Lp(G)) is still a continuous mapping from M(G) into C0(G) (or
Lp(G)) if M(G) is equipped with its weak-star topology, cf., e.g., Theorem III.1.9
in [12]. But the proof of this result uses the fact that a (nonrandom) weak-star con-
vergent sequence μn in M(G) stays uniformly bounded in the total variation norm
by the Banach–Steinhaus theorem. As mentioned above,

√
n(P̃Y

n − P
Y ) becomes un-

bounded with positive probability in the total variation norm as n increases, so this
approach does not work either.

Both attempts fail because the chosen topologies on M(G) are too strong in the
sense that

√
n(P̃Y

n − P
Y ) is not uniformly tight in these topologies. Consequently,

one could try to choose an even weaker topology on M(G) (so that
√

n(P̃Y
n − P

Y )

is uniformly tight in this topology) and investigate whether the operation of convo-
lution with certain functions still possesses suitable continuity properties on M(G)

with respect to this topology. This can be done by imbedding M(G) into certain
spaces of Schwartz distributions, which is the approach taken in the present paper,
see Sects. 2 and 3: We first study convergence of random signed measures in a gen-
eral class of Banach spaces of distributions and we establish a simple connection
between norm-convergence in these spaces to limiting results for random measure
processes (such as density estimators or the empirical process) that are available in
the literature. We then use the fact that some of these distribution spaces have sim-
ple Fourier-analytical characterizations to show that convolution with a function that
possesses some regularity properties is still a continuous mapping into C0(G) and
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Lp(G). The last observation has already been used in the mathematical physics and
interacting particle system literature (e.g., [16]), but it seems that this was not widely
appreciated by probabilists and statisticians.

We then discuss in Sect. 4 how our general results can be applied to the statistical
problems considered by Frees [5], Schick and Wefelmeyer [17, 18], and Giné and
Mason [7]. Our general results rely on the techniques developed in Sects. 2 and 3 and
on recent results on uniform central limit theorems for density estimators, see [13,
14] and [8, 9]. Next to reproducing the results Schick, Wefelmeyer, Giné and Mason
in the kernel density estimator case, our results also apply to other density estimators,
in particular, to wavelet, maximum likelihood, and trigonometric series estimators,
possibly in a setting with dependent data and adaptive choice of bandwidth or tuning
parameters. In particular for estimators that are nonlinear in the empirical measure,
our results can still be used, in contrast to the U -process approach used by Giné and
Mason [7].

2 Convergence of Random Signed Measures

2.1 Some Function and Distribution Spaces on G

We denote by BS the Borel-σ -algebra of a (nonempty) topological space S. To unify
the presentation, we shall deal with the locally compact group G equal either to the d-
dimensional Torus T

d , Euclidean space R
d , or the integer vectors Z

d . We define the
following function spaces on G ∈ {Td,R

d,Z
d}: The symbol C(G) denotes the Ba-

nach space of bounded real-valued continuous functions on G normed by the usual
sup-norm ‖ · ‖∞. The symbol C0(G) denotes the closed subspace of C(G) consisting
of bounded continuous real-valued functions f such that, for every ε > 0, there exists
a compact set K ⊆ G such that f (x) < ε holds for x /∈ K . (Clearly, C0(T

d) = C(Td),

and C0(R
d) is the subspace of C(Rd) consisting of functions that vanish at infinity.)

We denote by L0(G) the set of real-valued BG-measurable functions on G. For G

equal to T
d or R

d , the symbol λ will always denote the (product-)Lebesgue mea-
sure on G, and for G = Z

d , the symbol λ stands for the (product-)counting measure.
For h ∈ L0(G), we set ‖h‖p,λ := (

∫
G

|h|p dλ)1/p for 1 ≤ p ≤ ∞ (where ‖h‖∞,λ

denotes the λ-essential supremum of |h|). We denote by Lp(G) the vector space
of all h ∈ L0(G) that satisfy ‖h‖p,λ < ∞. In accordance, Lp(G) denotes the corre-
sponding Banach space of equivalence classes [h]λ (modulo equality λ-almost every-
where), h ∈ Lp(G). We shall also use obvious analogues of these spaces and norms
for complex-valued functions.

Let D(Td) denote the space of complex-valued infinitely differentiable functions
defined on T

d , and let S(Rd) denote the space of rapidly decreasing infinitely dif-
ferentiable complex-valued functions on R

d . We equip both spaces with their usual
locally convex topology and obtain the topological dual spaces D′(Td)—the space
of (complex) Schwartz-distributions on T

d—as well as S ′(Rd), the space of (com-
plex) tempered distributions on R

d . We refer to [20] for details. We will, with some
abuse of notation, set D(G) and D′(G) equal to D(Td) and D′(Td), respectively, for
G = T

d and equal to S(Rd) and S ′(Rd), respectively, for G = R
d .
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We denote by F the (distributional) Fourier transform acting on D′(G) (see, e.g.,
p. 225 and p. 249 in [20]), whose restriction to L1(G) coincides with the classi-
cal Fourier transform and whose restriction to L2(G) coincides with the Fourier–
Plancherel transform. For a (tempered) distribution T on G, its complex conjugate T̄

is defined via T̄ (φ) = T (φ̄) for φ ∈ D(G). Let 〈k〉s = (1+|k|2)s/2, where k is an ele-
ment of the dual group Ĝ ∈ {Zd,R

d} of G ∈ {Td,R
d} and where | · | is the Euclidean

norm. We define, for s ∈ R and G ∈ {Td,R
d}, the Sobolev(–Hilbert) spaces

Ws
2 (G) = {

T ∈ D′(G) : T = T̄ , ‖T ‖s,2,λ := ∥
∥〈k〉sFT

∥
∥

2,λ
< ∞}

. (1)

If s ≥ 0, every distribution in Ws
2 (G) can be identified with an element of L2(G).

In particular, W 0
2 (G) = L2(G) holds with isometric norms by Plancherel’s theo-

rem. Furthermore, for integer m > 0, an equivalent norm on Wm
2 (G) is given by

‖f ‖ = ∑
0≤|α|≤m ‖Dαf ‖2,λ, where Dα = ∂ |α|

(∂x1)
α1 ···(∂xd )αd

denotes the partial dif-
ferential operator of order |α| in the sense of distributions. (Here, as usual, α =
(α1, . . . , αd) is a multi-index of nonnegative integers αi , and |α| = ∑d

i=1 αi .) Note
that [Ff ]λ ∈ L1(Ĝ) follows from the definition of Ws

2 (G) if s > d/2, and hence, by
Fourier inversion, [F−1Ff ]λ = [f ]λ contains a unique element of C0(G). For such s,
we can define the Hilbert spaces

Ws
2(G) = {

f ∈ C0(G) : [f ]λ ∈ L2(G,λ), ‖f ‖s,2,λ < ∞}
(2)

consisting of bounded continuous functions.
We will also need Sobolev spaces with p = 1: For G ∈ {Td,R

d} and inte-
ger m ≥ 0, we denote by Wm

1 (G) the space of equivalence classes of functions
[f ]λ ∈ L1(G) such that

∑
0≤|α|≤m ‖Dαf ‖1,λ < ∞ holds. For 0 < s < 1, we define

Ws
1 (G) =

{

[f ]λ ∈ L1(G) :
∫

G

∥
∥f (· − y)

∥
∥

1,λ
|y|−(d+s) dy < ∞

}

,

the space of equivalence classes of functions in L1(G) that are L1-Hölder of order s.
For noninteger s > 1, let m be the largest integer smaller than s. We then define
Ws

1 (G) to be the space of [f ]λ ∈ L1(G) whose distributional partial derivatives up to
order m are all contained in L1(G) and [Dmf ]λ is contained in Ws−m(G).

Finally, on R
d , we will need certain Besov spaces. Let ϕ0 be a complex-valued

C∞-function on R
d with ϕ0(k) = 1 if |k| ≤ 1 and ϕ0(k) = 0 if |k| ≥ 3/2. Define

ϕ1(k) = ϕ0(k/2) − ϕ0(k) and ϕu(k) = ϕ1(2−u+1k) for u ∈ N. Then the system ϕu

forms a (locally finite) dyadic partition of unity. Let now −∞ < s < ∞, 1 ≤ p ≤ ∞,
and 1 ≤ q ≤ ∞. For T ∈ S ′(Rd), define the Besov norms

‖T ‖s,p,q,λ :=
( ∞∑

u=0

2usq
∥
∥F−1(ϕuFT )

∥
∥q

p,λ

)1/q

with modification

‖T ‖s,p,∞,λ := sup
0≤u<∞

2us
∥
∥F−1(ϕuFT )

∥
∥

p,λ
.
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We define the Banach spaces

Bs
pq(Rd) = {

T ∈ S ′(
R

d
) : T = T̄ , ‖T ‖s,p,q,λ < ∞}

. (3)

The Besov-norms are independent of the choice of ϕ0, and different ϕ0 result in
equivalent norms, cf. Sect. 2.3.2 in [21]. For s > 0, the Besov (or Hölder–Zygmund)
space B̊s∞∞(Rd) is obtained by taking the closure of S(Rd) ∩ {f : f real-valued} in
the norm-topology of ‖ · ‖s,∞,∞,λ.

2.2 Random Measures in Distribution Spaces

Denote by M(G) the Banach space of (real) finite signed (Borel) measures on
G ∈ {Td,R

d} normed by the total variation norm ‖ · ‖T V . Let (Z, Z, ζ ) be a proba-
bility space, and let μn : (Z, Z, ζ ) → M(G) be a sequence of random finite signed
measures on G. Throughout the paper, we do not require any measurability of the
mapping μn. Convergence of random elements (in law, in (outer) probability, or al-
most surely) in a metric space is defined in the usual way, cf. Sects. 3.1–3.3 in [4].

For F a nonempty uniformly bounded class of Borel-measurable functions f :
G → R, denote by 
∞(F ) the Banach space of real-valued bounded functions
on F equipped with the supnorm ‖ · ‖∞,F . For f ∈ F and μ ∈ M(G), we set
μf := ∫

G
f dμ. As usual, μn gives rise to a sequence of random elements in 
∞(F ).

An alternative to imbedding M(G) into 
∞(F ) is to view elements of M(G) as dis-
tributions, that is, as elements of D′(G). To obtain sharp results, we will focus on
certain subspaces of D′(G) that still contain M(G). A topological vector space X is
imbedded into another topological vector space Y if X is a linear subspace of Y and
if the identity map is continuous. We write X ↪→ Y for such an imbedding.

Definition 1 Let G be either R
d or T

d . We say that a Banach space X(G) of real-
valued Borel-measurable functions on G (with norm ‖ · ‖X) satisfies property D if
the following conditions are satisfied:

1. D(G) ∩ {f : f real-valued} is dense in X(G), and D(G) ↪→ X(G) holds.
2. ‖ϕ‖∞ ≤ C‖ϕ‖X holds for some 0 < C < ∞ and all ϕ ∈ D(G).

Clearly, every element of the dual space (X(G))′ of a space X(G) satisfying prop-
erty D can be uniquely identified with a real-valued (tempered) distribution, that is,
(X(G))′ is contained in D′(G). Equipped with the operator norm ‖ · ‖′

X , the space
(X(G))′ becomes a Banach space. Also, property D implies that X(G) is dense and
continuously imbedded into C0(G) since the closure of D(G) w.r.t. ‖ · ‖∞ is C0(G).
Consequently, since M(G) is isometrically isomorphic to C0(G)′ (see, e.g., Theo-
rem 6.6 in [12]), we have

M(G) = C0(G)′ ↪→ (
X(G)

)′
. (4)

That is, every dual space of a Banach space X(G) that satisfies property D is a space
of distributions that contains all finite signed measures. Furthermore, convergence of
a sequence of (possibly random) signed measures μn in 
∞(U ) for U the unit ball
X(G) can be linked to convergence in (X(G))′ in a simple way:
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Lemma 1 Let G be either R
d or T

d , and let X(G) satisfy property D. Let (Z, Z, ζ )

be a probability space, and let μn : (Z, Z, ζ ) → M(G) be a sequence of random
signed measures. Let U be the unit ball of X(G). We then have

‖μ‖∞,U = ‖μ‖′
X

for every μ ∈ M(G). In particular, the sequence μn converges in law, in probabil-
ity, or almost surely in the Banach space 
∞(U ) if and only if μn converges in the
respective sense in the Banach space (X(G))′.

Proof Denote by lin∞(U ) the space of all real-valued functionals L defined on U
which satisfy

L
(
αf + (1 − α)g

) = αL(f ) + (1 − α)L(g)

for all f,g ∈ U and 0 ≤ α ≤ 1; L(0) = 0 as well as supf ∈U |L(f )| < ∞. Then μn ∈
lin∞(U ) for every n. It is clear that lin∞(U ) (with the induced norm) is a closed
subspace of 
∞(U ). Consequently, μn converges in law in l∞(U ) if and only if it
converges in law in lin∞(U ).

Let now L be any element of lin∞(U ). Then it is easy to see that there exists a
unique linear functional TL : X(G) → R satisfying TL(f ) = L(f ) for every f ∈ U
(this follows, e.g., from Lemma 2.5.3 in [4]). Also, every TL ∈ (X(G))′ gives rise to
an element of lin∞(U ). Finally, ‖TL‖′

X = supf ∈U |L(f )| holds, and hence the linear
mapping

T : lin∞(U ) → (
X(G)

)′

associating to each L ∈ lin∞(U ) the respective continuous linear functional TL ∈
(X(G))′ is an isometric isomorphism. �

The following lemma gives examples of spaces satisfying property D that will be
used in this paper.

Lemma 2 The spaces Ws
2(G) with s > d/2 and B̊s∞∞(Rd) with s > 0 satisfy prop-

erty D.

Proof It is easy to see that the space Ws
2(G) contains D(G) as a dense subset, and

this imbedding is continuous. (For a reference, see, e.g., 3.5.1/6 in [19] and Theo-
rem 2.3.3 in [21].) Furthermore, Ws

2(G) is continuously imbedded into C0(G), see
the reasoning before (2) above. In the second case, note that S(Rd) is dense in
B̊s∞∞(Rd) by definition. Furthermore, S(Rd) ↪→ B̊s∞∞(Rd) holds since convergence
of elements of S(Rd) in the norm ‖ · ‖s,∞,∞,λ is implied by convergence in the norm∑

0≤|α|≤r ‖Dα(·)‖∞ for some integer r > s (cf. 2.5.7/6, 11 in [21]), which is in

turn implied by convergence in S(Rd). Furthermore, ‖ϕ‖∞ ≤ C‖ϕ‖s,∞,∞,λ holds
for ϕ ∈ S(Rd) by Triebel ([21], 2.7.1/12, 13). �

The following observation will be a key to the main results of the paper. To-
gether with Lemmas 1 and 2, it implies that sup-norm on the space 
∞(F ) for F
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the unit balls of Ws
2(G) and B̊s∞∞(Rd) is equivalent to a norm that has a much sim-

pler Fourier-analytical structure. Recall that two norms ‖ · ‖X,1, ‖ · ‖X,2 on a vec-
tor space X are equivalent if ‖ · ‖X,2 ≤ c‖ · ‖X,1 ≤ C‖ · ‖X,2 holds on X for some
0 < c ≤ C < ∞.

Lemma 3 Let s > 0.

1. (Ws
2(G))′ = W−s

2 (G), and the norms ‖ · ‖′
s,2,λ and ‖ · ‖−s,2,λ are equivalent.

2. (B̊s∞∞(Rd))′ = B−s
11 (Rd), and the norms ‖ · ‖′

s,∞,∞,λ and ‖ · ‖−s,1,1,λ are equiva-
lent.

Proof Part 1 is a simple duality argument in weighted L2-type spaces, proved, e.g.,
in Theorem 2.11.2/2 of [21] and Theorem 3.5.6 in [19]. (Note that the Triebel
spaces F s

22(G) coincide with Ws
2 (G) (with equivalent norms).) For Part 2, cf. Re-

mark 2.11.2/2 in [21]. �

Before we proceed to the main results of the paper, we discuss a number of im-
portant examples of random signed measures that converge in the distribution spaces
W−s

2 (G) and B−s
11 (Rd).

2.2.1 Empirical Processes

Let {Xj }nj=1 be i.i.d. according to the (Borel) law P on the locally compact group G ∈
{Td,R

d}. Define the empirical measure Pn = n−1 ∑n
j=1 δXj

. The empirical process
is the sequence of random finite signed measures

√
n(Pn − P).

Proposition 1 Let s > d/2, and let U s
2 and U s∞ denote the unit balls of Ws

2(G) and
B̊s∞∞(Rd), respectively.

1.
√

n(Pn − P) converges in law in 
∞(U s
2) and in W−s

2 (G).
2. If

∫
Rd |x|γ dP(x) < ∞ for some γ > d , then

√
n(Pn − P) converges in law in


∞(U s∞) and in B−s
11 (Rd).

Proof In view of Lemmata 1, 2, and 3 above, it is sufficient to prove that U s
2 and U s∞

are P-Donsker classes (cf. Chap. 3 in [4]). The universal Donsker property of U s
2 is

proved in [6] for G = T
d and follows from Proposition 1 in [15] in the case G = R

d .
(Both cases also follow from the CLT in Hilbert spaces, Theorem 10.5 in [11].) The
P-Donsker property of U s∞ follows from Corollary 5 in [15]. �

Similarly, one can obtain strong invariance principles or laws of the iterated log-
arithm for the empirical process in 
∞(U s

2 ) or 
∞(U s∞) by using Proposition 1 and,
e.g., the results in Sects. 9.4 and 9.5 in [4].

If the {Xj }nj=1 are not i.i.d. but form a strictly stationary β-mixing sequence of
random variables with marginal probability distribution P, it is known that the cen-
tral limit theorem still holds in 
∞(F ) under summability conditions on the mixing
coefficients and under bracketing metric entropy conditions on the class F , see Theo-
rem 1 in [3]. Bracketing metric entropy bounds for U s

2 and U s∞ the unit balls of Ws
2(G)
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and B̊s∞∞(Rd) are derived in Theorem 1 and Corollary 4 in [15]. Consequently, a re-
sult similar to Proposition 1 can be proved for n1/2(Pn − P) under certain mixing
conditions on the process {Xj }nj=1, cf., in particular, p. 405 in [3].

2.2.2 Density Estimators

If p̃n ∈ L1(G) is some estimator for some probability density p0 on G, then μn =√
n(p̃n − p0) dλ is a sequence of random finite signed measures on G. Convergence

results for μn in 
∞(U s
2) and 
∞(U s∞) have been recently established in the literature

for kernel, wavelet, trigonometric series, and maximum likelihood estimators, see
[13, 14] and [8, 9]. For instance, if {Xj }nj=1 are i.i.d. with law P on R, and if K :
R → R is a kernel of order r (e.g., Definition 2 in [9]), then the usual Rosenblatt–
Parzen kernel estimator is the convolution

Pn ∗ Khn(y) = 1

nhn

n∑

j=1

K

(
y − Xj

hn

)

,

and one can prove the following:

Proposition 2 Let s > 1/2, and let U s
2 and U s∞ denote the unit balls of Ws

2(R) and
B̊s∞∞(R), respectively. Let K be a kernel of order r , and suppose that the density p0
of P exists.

1. If [p0]λ ∈ Wt
2(R) for some t ≥ 0, if r ∈ (0, t + s], and if

√
nhr

n → 0, then
√

n(Pn ∗
Khn − P) converges in law in 
∞(U s

2) and in W−s
2 (R).

2. If [p0]λ ∈ Wt
1(R) for some t ≥ 0, if r ∈ (0, t + s), if

√
nhr

n → 0, and if∫
R

|x|γ dP(x) < ∞ is satisfied for some γ > 1, then
√

n(Pn ∗ Khn − P) converges
in law in 
∞(U s∞) and in B−s

11 (R).

Proof The first part is Theorem 7 in [9]. The second part follows from Theorem 6 in
[9], upon observing (cf., e.g., Remark 11 in the last reference) that bounded subsets
of B̊s∞∞(R) are, for every δ > 0, bounded in the Hölder space Cs−δ(R) considered
there (whence r = s + t has to be excluded in the second part of the proposition). �

Note that the MISE-optimal choice hn � n−1/(2t+1) is admissible if one chooses
r > t + 1/2, which is always possible in the above proposition.

A similar result holds for wavelet density estimators. For details about wavelets
in statistics we refer to [10]. If φ is a compactly supported father wavelet with as-
sociated projection kernel Kj(x, y) = ∑

k∈Z
2jφ(2j x − k)φ(2j y − k) and if α̂jk =∫

R
2j/2φ(2j x − k) dPn(x), then the linear wavelet density estimator can be written

as

Pn

(
Kjn(·, y)

) =
∑

k

2jn/2α̂jnkφ
(
2jny − k

)
,

and we have, with Pn(Kj ) denoting the finite signed measure induced by
Pn(Kj (·, y)) dλ(y):
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Proposition 3 Let s > 1/2, and let U s
2 and U s∞ denote the unit balls of Ws

2(R) and
B̊s∞∞(R), respectively. Let φ be a compactly supported father wavelet that has r ≥ 1
bounded derivatives, s < r + 1.

1. If [p0]λ ∈ Wt
2(R) for some 0 ≤ t < r + 1 and if

√
n2−jn(t+s) → 0, then√

n(Pn(Kjn) − P) converges in law in 
∞(U s
2) and in W−s

2 (R).
2. If [p0]λ ∈ Wt

1(R) for some 0 ≤ t < r + 1, if
√

n2−jn(t+s) → 0, and if∫
R

|x|γ dP(x) < ∞ is satisfied for some γ > 1, then
√

n(Pn(Kjn) − P) converges
in law in 
∞(U s∞) and in B−s

11 (R).

Proof Both cases follow from Theorem 7 in [8]. (In the first case, observe that Ws
2 (R)

equals the Besov space Bs
22(R) for all s.) �

Again, the MISE-optimal choice 2jn � n1/(2t+1) is always admissible in the above
proposition (for sufficiently smooth φ).

If G = T, such results also hold for nonparametric maximum likelihood and
trigonometric series estimators, see [13, 14]. The essential advantage of Pn ∗ Kh,
Pn(Kjn) (and other density estimators) over Pn—which is related to the fact that Pn

is inconsistent in stronger loss functions (such as Lp-loss)—will be used in Sect. 4.

3 Convolutions of Random Signed Measures

We recall the definition of the convolution product of functions and measures on
G ∈ {Td,R

d}. For two real-valued Borel measurable functions h and g on G, we set

(h ∗ g)(x) =
∫

G

h(x − y)g(y) dλ(y),

provided that the integral exists and is finite for λ-a.e. x ∈ G. For a Borel measurable
function h : G → R and a finite signed measure μ on G, we set

(h ∗ μ)(x) =
∫

G

h(x − y)dμ(y),

provided that the integral exists and is finite for λ-a.e. x ∈ G. For two finite signed
measures μ and ν on G, their convolution defines another finite signed measure μ∗ ν

by

(μ ∗ ν)(f ) =
∫

G

∫

G

f (x + y)dμ(x)dν(y), f ∈ C0(G).

For h,g ∈ L1(G), all definitions coincide by setting dμ = hdλ and dν = g dλ. It
is easily seen that convolution is commutative and associative. Furthermore, for 1 ≤
p ≤ ∞, μ ∈ M(G), and K ∈ Lp(G), we have the inequality

‖μ ∗ K‖p,λ ≤ ‖μ‖T V ‖K‖p,λ, (5)

which also holds if K is replaced by another element of M(G) and if ‖ · ‖p,λ is
replaced by ‖ · ‖T V . We refer to Chap. 3 in [12] for these well-known facts.
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Let U s
2 be the unit ball of Ws

2(G). The following theorem shows that a sequence of
random signed measures μn that converges in 
∞(U s

2) (or in W−s
2 (G)) will also con-

verge in C0(G) and in Lp(G)-spaces when convolved with a (nonrandom) function
K that possesses some regularity properties. Results for convolutions with random
functions are discussed in Sect. 4.1 below.

Theorem 1 Let G be either R
d or T

d . Let (Z, Z, ζ ) be a probability space, and let
μn : (Z, Z, ζ ) → M(G) be a random sequence of signed measures. Let U s

2 be the
unit ball of Ws

2(G) with s > d/2. Suppose that μn converges in the space 
∞(U s
2) in

law, in probability, or almost surely.

1. If K ∈ Ws
2(G), then μn ∗ K converges in the space C0(G) in law, in probability,

or almost surely, respectively.
2. If [K]λ ∈ Ws

1 (G), then [μn ∗ K]λ converges in the space L2(G), in law, in proba-
bility, or almost surely, respectively.

Proof We recall here some basic properties of the (distributional) Fourier trans-
form that are used in all subsequent proofs. For G ∈ {Td,R

d ,Z
d}, the operator

F (and its inverse F−1) acts as a linear and continuous, injective mapping from
M(G) (or L1(G)) into C(Ĝ) (or C0(Ĝ)). We consistently denote elements of G

by x and elements of Ĝ by k. Furthermore F is a bijection of both S(Rd) and
S ′(Rd), and T = F−1FT holds for every T ∈ D′(G). As is well known, convolu-
tion is transformed into pointwise multiplication under the Fourier transform, that is,
F(μ ∗ ν) = (2π)d/2FμFν holds, with respective modifications if μ and/or ν are re-
placed by suitable functions. We refer, e.g., to Chap. 3 in [12] and Chap. 7 in [20] for
these (and further) results from Fourier analysis of the groups G ∈ {Td,R

d}.
We now prove Part 1: The following preliminary observation is necessary: For

μ ∈ M(G), note that FK and FμFK ∈ L1(Ĝ) by definition of Ws
2(G) and since

Fμ ∈ C(Ĝ). Consequently μ ∗K = F−1F(μ ∗K) ∈ C0(G) holds, and, in particular,
F−1F(μn ∗ K) is a random element in C0(G) for every n.

We can view M(G) as a linear subspace of the Banach space W−s
2 (G) by (4) and

Lemmata 2 and 3 above. We show that the mapping

κ : μ → μ ∗ K

is a continuous linear map between the normed spaces (M(G),‖·‖−s,2,λ) and C0(G).
To see this, observe that

‖μ ∗ K‖∞ = ∥
∥F−1F(μ ∗ K)

∥
∥∞ ≤ (2π)d/2

∥
∥Fμ〈x〉−s〈x〉sFK

∥
∥

1,λ
≤ C‖μ‖−s,2,λ

holds for μ in M(G) and C = (2π)d/2‖K‖s,2,λ. Since M(G) contains the dense
subset D(G) of W−s

2 (G) (cf. Theorem 2.3.3 in [21] and 3.5.1/6 in [19]), there exists
a unique continuous linear mapping

κ̄ : W−s
2 (G) → C0(G)

such that κ̄ = κ on M(G). We conclude that, since the random elements μn, when
viewed as (tempered) distributions, converge in law, in probability, or almost surely
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in the Banach space W−s
2 (G) by Lemmas 1, 2, and 3 above, the random variables

κ̄(μn) = κ(μn) = μn ∗ K

converge in law, in probability, or almost surely in C0(G) by the continuous mapping
theorem.

We now prove Part 2: Note that μ ∗ K ∈ L2(G) ∩ L1(G) by (5), since K ∈
Ws

1 (G) ⊆ L1(G) ∩ L2(G) holds for s > d/2 (see 2.7.1 in [21]). As in the proof
of Part 1 above, we show that

κ : μ → μ ∗ K

is a continuous linear map between the normed spaces (M(G),‖·‖−s,2,λ) and L2(G).
By Lemma 4 below, Plancherel’s theorem, and Hölder’s inequality we have

‖μ ∗ K‖2,λ = (2π)d/2‖FμFK‖2,λ

≤ (2π)d/2
∥
∥Fμ〈k〉−s

∥
∥

2,λ

∥
∥〈k〉sFK

∥
∥∞

≤ C‖μ‖−s,2,λ

for μ ∈ M(G) and C < ∞. Given the following lemma, the rest of the proof is iden-
tical to the one given for Part 1 above upon replacing C0(G) by L2(G).

Lemma 4 Let G be either R
d or T

d , and let 0 ≤ s < ∞. If f ∈ Ws
1 (G), then

‖〈k〉sFf ‖∞ < ∞.

Proof We only proof the case of R
d with d = 1; the case of T is the same, and

the cases d > 1 follow from an obvious generalization of the argument. Recall the
basic properties of the Fourier transform mentioned at the beginning of the proof of
Theorem 1 above. We shall use repeatedly the inequality 〈k〉s ≤ 2s−1(1 + |k|s) for
real s > 0. For m ∈ N ∪ {0}, we have that [f ]λ ∈ Wm

1 (G) implies [Dαf ]λ ∈ L1(R)

for 0 ≤ α ≤ m by the definition of Wm
1 (G), and hence

∥
∥〈k〉mFf

∥
∥∞ ≤ 2m−1(‖Ff ‖∞ + ∥

∥|k|mFf
∥
∥∞

) ≤ 2m−1(‖f ‖1 + ∥
∥Dmf

∥
∥

1

)
< ∞

holds by using the well-known relationship |F(Dmf )| ≤ |k|m|Ff |. We next prove
the case 0 < s < 1: For [f ]λ ∈ Ws

1 (R), define the function

h(x) =
∫

R

(
f (x − y) − f (x)

)|y|−(1+s) dy,

which is contained in L1(R) by the definition of Ws
1 (R) and Fubini’s theorem. By

applying the Fourier transform and Fubini’s theorem, we obtain

(Fh)(k) =
∫

R

(
e−iyk − 1

)
Ff (k)|y|−(1+s) dy.
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It can be shown by elementary calculus that

∣
∣(Fh)(k)

∣
∣ = ∣

∣Ff (k)
∣
∣
∫

R

|y|−(1+s)
√

2 − 2 cos(yk) dy

= ∣
∣Ff (k)ks

∣
∣
∫

R

|z|−(1+s)
√

2 − 2 cos(z) dz

= C
∣
∣Ff (k)ks

∣
∣

holds for some 0 < C < ∞. Consequently
∥
∥Ff |k|s∥∥∞ = (1/C)‖Fh‖∞ ≤ (1/C)‖h‖1,λ < ∞.

Since also f ∈ L1(R) holds, we have that
∥
∥〈k〉sFf

∥
∥∞ ≤ 2s−1(‖Ff ‖∞ + ∥

∥|k|sFf
∥
∥∞

)
< ∞,

which proves this case. For s > 1 noninteger, one applies the last argument to the mth
derivative, where m is the largest integer smaller than s. �

�

In the second part of the theorem, it is allowed to convolve with discontinuous
and/or unbounded functions. For example, one may convolve with the indicator func-
tion of some interval in G or with the Gamma density on R with shape parameter
1/2 < α < 1.

Note that convergence in C(Td) implies convergence in Lp(Td) for every 1 ≤
p ≤ ∞. In the case G = R

d , there are no inclusion relationships for the spaces
Lp(Rd), but given the results for L2(Rd) and C0(R

d) in the theorem above, one
can use interpolation properties of these spaces to obtain results for Lp(Rd) with
p ∈ [2,∞]; and, by the subsequent theorem, also for p ∈ [1,2].

Convergence in L1(Rd) is not covered by Theorem 1. Here, things are some-
what different. In particular, convergence of μn in the space 
∞(U s

2) is not the ap-
propriate requirement. Instead of convergence in 
∞(U s

2 ), we have to require con-
vergence in B−s

11 (Rd), or, equivalently, in 
∞(U s∞), where U s∞ is the unit ball of
B̊s∞∞(Rd). As a consequence, also the convolution kernel is required to lie in the
Besov space Bs

11(R
d). We note that Ws

1 (Rd) = Bs
11(R

d) holds for noninteger s (e.g.,
[21], 2.5.7/1), so this condition is similar to the one in Part 2 of Theorem 1. (In
particular, for G = T

d , a result similar to Theorem 2 (with s > d/2) can be directly
deduced from Part 2 of Theorem 1 by the continuous imbedding L2(Td) ↪→ L1(Td).)

Theorem 2 Let (Z, Z, ζ ) be a probability space, and let μn : (Z, Z, ζ ) → M(Rd)

be a sequence of random signed measures. Let U s∞ be the unit ball of B̊s∞∞(Rd) with
s > 0. Suppose that μn converges in the space 
∞(U s∞) in law, in probability, or
almost surely. If [K]λ ∈ Bs

11(R
d), then [μn ∗ K]λ converges in the space L1(Rd) in

law, in probability, or almost surely, respectively.

Proof Throughout the proof, we shall use the basic properties of the Fourier trans-
form mentioned at the beginning of the proof of Theorem 1 above.
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The following three preliminary observations are necessary: First, let ϕu be a
dyadic resolution of unity as defined before (3), and set h(k) = ϕu(k)〈k〉−sFμ(k),
where μ ∈ M(Rd) and u ∈ N are arbitrary. We show that F−1h ∈ L1(Rd). Note that
ϕu〈k〉−s ∈ S(Rd) holds (since ϕu has compact support and since both ϕu and 〈k〉−s

are infinitely differentiable). Now

F−1h = (2π)−d/2(F−1ϕu〈k〉−s
) ∗ F−1Fμ

holds by using Théorème 15 on p. 268 in [20]. Using (5), this proves F−1h ∈ L1(Rd)

upon noting that F−1ϕu〈k〉−s ∈ S(Rd) ⊆ L1(Rd) and that F−1Fμ = μ ∈ M(Rd).
Second, [F−1〈k〉sFK]λ ∈ L1(Rd) holds since [K]λ ∈ Bs

11(R
d) and since

[f ]λ → [
F−1〈k〉sFf

]
λ

is a norm-continuous mapping from Bs
11(R

d) to B0
11(R

d) by Theorem 2.3.8 in [21]
and since B0

11(R
d) ⊆ L1(Rd) holds by Triebel ([21], 2.5.7/1).

Third, consider two functions h and g on R
d such that Fh and Fg are in L1(Rd).

Then hg ∈ S ′(Rd), and we have F(hg) = (2π)d/2Fh ∗ Fg by, e.g., Lemma 9 in [9],
and an analogous result can be proved if F−1 and F are interchanged.

We now proceed to prove the theorem. We view M(Rd) as a linear subspace of
B−s

11 (Rd) by Lemmata 2 and 3 and by (4) above. We show that the mapping

κ : μ → μ ∗ K

is a continuous linear map between the normed spaces (M(Rd),‖ · ‖−s,1,1,λ) and
L1(Rd). Note first that M(Rd) is contained in the Besov space B0

1∞(Rd), see,
e.g., Lemma 7 in [9], and that K ∈ Bs

11(R
d) ⊂ B0

11(R
d). Consequently the contin-

uous imbedding B0
11(R

d) ∗ B0
1∞(Rd) ↪→ B0

11(R
d) (2.6.5/5 in [21]) implies μ ∗ K ∈

B0
11(R

d). Recalling B0
11(R

d) ↪→ L1(Rd) and using the three observations from
above (the third observation with h = ϕu〈k〉−sFμ and g = 〈k〉sFK), (5) as well as
Lemma 11 in [9], we obtain

‖μ ∗ K‖1,λ ≤ c‖μ ∗ K‖0,1,1,λ

= c′
∞∑

u=0

∥
∥F−1(ϕuFμ〈k〉−s〈k〉sFK

)∥
∥

1,λ

= c′′
∞∑

u=0

∥
∥F−1(ϕu〈k〉−sFμ

) ∗ F−1〈k〉sFK
∥
∥

1,λ

≤ c′′
∞∑

u=0

∥
∥F−1(ϕu〈k〉−sFμ

)∥
∥

1,λ

∥
∥F−1〈k〉sFK

∥
∥

1,λ

≤ c′′′
∞∑

u=0

2−su
∥
∥F−1(ϕuFμ)

∥
∥

1,λ

= c′′′‖μ‖−s,1,1,λ (6)

for some 0 < c′′′ < ∞.
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To finish the proof, we proceed as in the proof of Part 1 of Theorem 1. Since
M(Rd) is dense in the Banach space B−s

11 (Rd) w.r.t. ‖ · ‖−s,1,1,λ (note that M(Rd)

contains S(Rd) which is dense in B−s
11 (Rd) by Theorem 2.3.3 in [21]), there exists a

unique continuous linear mapping

κ̄ : B−s
11

(
R

d
) → L1(

R
d
)

such that κ̄ = κ on M(Rd). We conclude that, since the random variables μn, when
viewed as random elements of B−s

11 (Rd), converge in law, in probability, or almost
surely in that space by Lemmas 1, 2, and 3 above, the random variables

κ̄(μn) = κ(μn) = μn ∗ K

converge in law, in probability, or a.s. in L1(Rd) by the continuous mapping theo-
rem. �

Before we turn to applications, we collect the following two remarks.

Remark 1 (Derivatives of μn ∗ K) Theorems 1 and 2 can be used to derive conver-
gence results in C0(G) or Lp(G) for (distributional) derivatives of μn ∗ K . To keep
the notation simple, we set here d = 1 without loss of generality.

Case G = T: Let δ′ be the distribution on T obtained by taking the distributional
derivative of Dirac measure δ at zero. As is well known,

δ′ ∗ (μn ∗ K) = D(μn ∗ K)

holds, that is, convolution (in the sense of distributions) of a distribution T with δ′
gives the distributional derivative DT of T , see, e.g., [20, p. 159]. Since further-
more convolution of distributions on T is commutative and associative, we have
δ′ ∗ (μn ∗ K) = (δ′ ∗ K) ∗ μn, and one can apply Theorems 1 and 2 if the convo-
lution kernel δ′ ∗ K = DK satisfies the conditions of these theorems. For example,
if μn converges in the space 
∞(U s

2) in law (or in probability, or almost surely), and
if K ∈ W 1+s

1 (T) for some s > 1/2, then δ′ ∗ K = DK ∈ Ws
1 (T), and hence both

[μn ∗ K]λ and [D(μn ∗ K)]λ converge in L2(T) in the respective sense. (In fact,
[μn ∗ K]λ converges in W 1

2 (T).) Higher derivatives follow from a successive appli-
cation of this argument.

Case G = R: If one is interested in limit theorems for the derivatives of μn ∗ K

in the case G = R, one may try to proceed as in the preceding paragraph. However,
here the complication arises that the convolution product of arbitrary distributions
on R is not necessarily well defined (and even if it is, it is not necessarily associa-
tive). So one has to establish first that δ′ ∗ (μn ∗ K) = (δ′ ∗ K) ∗ μn, which basically
amounts to showing that differentiation and integration can be interchanged. Since δ′
has compact support and since every μn ∈ M(R) gives rise to a tempered distribu-
tion, a sufficient condition for this to hold is that K gives rise to a rapidly decreasing
distribution (not a function), cf. p. 244 and Théorème 11 on p. 247 in [20].
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Remark 2 (Limiting Random Variable) In the generality of Theorems 1 and 2, we
cannot say anything about the nature of the limiting random variable of μn ∗ K in
the corresponding Banach space B . Since we can infer uniform tightness of μn ∗ K

in B from convergence in law (and hence also from convergence in probability, or
almost surely), the limiting variable can be determined by calculating the limits of
L(μn ∗ K) for every L contained in the dual space B ′ (or every L in a dense subset
of B ′), see, e.g., Sect. 1.4 in [1] or Sect. 2.1 in [11].

4 Some Applications

4.1 Estimating Sums of Independent Random Variables

We start with the following simple example.

Example 1 (Estimation of the sum of a known and an unknown random variable)
Let X = Y + Z, where Y and Z are independent random variables with values in G.
Assume that Z possesses a Lebesgue density pZ , which is known, whereas nothing
is known about the distribution P

Y of Y . Then the density pX of X exists and is given
by the convolution P

Y ∗ pZ . Given a sample from Y , we want to estimate pX . If P
Y
n

denotes the empirical measure and if pZ satisfies the conditions on K from Part 1
of Theorem 1, we obtain from this theorem and Proposition 1 that

√
n(PY

n ∗ pZ −
P

Y ∗ pZ) converges in law in the space C0(G). For example, we obtain the rate of
convergence ‖P

Y
n ∗ pZ − P

Y ∗ pZ‖∞ = OP(n−1/2) for pZ equal to a Beta-density
(which is easily seen to satisfy the conditions on K in Theorem 1).

If one just wanted to obtain results as in the above example, one can always work
with the empirical measure, and then in fact more powerful techniques could be used,
see Sect. 4.2 below. However, if both the laws of Y and Z are unknown, the empirical
measures of samples from Y and Z cannot be used to obtain rates of convergence
in Lp-spaces (the convolution P

Y
n ∗ P

Z
n is discrete for every n, hence not contained

in any Lp-space). Random measures arising from density estimators are the natural
alternative, and in the remainder of this section we show how the results of this paper
can be applied to this problem.

Let X = Y + Z, where Y and Z are independent random variables with values
in G ∈ {T,R} with unknown Lebesgue-densities pY and pZ . The density pX of X

is then the convolution pY ∗ pZ . The goal is to estimate pX if one has i.i.d. samples
from Y and Z. (Everything that will be said below easily generalizes to the case d > 1
and also to sums X = ∑m

i=1 Yi of independent random variables Yi by setting Y = Y1
and Z = ∑m

i=2 Yi .) Given a sequence of estimators pY
n and pZ

n for the densities of Y

and Z, respectively, an obvious plug-in estimate of pX = pY ∗ pZ is the convolution
product pX

n = pY
n ∗ pZ

n . We have the following simple decomposition

√
n
(
pX

n − pX
) = √

n
(
pY

n ∗ pZ
n − pY ∗ pZ

)

= √
n
(
pY

n − pY
) ∗ pZ + √

n
(
pZ

n − pZ
) ∗ pY

+ √
n
(
pY

n − pY
) ∗ (

pZ
n − pZ

)
. (7)
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To the first two terms in the last line of (7) one can apply Theorem 1 (or Theorem 2)
above as follows: Suppose, for instance, that pY

n and pZ
n are density estimators such

that
√

n(pY
n − pY ) and

√
n(pZ

n − pZ) converge in law in 
∞(U s
2). (See Sect. 2.2.2

for examples.) Suppose furthermore that the densities pY and pZ belong to Wt
2(G)

(or Wt
1(G)) for some t > 1/2. Then, by Theorem 1, the corresponding convolution

products
√

n(pY
n − pY ) ∗ pZ and

√
n(pZ

n − pZ) ∗ pY converge in law in the space
C0(G) (or L2(G)). (Using Theorem 2, a similar result can be proved in L1(R).)
Hence, to obtain that

√
n(pX

n −pX) converges in law in the spaces C0(G) (or L2(G)),
we only have to show that the last term in (7) satisfies

√
n
∥
∥
(
pY

n − pY
) ∗ (

pZ
n − pZ

)∥
∥

p,λ
= oP(1) (8)

for p = ∞ (or p = 2). For example, for the kernel density estimator, this can be
achieved as follows: It is well known that p0 ∈ Wt

2(R) implies that the usual ker-
nel density estimator p̃n(y) = Pn ∗ Kh(y) (from Proposition 2) based on an i.i.d.
sample of size n from the law p0 achieves the rate of convergence ‖p̃n − p0‖2,λ =
OP(n−t/(2t+1)) if hn � n−1/(2t+1). If such kernel estimators are constructed both for
Y and Z, then by Young’s inequality

∥
∥
(
pY

n − pY
) ∗ (

pZ
n − pZ

)∥
∥∞ ≤ ∥

∥pY
n − pY

∥
∥

2

∥
∥pZ

n − pZ
∥
∥

2

= OP

(
n−2t/(2t+1)

) = oP

(
n−1/2)

since t > 1/2, and we have, for example, the following:

Proposition 4 Let X = Y + Z, where Y and Z are independent and have densi-
ties pY and pZ contained in Wt

2(R) for some t > 1/2. Suppose that Y1, . . . , Yn and
Z1, . . . ,Zn are i.i.d. with densities pY and pZ , respectively, and denote by P

Y
n and

P
Z
n the associated empirical measures. If K is a kernel of order r > t + 1/2 and if

hn � n−1/(2t+1), then
√

n((PY
n ∗ Khn) ∗ (PZ

n ∗ Khn) − pX) converges in law in the
space C0(R).

In practice, we need not assume more than t = 1/2 + δ for δ arbitrary, so that any
compactly supported symmetric kernel with the bandwidth hn � n−1/(2(1+δ)) will do.
We also note that the limiting variable is mean zero Gaussian and can be computed
similarly as in [7, p. 1118].

For the wavelet estimator from Sect. 2.2.2, one can prove a similar result: Using
the additional fact that the wavelet estimator with resolution level 2jn � n1/(2t+1)

achieves the optimal rate of convergence n−t/(2t+1) in the L2(R)-norm (in probabil-
ity), see, e.g., Theorem 10.1 in [10], we have:

Proposition 5 Let the conditions of Proposition 4 be satisfied. If φ satisfies the con-
ditions of Proposition 2 with t < r + 1 and if 2jn � n1/(2t+1), then

√
n(PY

n (Kjn) ∗
P

Z
n (Kjn) − pX) converges in law in the space C0(R).

We can make remarks similar to those after Proposition 4. It should further be
noted that, if the sample size for Y is n but the one for Z is m, then the same results
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hold at least if m := m(n) is such that m(n)/n → c < ∞. Analogous results can be
proved in Lp(G)-spaces, including derivatives of pX . Also, if G = T, one can ob-
tain such results for MLEs and trigonometric series estimators, see [13], Corollary 6
and [14].

It should be noted that the above derivations do require t > 1/2, but nothing more,
which parallels what Giné and Mason [7] obtain for the kernel estimator, although
they do not explicitly state their smoothness conditions. In contrast, in terms of
smoothness conditions on the underlying density, Theorem 1 in [17] is suboptimal,
where they require that pY and pZ are continuously differentiable with derivative
satisfying a Hölder condition of arbitrary order. In the L1(R)-setting, Schick and We-
felmeyer [18] impose sharp smoothness conditions (pY

0 ,pZ
0 ∈ Wt

1(R) for t > 1/2).

4.2 Comparison with the CLT in Banach Spaces

One can immediately apply Theorems 1 and 2 to the empirical process by using
Proposition 1 as in Example 1. Alternatively, one can use the central limit theorem
(CLT) in Banach spaces. It is interesting to compare the conditions arising via the
latter approach to those required by the former. One would expect that our general
approach has to pay a price when applied to the empirical process, since our proofs
cannot use the special structure of the latter. Clearly, sums of i.i.d. random variables
in spaces with “nice geometry” concentrate well around their mean, whereas this
concentration phenomenon cannot be used in our case of arbitrary finite-signed mea-
sures. Interestingly, our results are (essentially) sharp in certain spaces while not in
others, which we believe to reflect the role of the geometry of the space.

For K in C0(G) or Lp(G), the i.i.d. random variables {Xj }nj=1 induce the se-
quence of random functions K ∗ δXj

(x) = K(x − Xj) and the sums of i.i.d. random
variables

√
n(Pn ∗ K − P ∗ K)(x) = n−1/2

n∑

j=1

(

K(x − Xj) −
∫

G

K(x − y)dP(y)

)

. (9)

For K ∈ Lp(G) or K ∈ C0(G), these are in fact Lp(G)- or C0(G)-valued sums of
i.i.d. random variables. (Note that the mapping x �→ K(· − x) from G to Lp(G) or
C0(G) is continuous, hence Borel-measurable, so that the K ∗ δXj

are indeed Borel
random variables in these Banach spaces.) The CLT in Banach spaces is described
by the geometry of the space [1, 11], so we have to distinguish several cases. We
summarize in advance that the generalization from empirical processes to arbitrary
sequences of random signed measures seems to have a price in the Hilbert space case
(L2(G)), but is possible without serious additional restrictions if one is “far away”
from the Hilbert space setting, that is, in the (nonreflexive) Banach spaces C0(G) and
L1(R) that do not possess “nice” geometric properties.

1. The Case of C0(G) Part 1 of Theorem 1 and Proposition 1 above imply that the
expression in (9) converges in law in C0(G) if K ∈ Ws

2(G) holds for some s > d/2.
Alternatively, one can apply the CLT in the space of bounded continuous functions
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on some compact metric space S, cf. Corollary 3.7.17 in [1]. In the case S = T
d , this

requires verification of the condition

∣
∣K(s − X) − K(t − X)

∣
∣ ≤ M(X)d(s, t)

for every s, t ∈ S, some M with E(M2) < ∞, and some metric d on T
d that gen-

erates the usual topology. This is essentially equivalent to assuming some Hölder or
Lipschitz condition on the function K . An arbitrary function K ∈ Ws

2(T
d) satisfies a

Hölder condition at best of order s −d/2 > 0, hence our condition s > d/2 is compa-
rable. In C0(R

d), application of the general CLT is more involved. (One may use the
one-point (Alexandrov) compactification R̄

d of R
d and verify the Lipschitz condition

in the space of continuous functions on R̄
d .) In contrast, our Theorem 1 can be used

in C0(R
d) without any complications.

2. The Case of L2(G) (and L1(Td)) Part 2 of Theorem 1 and Proposition 1 imply
that the expression in (9) converges in law in L2(G) (and hence also in L1(Td)) if
K ∈ Ws

1(G) holds for some s > d/2. Alternatively, one can apply the CLT in the
Hilbert space L2(G). It follows from Theorem 10.5 in [11] that

E
∥
∥K(· − X) − P ∗ K

∥
∥2

2,λ
< ∞ (10)

is sufficient for (9) to satisfy the CLT in L2(G). Since the L2(G)-norm is translation
invariant, condition (10) is satisfied for arbitrary [K]λ ∈ L2(G). (Note that [P∗K]λ ∈
L2(G) by (5).) Clearly, this result also carries over to L1(Td) by the continuous
injection L2(Td) ↪→ L1(Td). Consequently our results, when applied to the empirical
process, are suboptimal in this particular case.

3. The Case of L1(Rd) Theorem 2 and Proposition 1 imply that the expression in
(9) converges in law in L1(Rd) if [K]λ ∈ Bs

11(R
d) holds for some s > d/2 and if

P possesses a moment of order γ > d . Alternatively, one can use the CLT in the
cotype 2 Banach space L1(Rd). It is known that an L1(Rd)-valued random variable
Z satisfies the CLT if and only if

∫
Rd (EZ2)1/2 dλ < ∞, cf. p. 205 in [1]. In our

setting, this is equivalent to

∫

Rd

(
K2 ∗ P

)1/2
dλ =

∫

Rd

(∫

Rd

K2(x − y)dP(y)

)1/2

dλ(x) < ∞. (11)

One way to verify (11) is by a moment condition on K2 and P of order γ > d , see
Lemma 1 in [7]. Alternatively, one can impose some smoothness on K together with
moment conditions on P to verify (11). The latter approach is related to the result
obtained in this paper.
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