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Abstract
For O a bounded domain in Rd and a given smooth function g : O → R, we
consider the statistical nonlinear inverse problem of recovering the conductivity
f > 0 in the divergence form equation∇ · ( f ∇u) = g onO, u = 0 on ∂O, from
N discrete noisy point evaluations of the solution u = uf on O. We study the
statistical performance of Bayesian nonparametric procedures based on a flex-
ible class of Gaussian (or hierarchical Gaussian) process priors, whose imple-
mentation is feasible by MCMC methods. We show that, as the number N
of measurements increases, the resulting posterior distributions concentrate
around the true parameter generating the data, and derive a convergence rate
N−λ,λ > 0, for the reconstruction error of the associated posterior means, in
L2(O)-distance.

Keywords: inverse problems, Bayesian inference, Gaussian prior, frequentist
consistency

1. Introduction

Statistical inverse problems arise naturally in many applications in physics, imaging, tomogra-
phy, and generally in engineering and throughout the sciences. A prototypical example involves
a domain O ⊂ Rd, some function f : O → R of interest, and indirect measurements G( f ) of f,
where G is a given solution (or ‘forward’) operator of some partial differential equation (PDE)
governed by the unknown coefficient f. A natural statistical observational model postulates data

Yi = G( f )(Xi) + σWi, i = 1, . . . , N, (1)
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where the Xi’s are design points at which the PDE solution G( f ) is measured, and where the
Wi’s are standard Gaussian noise variables scaled by a noise level σ > 0. The aim is then
to infer f from the data (Yi, Xi)N

i=1. The study of problems of this type has a long history in
applied mathematics, see the monographs (Engl et al 1996, Kaltenbacher et al 2008), although
explicit statistical noise models have been considered only more recently (Bissantz et al 2004,
Bissantz et al 2007, Hohage and Pricop 2008, Kaipio and Somersalo 2004). Recent survey
articles on the subject are (Arridge et al 2019, Benning and Burger 2018) where many more
references can be found.

For many of the most natural PDEs—such as the divergence form elliptic equation (2)
considered below—the resulting maps G are non-linear in f, and this poses various chal-
lenges: among other things, the negative log-likelihood function associated to the model
(1), which equals the least squares criterion (see (10) below for details), is then possi-
bly non-convex, and commonly used statistical algorithms (such as maximum likelihood
estimators, Tikhonov regularisers or MAP estimates) defined as optimisers in f of likelihood-
based objective functions can not reliably be computed by standard convex optimisation
techniques. While iterative optimisation methods (such as Landweber iteration) may over-
come such challenges (Kaltenbacher et al 2008, Hanke et al 1995, Kaltenbacher et al 2009,
Qi-nian 2000), an attractive alternative methodology arises from the Bayesian approach to
inverse problems advocated in an influential paper by Stuart (Stuart 2010): one starts from
a Gaussian process prior Π for the parameter f or in fact, as is often necessary, for a suit-
able vector-space valued re-parameterisation F of f. One then uses Bayes’ theorem to infer
the best posterior guess for f given data (Yi, Xi)N

i=1. Posterior distributions and their expected
values can be approximately computed via Markov chain Monte Carlo (MCMC) methods
(see, for example, Beskos et al 2017, Conrad et al 2016, Cotter et al 2013 and references
therein) as soon as the forward map G(·) can be evaluated numerically, avoiding optimisa-
tion algorithms as well as the use of (potentially tedious, or non-existent) inversion formu-
las for G−1; see subsection 2.3.1 below for more discussion. The Bayesian approach has
been particularly popular in application areas as it does not only deliver an estimator for
the unknown parameter f but simultaneously provides uncertainty quantification method-
ology for the recovery algorithm via the probability distribution of f |(Yi, Xi)N

i=1 (see, for
example, Dashti and Stuart 2016). Conceptually related is the area of ‘probabilistic numerics’
(Briol et al 2019) in the noise-less case σ = 0, with key ideas dating back to work by
Diaconis (1988).

As successful as this approach may have proved to be in algorithmic practice, for the
case when the forward map G is non-linear we currently only have a limited understand-
ing of the statistical validity of such Bayesian inversion methods. By validity we mean here
statistical guarantees for convergence of natural Bayesian estimators such as the posterior
mean f̄ = EΠ[ f |(Yi, Xi)N

i=1] towards the ground truth f0 generating the data. Without such guar-
antees, the interpretation of posterior based inferences remains vague: the randomness of the
prior may have propagated into the posterior in a way that does not ‘wash out’ even when very
informative data is available (e.g., small noise variance and/or large sample size N), render-
ing Bayesian methods potentially ambiguous for the purposes of valid statistical inference and
uncertainty quantification.

In the present article we attempt to advance our understanding of this problem area in the
context of the following basic but representative example for a non-linear inverse problem:
let g be a given smooth ‘source’ function, and let f : O → R be a an unknown conductivity
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parameter determining solutions u = uf of the PDE{
∇ · ( f ∇u) = g on O,

u = 0 on ∂O,
(2)

where we denote by ∇· the divergence and by ∇ the gradient operator, respectively. Under
mild regularity conditions on f, and assuming that f � Kmin > 0 on O, standard elliptic
theory implies that (2) has a unique classical C2-solution G( f ) ≡ uf. Identification of f
from an observed solution uf of this PDE has been considered in a large number of arti-
cles both in the applied mathematics and statistics communities—we mention here (Stu-
art 2010, Beskos et al 2017, Dashti and Stuart 2016, Briol et al 2019, Alessandrini 1986,
Bonito et al 2017, Dashti and Stuart 2011, Falk 1983, Hoffmann and Sprekels 1985, Ito
and Kunisch 1994, Knowles 2001, Kohn and Lowe 1988, Kravaris and Seinfeld 1985,
Nickl et al 2020, Richter 1981, Schwab and Stuart 2012, Vollmer 2013) and the many
references therein.

The main contributions of this article are as follows: we show that posterior means aris-
ing from a large class of Gaussian (or conditionally Gaussian) process priors for f provide
statistically consistent recovery (with explicit polynomial convergence rates as the number
N of measurements increases) of the unknown parameter f in (2) from data in (1). While we
employ the theory of posterior contraction from Bayesian non-parametric statistics (Ghosal and
van der Vaart 2017, van der Vaart and van Zanten 2008, van der Vaart and van Zanten 2009),
the non-linear nature of the problem at hand leads to substantial additional challenges aris-
ing from the fact that (a) the Hellinger distance induced by the statistical experiment is not
naturally compatible with relevant distances on the actual parameter f and that (b) the ‘push-
forward’ prior induced on the information-theoretically relevant regression functions G( f ) is
non-explicit (in particular, non-Gaussian) due to the non-linearity of the map G. Our proofs
apply recent ideas from Monard et al (2020) to the present elliptic situation. In the first step we
show that the posterior distributions arising from the priors considered (optimally) solve the
PDE-constrained regression problem of inferring G( f ) from data (1). Such results can then be
combined with a suitable ‘stability estimate’ for the inverse map G−1 to show that, for large
sample size N, the posterior distributions concentrate around the true parameter generating
the data at a convergence rate N−λ for some λ > 0. We ultimately deduce the same rate of
consistency for the posterior mean from quantitative uniform integrability arguments.

The first results we obtain apply to a large class of ‘rescaled’ Gaussian process priors similar
to those considered in Monard et al (2020), addressing the need for additional a priori regu-
larisation of the posterior distribution in order to tame non-linear effects of the ‘forward map’.
This rescaling of the Gaussian process depends on sample size N. From a non-asymptotic point
of view this just reflects an adjustment of the covariance operator of the prior, but following
Diaconis (1988) one may wonder whether a ‘fully Bayesian’ solution of this non-linear inverse
problem, based on a prior that does not depend on N, is also possible. We show indeed that a
hierarchical prior that randomises a finite truncation point in the Karhunen–Loéve-type series
expansion of the Gaussian base prior will also result in consistent recovery of the conductivity
parameter f in equation (2) from data (1), at least if f is smooth enough.

Let us finally discuss some related literature on statistical guarantees for Bayesian inversion:
to the best of our knowledge, the only previous paper concerned with (frequentist) consistency
of Bayesian inversion in the elliptic PDE (2) is by Vollmer (2013). The proofs in Vollmer (2013)
share a similar general idea in that they rely on a preliminary treatment of the associated regres-
sion problem for G( f ), which is then combined with a suitable stability estimate for G−1.
However, the convergence rates obtained in Vollmer (2013) are only implicitly given and sub-
optimal, also (unlike ours) for ‘prediction risk’ in the PDE-constrained regression problem.
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Moreover, when specialised to the concrete non-linear elliptic problem (2) considered here,
the results in section 4 in Vollmer (2013) only hold for priors with bounded Cβ-norms, such as
‘uniform wavelet type priors’, similar to the ones used in Nickl (2018), Nickl and Söhl (2017),
and Nickl and Söhl (2019) for different non-linear inverse problems. In contrast, our results
hold for the more practical Gaussian process priors which are commonly used in applications,
and which permit the use of tailor-made MCMC methodology—such as the pCN algorithm
discussed in subsection 2.3.1—for computation.

The results obtained in Nickl et al (2020) for the maximum a posteriori (MAP) estimates
associated to the priors studied here are closely related to our findings in several ways. Ulti-
mately the proof methods in Nickl et al (2020) are, however, based on variational methods
and hence entirely different from the Bayesian ideas underlying our results. Moreover, the
MAP estimates in Nickl et al (2020) are difficult to compute due to the lack of convexity of
the forward map, whereas posterior means arising from Gaussian process priors admit explicit
computational guarantees, see Hairer et al (2014) and also subsection 2.3.1 for more details.

It is further of interest to compare our results to those recently obtained in Abraham and
Nickl (2019), where the statistical version of the Caldéron problem is studied. There the
‘Dirichlet-to-Neumann map’ of solutions to the PDE (2) is observed, corrupted by appropriate
Gaussian matrix noise. In this case, as only boundary measurements of uf at ∂O are avail-
able, the statistical convergence rates are only of order log−γ(N) for some γ > 0 (as N →∞),
whereas our results show that when interior measurements of uf are available throughout O,
the recovery rates improve to N−λ for some λ > 0.

There is of course a large literature on consistency of Bayesian linear inverse prob-
lems with Gaussian priors, we only mention Agapiou et al (2013), Kekkonen et al (2016),
Knapik et al (2011), Monard et al (2019), and Ray (2013) and references therein. The non-
linear case considered here is fundamentally more challenging and cannot be treated by
the techniques from these papers—however, some of the general theory we develop in the
appendix provides novel proof methods also for the linear setting.

This paper is structured as follows. Section 2 contains all the main results for the inverse
problem arising with the PDE model (2). The proofs, which also include some theory for gen-
eral non-linear inverse problems that is of independent interest, are given in section 3 and
appendix A. Finally, appendix B provides additional details on some facts used throughout the
paper.

2. Main results

2.1. A statistical inverse problem with elliptic PDEs

2.1.1. Main notation. Throughout the paper, O ⊂ Rd, d ∈ N, is a given nonempty open and
bounded set with smooth boundary ∂O and closure Ō.

The spaces of continuous functions defined on O and Ō are respectively denoted C(O) and
C(Ō), and endowed with the supremum norm ‖ · ‖∞. For positive integers β ∈ N, Cβ(O) is
the space of β-times differentiable functions with uniformly continuous derivatives; for non-
integer β > 0, Cβ(O) is defined as

Cβ(O) =

{
f ∈ C	β
(O) : ∀|i| = 	β
, sup

x,y∈O,x�=y

|Di f (x) − Di f (y)|
|x − y|β−	β
 < ∞

}
,
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where 	β
 denotes the largest integer less than or equal to β, and for any multi-index
i = (i1, . . . , id), Di is the ith partial differential operator. Cβ(O) is normed by

‖ f ‖Cβ (O) =
∑

|i|�	β

sup
x∈O

|Di f (x)|+
∑

|i|=	β

sup

x,y∈O, x�=y

|Di f (x) − Di f (y)|
|x − y|β−	β
 ,

where the second summand is removed for integer β. We denote by C∞(O) = ∩βCβ(O) the set
of smooth functions, and by C∞

c (O) the subspace of elements in C∞(O) with compact support
contained in O.

Denote by L2(O) the Hilbert space of square integrable functions on O, equipped with
its usual inner product 〈· , ·〉L2(O). For integer α � 0, the order-α Sobolev space on O is the
separable Hilbert space

Hα(O) = { f ∈ L2(O) : ∀|i| � α, ∃Di f ∈ L2(O)},

〈 f , g〉Hα(O) =
∑
|i|�α

〈Di f , Dig〉L2(O).

For non-integer α � 0, Hα(O) can be defined by interpolation, for example, Lions and
Magenes (1972). For any α � 0, Hα

c (O) will denote the completion of C∞
c (O) with respect

to the norm ‖ · ‖Hα(O). Finally, if K is a nonempty compact subset of O, we denote by Hα
K(O)

the closed subspace of functions in Hα(O) with support contained in K. Whenever there is no
risk of confusion, we will omit the reference to the underlying domain O.

Throughout, we use the symbols� and� for inequalities holding up to a universal constant.
Also, for two real sequences (aN) and (bN), we say that aN � bN if both aN � bN and bN � aN

for all N large enough. For a sequence of random variables ZN we write ZN = OPr(aN) if for all
ε > 0 there exists Mε < ∞ such that for all N large enough, Pr(|ZN| � MεaN) < ε. Finally, we
will denote by L(Z) the law of a random variable Z.

2.1.2. Parameter spaces and link functions. Let g ∈ C∞(O) be an arbitrary source function,
which will be regarded as fixed throughout. For f ∈ Cβ(O), β > 1, consider the boundary
value problem {

∇ · ( f ∇u) = g on O,

u = 0 on ∂O.
(3)

If we assume that f � Kmin > 0 on O, then standard elliptic theory (e.g. Gilbarg and
Trudinger (1998)) implies that (3) has a classical solution G( f ) ≡ u f ∈ C(Ō) ∩ C1+β(O).

We consider the following parameter space for f: for integerα > 1 + d/2, Kmin ∈ (0, 1), and
denoting by n = n(x) the outward pointing normal at x ∈ ∂O, let

Fα,Kmin =

{
f ∈ Hα(O) : inf

x∈O
f (x) > Kmin, f|∂O = 1,

∂ j f
∂n j |∂O

= 0 for 1 � j � α− 1

}
.

(4)

Our approach will be to place a prior probability measure on the unknown conductivity f
and base our inference on the posterior distribution of f given noisy observations of G( f ), via
Bayes’ theorem. It is of interest to use Gaussian process priors. Such probability measures
are naturally supported in linear spaces (in our case Hα

c (O)) and we now introduce a bijective
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re-parametrisation so that the prior for f is supported in the relevant parameter space Fα,Kmin .
We follow the approach of using regular link functions Φ as in Nickl et al (2020).

Condition 1. For given Kmin > 0, let Φ : R→ (Kmin,∞) be a smooth, strictly increasing
bijective function such that Φ(0) = 1, Φ′(t) > 0, t ∈ R, and assume that all derivatives of Φ
are bounded on R.

For some of the results to follow it will prove convenient to slightly strengthen the previous
condition.

Condition 2. Let Φ be as in condition 1, and assume furthermore that Φ′ is nondecreasing
and that liminft→−∞Φ′(t)t a > 0 for some a > 0.

For a = 2, an example of such a link function is given in example 24 below. Note however
that the choice of Φ = exp is not permitted in either condition.

Given any link function Φ satisfying condition 1, one can show (cf. Nickl et al (2020),
section 3.1) that the set Fα,Kmin in (4) can be realised as the family of composition maps

Fα,Kmin = {Φ ◦ F : F ∈ Hα
c (O)}, α ∈ N.

We then regard the solution map associated to (3) as one defined on Hα
c via

G : Hα
c (O) → L2(O), F �→ G(F) :=G(Φ ◦ F), (5)

where G(Φ ◦ F) is the solution to (3) now with f = Φ ◦ F ∈ Fα,Kmin . In the results to follow,
we will implicitly assume a link function Φ to be given and fixed, and understand the re-
parametrised solution map G as being defined as in (5) for such choice of Φ.

2.1.3. Measurement model. Define the uniform distribution on O by μ = dx/vol(O), where
dx is the Lebesgue measure and vol(O) =

∫
O dx, and consider random design variables

(Xi)
N
i=1

iid∼ μ, N ∈ N. (6)

For unknown f ∈ Fα,Kmin , we model the statistical errors under which we observe the corre-
sponding measurements {G( f )(Xi)}N

i=1 by i.i.d. Gaussian random variables Wi ∼ N(0, 1), all
independent of the Xi’s. Using the re-parameterisation f = Φ ◦ F via a given link function from
the previous subsection, the observation scheme is then

Yi = G(F)(Xi) + σWi, i = 1, . . . , N, (7)

where σ > 0 is the noise amplitude. We will often use the shorthand notation Y (N) = (Yi)N
i=1,

with analogous definitions for X (N ) and W (N ). The random vectors (Yi, Xi) on R×O are then
i.i.d with laws denoted as Pi

F. Writing dy for the Lebesgue measure on R, it follows that Pi
F

has Radon–Nikodym density

pF(y, x) :=
dPi

F

dy × dμ
(y, x) =

1√
2πσ2

e−[y−G(F)(x)]2/(2σ2), y ∈ R, x ∈ O. (8)

We will write PN
F = ⊗N

i=1Pi
F for the joint law of (Y (N ), X (N )) on RN ×ON , with Ei

F, EN
F

the expectation operators corresponding to the laws Pi
F, PN

F respectively. In the sequel we
sometimes use the notation PN

f instead of PN
F when convenient.

6



Inverse Problems 36 (2020) 085001 M Giordano and R Nickl

2.1.4. The Bayesian approach. In the Bayesian approach one models the parameter
F ∈ Hα

c (O) by a Borel probability measure Π supported in the Banach space C(O). Since
the map (F, (y, x)) �→ pF(y, x) can be shown to be jointly measurable, the posterior distri-
bution Π(·|Y (N ), X (N )) of F|(Y (N ), X (N )) arising from data in model (7) equals, by Bayes’
formula (p 7, Ghosal and van der Vaart 2017),

Π(B|Y (N), X(N)) =

∫
Be


(N)(F)dΠ(F)∫
C(O)e


(N)(F)dΠ(F)
any Borel set B ⊆ C(O), (9)

where


(N)(F) = − 1
2σ2

N∑
i=1

[Yi − G(F)(Xi)]
2 (10)

is (up to an additive constant) the joint log-likelihood function.

2.2. Statistical convergence rates

In this section we will show that the posterior distribution arising from certain priors concen-
trates near any sufficiently regular ground truth F0 (or, equivalently, f0), and provide a bound
on the rate of this contraction, assuming the observation (Y (N ), X (N )) to be generated through
model (7) of law PN

F0
. We will regard σ > 0 as a fixed and known constant; in practice it may

be replaced by the estimated sample variance of the Yi’s.
The priors we will consider are built around a Gaussian process base prior Π′, but to deal

with the non-linearity of the inverse problem, some additional regularisation will be required.
We first show how this can be done by an N-dependent ‘rescaling’ step as suggested in
Monard et al (2020). We then further show that a randomised truncation of a Karhunen–Loeve-
type series expansion of the base prior also leads to a consistent, ‘fully Bayesian’ solution of
this inverse problem.

2.2.1. Results with re-scaled Gaussian priors. We will freely use terminology from the basic
theory of Gaussian processes and measures, see, for example, Giné and Nickl (2016), chapter
2 for details.

Condition 3. Let α > 1 + d/2, β � 1, and let H be a Hilbert space continuously imbedded
into Hα

c (O). Let Π′ be a centred Gaussian Borel probability measure on the Banach space
C(O) that is supported on a separable measurable linear subspace of Cβ(O), and assume that
the reproducing-kernel Hilbert space (RKHS) of Π′ equals H.

As a basic example of a Gaussian base prior Π′ satisfying condition 3, consider a Whit-
tle–Matérn process M = {M(x), x ∈ O} indexed by O and of regularity α (cf. example 25
below for full details). We will assume that it is known that F0 ∈ Hα(O) is supported inside
a given compact subset K of the domain O, and fix any smooth cut-off function χ ∈ C∞

c (O)
such that χ = 1 on K. Then,Π′ = L(χM) is supported on the separable linear subspace Cβ′ (O)
of Cβ(O) for any β < β ′ < α− d/2, and its RKHS H = {χF, F ∈ Hα(O)} is continuously
imbedded into Hα

c (O) (and contains Hα
K(O)). The condition F0 ∈ H that is employed in the

following theorems then amounts to the standard assumption that F0 ∈ Hα(O) be supported in
a strict subset K of O.

To proceed, if Π′ is as above and F′ ∼ Π′, we consider the ‘re-scaled’ prior

ΠN = L(FN), FN =
1

Nd/(4α+4+2d)
F′, (11)
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Then ΠN again defines a centred Gaussian prior on C(O), and a basic calculation (e.g., exercise
2.6.5 in Giné and Nickl (2016)) shows that its RKHS HN is still given by H but now with norm

‖F‖HN = Nd/(4α+4+2d)‖F‖H ∀F ∈ H. (12)

Our first result shows that the posterior contracts towards F0 in ‘prediction’-risk at rate
N−(α+1)/(2α+2+d) and that, moreover, the posterior draws possess a bound on their Cβ-norm
with overwhelming frequentist probability.

Theorem 4. For fixed integer α > β + d/2, β � 1, consider the Gaussian prior ΠN

in (11) with base prior F′ ∼ Π′ satisfying condition 3 for RKHS H. Let ΠN(·|Y (N ), X (N ))
be the resulting posterior distribution arising from observations (Y (N ), X (N )) in (7), set
δN = N−(α+1)/(2α+2+d), and assume F0 ∈ H.

Then for any D > 0 there exists L > 0 large enough (depending on σ, F0, D,α, β, as well
as on O, d, g) such that, as N →∞,

ΠN(F : ‖G(F) − G(F0)‖L2 > LδN |Y (N), X(N)) = OPN
F0

(e−DNδ2
N ), (13)

and for sufficiently large M > 0 (depending on σ, D,α, β)

ΠN(F : ‖F‖Cβ > M|Y (N), X(N)) = OPN
F0

(e−DNδ2
N ). (14)

Following ideas in Monard et al (2020), we can combine (13) with the regularisation
property (14) and a suitable stability estimate for G−1 to show that the posterior contracts
about f0 also in L2-risk. We shall employ the stability estimate proved in Nickl et al (2020),
lemma 24, which requires the source function g in the base PDE (3) to be strictly positive,
a natural condition ensuring injectivity of the map f �→ G( f ), see Richter (1981). Denote the
push-forward posterior on the conductivities f by

Π̃N(·|Y (N), X(N)) :=L( f ), f = Φ ◦ F : F ∼ ΠN(·|Y (N), X(N)). (15)

Theorem 5. Let ΠN(·|Y (N ), X (N )), δN and F0 be as in theorem 4 for integer β > 1. Let f0 =
Φ ◦ F0 and assume in addition that infx∈Og(x) � gmin > 0. Then for any D > 0 there exists
L > 0 large enough (depending on σ, f0, D,α, β,O, gmin, d) such that, as N →∞,

Π̃N( f : ‖ f − f0‖L2 > LN−λ|Y (N), X(N)) = OPN
f0

(e−DNδ2
N ), λ =

(α+ 1)(β − 1)
(2α+ 2 + d)(β + 1)

.

We note that as the smoothness α of f0 increases, we can employ priors of higher regularity
α, β. In particular, if F0 ∈ C∞ = ∩α>0Hα, we can let the above rate N−λ be as closed as desired
to the ‘parametric’ rate N−1/2.

We conclude this section showing that the posterior mean EΠ[F|Y (N ), X (N )] of
ΠN(·|Y (N ), X (N )) converges to F0 at the rate N−λ from theorem 5. We formulate this result at
the level of the vector space valued parameter F (instead of for conductivities f ), as the most
commonly used MCMC algorithms (such as pCN, see subsection 2.3.1) target the posterior
distribution of F.

Theorem 6. Under the hypotheses of theorem 5, let F̄N = EΠ[F|Y (N), X(N)] be the
(Bochner-)mean of ΠN(·|Y (N ), X (N )). Then, as N →∞,

PN
F0

(
‖F̄N − F0‖L2 > N−λ

)
→ 0. (16)
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The same result holds for the implied conductivities, that is, for ‖Φ ◦ F̄N − f0‖L2 replacing
‖F̄N − F0‖L2 , since composition with Φ is Lipschitz.

2.2.2. Extension to high-dimensional Gaussian sieve priors. It is often convenient, for
instance for computational reasons as discussed in subsection 2.3.1, to employ ‘sieve’-priors
that are concentrated on a finite-dimensional approximation of the parameter space support-
ing the prior. For example a truncated Karhunen–Loeve-type series expansion (or some other
discretisation) of the Gaussian base prior Π′ is frequently used (Dashti and Stuart 2011,
Hairer et al 2014). The theorems of the previous subsection remain valid if the approximation
spaces are appropriately chosen.

Let us illustrate this by considering a Gaussian series prior based on an orthonormal
basis {Ψ
r, 
 � −1, r ∈ Zd} of L2(Rd) composed of sufficiently regular, compactly supported
Daubechies wavelets (see chapter 4 in Giné and Nickl (2016) for details). We assume that
F0 ∈ Hα

K(O) for some K ⊂ O, and denote by R
 the set of indices r for which the support of
Ψ
r intersects K. Fix any compact K′ ⊂ O such that K � K′, and a cut-off functionχ ∈ C∞

c (O)
such that χ = 1 on K′. For any real α > 1 + d/2, consider the prior Π′

J arising as the law of
the Gaussian random sum

Π′
J = L(χF), F =

∑

�J,r∈R


2−
αF
rΨ
r, F
r
iid∼ N(0, 1), (17)

where J = JN →∞ is a (deterministic) truncation point to be chosen. Then Π′
J defines a

centred Gaussian prior that is supported on the finite-dimensional space

HJ = span{χΨ
r, 
 � J, r ∈ R
} ⊂ C(O). (18)

Proposition 7. Consider a priorΠN as in (11) where now F ′ ∼ Π′
J and J = JN ∈ N is such

that 2J � N1/(2α+2+d). Let ΠN(·|Y (N ), X (N )) be the resulting posterior distribution arising from
observations (Y (N ), X (N )) in (7), and assume F0 ∈ Hα

K(O). Then the conclusions of theorems
4–6 remain valid (under the respective hypotheses on α, β, g).

A similar result could be proved for more general Gaussian priors (not of wavelet type), but
we refrain from giving these extensions here.

2.2.3. Randomly truncated Gaussian series priors. In this section we show that instead of
rescaling Gaussian base priors Π′,Π′

J in an N−dependent way to attain extra regularisation,
one may also randomise the dimensionality parameter J in (17) by a hyper-prior with suit-
able tail behaviour. While this is computationally somewhat more expensive (by necessitating
a hierarchical sampling method, see subsection 2.3.1), it gives a possibly more principled
approach to (‘fully’) Bayesian regularisation in our inverse problem. The theorem below
will show that such a procedure is consistent in the frequentist sense, at least for smooth
enough F0.

For the wavelet basis and cut-off function χ introduced before (17), we consider again a
random (conditionally Gaussian) sum

Π = L(χF), F =
∑


�J,r∈R


2−
αF
rΨ
r, F
r
iid∼ N(0, 1) (19)

where now J is a random truncation level, independent of the random coefficients F
r, satisfying
the following inequalities:

Pr(J > j) = e−2 jd log 2 jd ∀ j � 1; Pr(J = j) � e−2 jd log 2 jd
, j →∞. (20)

9
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When d = 1, a (log-)Poisson random variable satisfies these tail conditions, and for d > 1 such
a random variable J can be easily constructed too—see example 28 below.

Our first result in this section shows that the posterior arising from the truncated series prior
in (19) achieves (up to a log-factor) the same contraction rate in L2-prediction risk as the one
obtained in theorem 4. Moreover, as is expected in light of the results in van der Vaart and
van Zanten (2009) and Ray (2013), the posterior adapts to the unknown regularity α0 of F0

when it exceeds the base smoothness level α.

Theorem 8. For any α > 1 + d/2, let Π be the random series prior in (19), and let
Π(·|Y (N ), X (N )) be the resulting posterior distribution arising from observations (Y (N ), X (N ))
in (7). Then, for each α0 � α and any F0 ∈ Hα0

K (O), we have that for any D > 0 there exists
L > 0 large enough (depending on σ, F0, D,α,O, d, g) such that, as N →∞,

Π(F : ‖G(F) − G(F0)‖L2 > LξN |Y (N), X(N)) = OPN
F0

(e−DNξ2
N ),

where ξN = N−(α0+1)/(2α0+2+d) log N. Moreover, for HJ the finite-dimensional subspaces in
(18) and JN ∈ N such that 2JN � N1/(2α0+2+d), we also have that for sufficiently large M > 0
(depending on D,α)

Π(F : F ∈ HJN , ‖F‖Hα � M2JNαNξ2
N |Y (N), X(N)) = 1 − OPN

F0
(e−DNξ2

N ). (21)

We can now exploit the previous result along with the finite-dimensional support of the
posterior and again the stability estimate from Nickl et al (2020) to obtain the following con-
sistency theorem for F0 ∈ Hα0 if α0 is large enough (with a precise bound α0 � α∗ given in
the proof of lemma 12).

Theorem 9. Let the link function Φ in the definition (5) of G satisfy condition 2. Let
Π(·|Y (N ), X (N )), ξN be as in theorem 8, assume in addition g � gmin > 0 on O, and let
Π̃(·|Y (N), X(N)) be the posterior distribution of f as in (15). Then for f0 = Φ ◦ F0 with
F0 ∈ Hα0

K (O) for α0 large enough (depending on α, d, a) and for any D > 0 there exists L > 0
large enough (depending on σ, f0, D,α,O, gmin, d) such that, as N →∞,

Π̃( f : ‖ f − f0‖L2 > LN−ρ|Y (N), X(N)) = OPN
f0

(e−DNξ2
N ), ρ =

(α0 + 1)(α− 1)
(2α0 + 2 + d)(α+ 1)

.

Just as before, for f0 ∈ C∞ the above rate can be made as close as desired to N−1/2 by choos-
ing α large enough. Moreover, the last contraction theorem also translates into a convergence
result for the posterior mean of F.

Theorem 10. Under the hypotheses of theorem 9, let F̄N = EΠ[F|Y (N), X(N)] be the mean of
Π(·|Y (N ), X (N )). Then, as N →∞,

PN
F0

(
‖F̄N − F0‖L2 > N−ρ

)
→ 0. (22)

We note that the proof of the last two theorems crucially takes advantage of the ‘non-
symmetric’ and ‘non-exponential’ nature of the stability estimate from Nickl et al (2020), and
may not hold in other non-linear inverse problems where such an estimate may not be available
(e.g., as in Monard et al (2020), Abraham and Nickl (2020) or also in the Schrödinger equation
setting studied in Nickl et al (2020), Nickl (2018)).

Let us conclude this section by noting that hierarchical priors such as the one studied
here are usually devised to ‘adapt to unknown’ smoothness α0 of F0, see van der Vaart and
van Zanten (2009) and Ray (2013). Note that while our posterior distribution is adaptive to α0

10
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in the ‘prediction risk’ setting of theorem 8, the rate N−ρ obtained in theorems 9 and 10 for
the inverse problem does depend on the minimal smoothness α, and is therefore not adaptive.
Nevertheless, this hierarchical prior gives an example of a fully Bayesian, consistent solution
of our inverse problem.

2.3. Concluding discussion

2.3.1. Posterior computation. As mentioned in the introduction, in the context of the ellip-
tic inverse problem considered in the present paper, posterior distributions arising from
Gaussian process priors such as those above can be computed by MCMC algorithms, see
Beskos et al (2017), Conrad et al (2016), Cotter et al (2013), and computational guarantees
can be obtained as well: for Gaussian priors, Hairer et al (2014) establish non-asymptotic sam-
pling bounds for the ‘preconditioned Crank–Nicholson (pCN)’ algorithm, which hold even in
the absence of log-concavity of the likelihood function, and which imply bounds on the approx-
imation error for the computation of the posterior mean. The algorithm can be implemented as
long as it is possible to evaluate the forward map F �→ G(F)(x) at x ∈ O, which in our context
can be done by using standard numerical methods to solve the elliptic PDE (3). In practice,
these algorithms often employ a finite-dimensional approximation of the parameter space (see
subsection 2.2.2).

In order to sample from the posterior distribution arising from the more complex hierarchi-
cal prior (19), MCMC methods based on fixed Gaussian priors (such as the pCN algorithm) can
be employed within a suitable Gibbs-sampling scheme that exploits the conditionally Gaus-
sian structure of the prior. The algorithm would then alternate, for given J, an MCMC step
targeting the marginal posterior distribution of F|(Y (N ), X (N ), J ), followed by, given the actual
sample of F, a second MCMC run with objective the marginal posterior of J|(Y (N ), X (N ), F).
A related approach to hierarchical inversion is empirical Bayesian estimation. In the present
setting this would entail first estimating the truncation level J from the data, via an estima-
tor Ĵ = Ĵ(Y (N ), X (N )) (e.g., the marginal maximum likelihood estimator), and then performing
inference based on the fixed finite-dimensional prior ΠĴ (defined as in (19) with J replaced by
Ĵ). See Knapik et al (2015) where this is studied in a diagonal linear inverse problem.

2.3.2. Open problems: towards optimal convergence rates. The convergence rates obtained
in this article demonstrate the frequentist consistency of a Bayesian (Gaussian process) inver-
sion method in the elliptic inverse problem (2) with data (1) in the large sample limit N →∞.
While the rates approach the optimal rate N−1/2 for very smooth models (α→∞), the ques-
tion of optimality for fixed α remains an interesting avenue for future research. We note that
for the ‘PDE-constrained regression’ problem of recovering G(F0) in ‘prediction’ loss, the rate
δN = N−(α+1)/(2α+2+d) obtained in theorems 4 and 8 can be shown to be minimax optimal (as
in Nickl et al (2020), theorem 10). But for the recovery rates for f obtained in theorems 6 and
10, no matching lower bounds are currently known. Related to this issue, in Nickl et al (2020)
faster (but still possibly suboptimal) rates are obtained for the modes of our posterior distribu-
tions (MAP estimates, which are not obviously computable in polynomial time), and one may
loosely speculate here about computational hardness barriers in our non-linear inverse problem.
These issues pose formidable challenges for future research and are beyond the scope of the
present paper.

3. Proofs

We assume without loss of generality that vol(O) = 1. In the proof, we will repeatedly exploit
properties of the (re-parametrised) solution map G defined in (5), which was studied in detail

11
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in Nickl et al (2020). Specifically, in the proof of theorem 9 in Nickl et al (2020) it is shown
that, for all α > 1 + d/2 and any F1, F2 ∈ Hα

c (O),

‖G(F1) − G(F2)‖L2(O) � (1 + ‖F1‖4
C1(O) ∨ ‖F2‖4

C1(O))‖F1 − F2‖(H1(O ))∗ , (23)

where we denote by X∗ the topological dual Banach space of a normed linear space X. Secondly,
we have (lemma 20 in Nickl et al (2020)) for some constant c > 0 (only depending on d, O
and Kmin),

sup
F∈Hα

c

‖G(F)‖∞ � c‖g‖∞ < ∞. (24)

Therefore the inverse problem (7) falls in the general framework considered in appendix A
below (with β = κ = 1, γ = 4 in (A2) and S = c‖g‖∞ in (A3)); in particular theorems 4 and
8 then follow as particular cases of the general contraction rate results derived in theorems 14
and 19, respectively. It thus remains to derive theorems 5 and 6 from theorem 4, and theorems
9 and 10 from theorem 8, respectively.

To do so we recall here another key result from Nickl et al (2020), namely their stability esti-
mate lemma 24: for α > 2 + d/2, if G( f ) denotes the solution of the PDE (3) with g satisfying
infx∈Og(x) � gmin > 0, then for fixed f0 ∈ Fα,Kmin and all f ∈ Fα,Kmin

‖ f − f0‖L2(O) � ‖ f ‖C1(O)‖G( f ) − G( f0)‖H2(O), (25)

with multiplicative constant independent of f.

3.1. Proofs for section 2.2.1

Proof of theorem 5. The conclusions of theorem 4 can readily be translated for the push-
forward posterior Π̃N(·|Y (N), X(N)) from (15). In particular, (13) implies, for f0 = Φ ◦ F0, as
N →∞,

Π̃N( f : ‖G( f ) − G( f0)‖L2 > LδN |Y (N), X(N)) = OPN
f0

(e−DNδ2
N ); (26)

and using lemma 29 in Nickl et al (2020) and (14) we obtain for sufficiently large M′ > 0

Π̃N( f : ‖ f ‖Cβ > M′|Y (N), X(N)) � ΠN(F : ‖F‖Cβ > M|Y (N), X(N))

= OPN
f0

(e−DNδ2
N ). (27)

From the previous bounds we now obtain the following result. �
Lemma 11. For ΠN(·|Y (N ), X (N )), δN and F0 as in theorem 4, let Π̃N(·|Y (N), X(N)) be the
push-forward posterior distribution from (15). Then, for f0 = Φ ◦ F0 and any D > 0 there exists
L > 0 large enough such that, as N →∞,

Π̃N( f : ‖G( f ) − G( f0)‖H2 > Lδ(β−1)/(β+1)
N |Y (N), X(N)) = OPN

F0
(e−DNδ2

N ).

Proof. Using the continuous imbedding of Cβ ⊂ Hβ , β ∈ N, and (27), for some M′ > 0 as
N →∞,

Π̃N( f : ‖ f ‖Hβ > M′|Y (N), X(N)) = OPN
F0

(e−DNδ2
N ).

Now if f ∈ Hβ with ‖ f ‖Hβ � M′, lemma 23 in Nickl et al (2020) implies G( f ), G( f 0) ∈ Hβ+1,
with

12
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‖G( f0)‖Hβ+1 �1+‖ f0‖β(β+1)
Hβ <∞, ‖G( f )‖Hβ+1 � 1 + ‖ f ‖β(β+1)

Hβ < M′′ < ∞;

and by the usual interpolation inequality for Sobolev spaces (Lions and Magenes 1972),

‖G( f ) − G( f0)‖H2 � ‖G( f ) − G( f0)‖(β−1)/(β+1)
L2 ‖G( f ) − G( f0)‖2/(β+1)

Hβ+1

� ‖G( f ) − G( f0)‖(β−1)/(β+1)
L2 .

Thus, by what precedes and (26), for sufficiently large L > 0

Π̃N( f : ‖G( f ) − G( f0)‖H2 > Lδ(β−1)/(β+1)
N |Y (N), X(N))

� Π̃N( f : ‖G( f ) − G( f0)‖L2 > L′δN |Y (N), X(N))

+ Π̃N( f : ‖ f ‖Hβ > M′′|Y (N), X(N)) = OPN
F0

(e−DNδ2
N ),

as N →∞. �

To prove theorem 5 we use (25), (27) and lemma 11 to the effect that for any D > 0 we can
find L, M > 0 large enough such that, as N →∞,

Π̃N( f : ‖ f − f0‖L2 > Lδ
β−1
β+1
N |Y (N), X(N))

� Π̃N( f : ‖G( f ) − G( f0)‖H2 > L′δ
β−1
β+1
N |Y (N), X(N))

+ Π̃N( f : ‖ f ‖Cβ > M|Y (N), X(N)) = OPN
F0

(e−DNδ2
N ).

Proof of theorem 6. The proof largely follows ideas of Monard et al (2020) but requires a
slightly more involved, iterative uniform integrability argument to also control the probability
of events {F : ‖F‖Cβ > M} on whose complements we can subsequently exploit regularity
properties of the inverse link function Φ−1.

Using Jensen’s inequality, it is enough to show, as N →∞,

PN
F0

(
EΠ[‖F − F0‖2

L2 |Y (N), X(N)] > N−λ
)
→ 0.

For M > 0 sufficiently large to be chosen, we decompose

EΠ[‖F − F0‖L2 |Y (N), X(N)] = EΠ[‖F − F0‖L21‖F‖
Cβ�M|Y (N), X(N)]

+ EΠ[‖F − F0‖L21‖F‖
Cβ>M|Y (N), X(N)]. (28)

Using the Cauchy–Schwarz inequality we can upper bound the expectation in the second
summand by

√
EΠ[‖F − F0‖2

L2 |Y (N), X(N)]
√
ΠN(F : ‖F‖Cβ > M|Y (N), X(N)).

In view of (14), for all D > 0 we can choose M > 0 large enough to obtain

13
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PN
F0

(
EΠ[‖F − F0‖2

L2 |Y (N), X(N)]ΠN(F : ‖F‖Cβ > M|Y (N), X(N)) > N−2λ
)

� PN
F0

(
EΠ[‖F − F0‖2

L2 |Y (N), X(N)]e−DNδ2
N > N−2λ

)
+ o(1).

To bound the probability in the last line, let BN be the sets defined in (A4) below, note that

lemmas 16 and 23 below jointly imply that ΠN(BN) � a e−ANδ2
N for some a,A > 0. Also, let

ν(·) = ΠN(· ∩ BN)/ΠN(BN), and let CN be the event from (A10), for which lemma 7.3.2 in
Giné and Nickl (2016) implies that PN

F0
(CN) → 1 as N →∞. Then

PN
F0

(
EΠ[‖F − F0‖2

L2 |Y (N), X(N)]e−DNδ2
N > N−2λ

)

� PN
F0

(∫
C(O)‖F − F0‖2

L2

∏N
i=1 pF/pF0 (Yi, Xi)dΠN(F)

Π(BN)
∫
BN

∏N
i=1 pF/pF0 (Yi, Xi)dν(F)

e−DNδ2
N > N−2λ, CN

)
+ o(1)

� PN
F0

(∫
C(O)

‖F − F0‖2
L2

N∏
i=1

pF/pF0 (Yi, Xi)dΠN(F) > N−2λa e(D−A−2)Nδ2
N

)
+ o(1)

which is upper bounded, using Markov’s inequality and Fubini’s theorem, by

1
a

e−(D−A−2)Nδ2
N N2λ

∫
C(O)

‖F − F0‖2
L2EN

F0

(
N∏

i=1

pF

pF0

(Yi, Xi)

)
dΠN(F).

Taking D > A + 2 (and M large enough in (28)), using the fact that

EN
F0

(∏N
i=1 pF/pF0 (Yi, Xi)

)
= 1, and that EΠN‖F‖L2 < ∞ (by Fernique’s theorem, e.g.,

Giné and Nickl (2016), exercise 2.1.5), we then conclude

PN
F0

(
EΠ[‖F − F0‖2

L21‖F‖
Cβ>M|Y (N), X(N)] > N−λ

)
→ 0, N →∞. (29)

To handle the first term in (28), let f = Φ ◦ F and f0 = Φ ◦ F0. Then for all x ∈ O, by the
mean value and inverse function theorems,

|F(x) − F0(x)| = |Φ−1 ◦ f (x) − Φ−1 ◦ f0(x)| = 1

|Φ′(Φ−1(η))|
| f (x) − f0(x)|

for some η lying between f(x) and f0(x). If ‖F‖Cβ � M then, as Φ is strictly increasing, nec-
essarily f(x) = Φ(F(x)) ∈ [Φ(−M),Φ(M)] for all x ∈ O. Similarly, the range of f0 is contained
in the compact interval [Φ(−M),Φ(M)] for M � ‖F0‖∞, so that

|Φ−1 ◦ f (x) − Φ−1 ◦ f0(x)| � 1
minz∈[−M,M]Φ

′(z)
| f (x) − f0(x)| � | f (x) − f0(x)|

for a multiplicative constant not depending on x ∈ O. It follows

‖F − F0‖L21‖F‖
Cβ�M � ‖ f − f0‖L21‖F‖

Cβ�M ,

and

EΠ[‖F − F0‖L21‖F‖
Cβ�M|Y (N), X(N)] � EΠ̃[‖ f − f0‖L2 |Y (N), X(N)].

14
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Noting that for each L > 0 the last expectation is upper bounded by

LN−λ + EΠ̃
[
‖ f − f0‖L21‖ f − f0‖L2>LN−λ |Y (N), X(N)

]

� LN−λ +
√

EΠ̃[‖ f − f0‖2
L2 |Y (N), X(N)]

√
Π̃N( f : ‖ f − f0‖L2 > LN−λ|Y (N), X(N)),

we can repeat the above argument, with the event {F : ‖F‖Cβ > M} replaced by the event
{ f : ‖ f − f0‖L2 > LN−λ}, to deduce from theorem 5 that for D > A + 2 there exists L > 0
large enough such that

PN
F0

(
EΠ̃[‖ f − f0‖2

L2 |Y (N), X(N)]Π̃N( f : ‖ f − f0‖2
L2 > LN−λ|Y (N), X(N)) > N−λ

)
� e−(D−A−2)Nδ2

N N2λ

which combined with (29) and the definition of δN concludes the proof. �

3.2. Sieve prior proofs

The proof only requires minor modification from the proofs of section 2.2.1. We only discuss
here the main points: one first applies the L2-prediction risk theorem 14 with a sieve prior.
In the proof of the small ball lemma 16 one uses the following observations: the projection
PHJ (F0) ∈ HJ of F0 ∈ Hα

K defined in (B4) satisfies by (B6)

‖F0 − PHJ (F0)‖(H1(O))∗ � 2−J(α+1);

hence choosing J such that 2J � N1/(2α+2+d), and noting also that ‖PHJ (F0)‖C1 � ‖F0‖C1 < ∞
for all J by standard properties of wavelet bases, it follows from (23) that

‖G(F0) − G(PHJ (F0))‖L2 � ‖F0 − PHJ (F0)‖(H1)∗ � N−(α+1)/(2α+2+d) = δN .

Therefore, by the triangle inequality,

ΠN(F : ‖G(F) − G(F0)‖L2 � qδN) � ΠN(F : ‖G(F) − G(PHN (F0))‖L2 � q′δN).

The rest of the proof of lemma 16 then carries over (with PHJ (F0) replacing F0), upon noting
that (B3) and a Sobolev imbedding imply

sup
J∈N

EΠ′
J‖F‖2

C1 < ∞, as well as ‖F‖Hα � c‖F‖HJ for all F ∈ HJ

for some constant c > 0 independent of J. Moreover, the last two properties are sufficient to
prove an analogue of lemma 17 as well, so that theorem 14 indeed applies to the sieve prior. The
proof from here onwards is identical to the ones of theorems 4–6 for the unsieved case, using

also that what precedes implies that supJ EΠ′
J‖F‖2

L2 < ∞, relevant in the proof of convergence
of the posterior mean.

3.3. Proofs for section 2.2.3

Inspection of the proofs for rescaled priors implies that theorems 9 and 10 can be deduced
from theorem 8 if we can show that posterior draws lie in a α-Sobolev ball of fixed radius with
sufficiently high frequentist probability. This is the content of the next result.
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Lemma 12. Under the hypotheses of theorem 9, there exists α∗ > 0 (depending on α, d
and a) such that for each F0 ∈ Hα0

K (O),α0 > α∗, and any D > 0 we can find M > 0 large
enough such that, as N →∞,

Π(F : ‖F‖Hα � M|Y (N), X(N)) = 1 − OPN
F0

(e−DNξ2
N ).

Proof. Theorem 8 implies that for all D > 0 and sufficiently large L, M > 0, if JN ∈ N :
2JN � N1/(2α0+2+d) and denoting by

AN = {F ∈ HJN : ‖F‖Hα � M2JNα
√

NξN , ‖G(F) − G(F0)‖L2 � LξN},

then as N →∞

Π(AN |Y (N), X(N)) = 1 − OPN
F0

(e−DNξ2
N ). (30)

Next, note that if F ∈ HJN , then by standard properties of wavelet bases (cf. (63)), ‖F‖Hα

� 2JNα‖F‖L2 for all N large enough. Thus, for PHJN
(F0) the projection of F0 onto HJN defined

in (B4),

‖F‖Hα � ‖F − PHJN
(F0)‖Hα + ‖PHJN

(F0)‖Hα � 2JNα‖F − F0‖L2 + ‖F0‖Hα ,

and a Sobolev imbedding further gives ‖F‖L∞ � M′2JNα
√

NξN , for some M′ > 0. Now letting
f = Φ ◦ F and f0 = Φ ◦ F0, by similar argument as in the proof of theorem 6 combined with
monotonicity of Φ′, we see that for all N large enough

‖F − F0‖L2 � 1

Φ′(−M′2JNα
√

NξN)
‖ f − f0‖L2 .

Then, using the assumption on the left tail of Φ in condition 2, and the stability estimate (25),

‖F − F0‖L2 � (2JNα
√

NξN )a‖ f ‖Hα‖G( f ) − G( f0)‖H2 .

Finally, by the interpolation inequality for Sobolev spaces (Lions and Magenes1972) and
lemma 23 in Nickl et al (2020),

‖G( f ) − G( f0)‖H2 � ‖G( f ) − G( f0)‖(α−1)/(α+1)
L2 ‖G( f ) − G( f0)‖2/(α+1)

Hα+1

� ξ
(α−1)/(α+1)
N (‖G( f )‖Hα+1 + ‖G( f0)‖Hα+1)2/(α+1)

� ξ
(α−1)/(α+1)
N (1 + ‖ f ‖α2+α

Hα )2/(α+1),

so that, in conclusion, for each F ∈ AN and sufficiently large N,

‖F‖Hα � 1 + 2JNα(2JNα
√

NξN)a‖ f ‖Hαξ
α−1
α+1
N (1 + ‖ f ‖α2+α

Hα )
2

α+1 .

The last term is bounded, using lemma 29 in Nickl et al (2020), by a multiple of
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ξ
α−1
α+1
N 2JNα(2JNα

√
NξN)2α2+2α+a = N

− (α0+1)(α−1)
(2α0+2+d)(α+1) N

2α3+(2+d)α2+(1+a+d)α+ad/2
2α0+2+d

the last identity holding up to a log factor. Hence, if

α0 > α∗ :=
[2α3 + (2 + d)α2 + (1 + a + d)α+ ad/2](α+ 1)

(α− 1)

then we conclude overall that ‖F‖Hα � 1 + o(1) as N →∞ for all F ∈ AN , proving the claim
in view of (30). �

Replacing β by α in the conclusion of lemma 11, the proof of theorem 9 now proceeds as
in the proof of theorem 5 without further modification. Likewise, theorem 10 can be shown
following the same argument as in the proof of theorem 6, noting that for Π the random series
prior in (19), it also holds that EΠ‖F‖2

L2 < ∞.
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Appendix A. Results for general inverse problems

Let O ⊂ Rd, d ∈ N, be a nonempty open and bounded set with smooth boundary, and assume
thatD is a nonempty and bounded measurable subset ofRp, p � 1. LetF ⊆ L2(O) be endowed
with the trace Borel σ-field of L2(O), and consider a Borel-measurable ‘forward mapping’

G : F → L2(D), F �→ G(F).

For F ∈ F , we are given noisy discrete measurements of G(F) over a grid of points drawn
uniformly at random on D,

Yi = G(F)(Xi) + σWi, i = 1, . . . , N, Xi
iid∼ μ, Wi

iid∼ N(0, 1), (A1)

for some σ > 0. Above μ denotes the uniform (probability) distribution on D and the design
variables (Xi)N

i=1 are independent of the noise vector (Wi)N
i=1. We assume without loss of

generality that vol(D) = 1, so that μ = dx, the Lebesgue measure on D.
We take the noise amplitude σ > 0 in (A1) to be fixed and known, and work under the

assumption that the forward map G satisfies the following local Lipschitz condition: for given
β, γ,κ � 0, and all F1, F2 ∈ Cβ(O) ∩ F ,

‖G(F1) − G(F2)‖L2(D) � (1 + ‖F1‖γCβ (O)
∨ ‖F2‖γCβ (O)

)‖F1 − F2‖(Hκ(O))∗ (A2)

where we recall that X∗ denotes the topological dual Banach space of a normed linear space X.
Additionally, we will require G to be uniformly bounded on its domain:
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S := sup
F∈F

‖G(F)‖L∞(D) < ∞. (A3)

As observed in (23), the elliptic inverse problem considered in this paper falls in this general
framework, which also encompasses other examples of nonlinear inverse problems such as
those involving the Schrödinger equation considered in Nickl et al (2020) and Nickl (2018),
for which the results in this section would apply as well. It also includes many linear inverse
problems such as the classical Radon transform, see Nickl et al (2020).

A.1. General contraction rates in Hellinger distance

Using the same notation as in section 2.1.2, and given a sequence of Borel prior probability
measures ΠN on F , we write ΠN(·|Y (N ), X (N )) for the posterior distribution of F|(Y (N ), X (N ))
(arising as after (9) and (10)). We also continue to use the notation pF for the densities from (8)
now in the general observation model (A1) (and implicitly assume that the map ( F, (y, x)) �→
pF(y, x) is jointly measurable to ensure existence of the posterior distribution). Below we for-
mulate a general contraction theorem in the Hellinger distance that forms the basis of the proofs
of the main results. It closely follows the general theory in Ghosal and van der Vaart (2017)
and its adaptation to the inverse problem setting in Monard et al (2020)—we include a proof
for conciseness and convenience of the reader.

Define the Hellinger distance h(·, ·) on the set of probabilities density functions on R×D
(with respect to the product measure dy × dx) by

h2(p1, p2) :=
∫
R×D

[√
p1(y, x) −

√
p2(y, x)

]2
dydx.

For any set A of such densities, let N(η;A, h), η > 0, be the minimal number of Hellinger balls
of radius η needed to cover A.

Theorem 13. Let ΠN be a sequence of prior Borel probability measures on F , and let
ΠN(·|Y (N ), X (N )) be the resulting posterior distribution arising from observations (Y (N ), X (N ))
in model (A1). Assume that for some fixed F0 ∈ F , and a sequence δN > 0 such that δN → 0
and

√
NδN →∞ as N →∞, the sets

BN :=

{
F : E1

F0

[
log

pF0 (Y1, X1)
pF(Y1, X1)

]
� δ2

N , E1
F0

[
log

pF0 (Y1, X1)
pF(Y1, X1)

]2

� δ2
N

}
, (A4)

satisfy for all N large enough

ΠN(BN) � a e−ANδ2
N , some a, A > 0. (A5)

Further assume that there exists a sequence of Borel sets AN ⊂ F for which

ΠN(Ac
N) � e−BNδ2

N , some B > A + 2 (A6)

for all N large enough, as well as

log N(δN ;AN , h) � CNδ2
N , some C > 0. (A7)

Then, for sufficiently large L = L(B, C) > 4 such that L2 > 12(B ∨ C), and all 0 < D < B
− A − 2, as N →∞,
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ΠN(F ∈ AN : h(pF, pF0 ) � LδN |Y (N), X(N)) = 1 − OPN
F0

(e−DNδ2
N ). (A8)

Proof. We start noting that by theorem 7.1.4 in Giné and Nickl (2016), for each L > 4 sat-
isfying L2 > 12(B ∨ C) we can find tests (random indicator functions) ΨN = ΨN(Y (N ), X (N ))
such that as N →∞

EN
F0
ΨN → 0, sup

F∈AN :h(pF ,pF0
)�LδN

EN
F (1 −ΨN) � e−BNδ2

N . (A9)

Next, denote the set whose posterior probability we want to lower bound by

ÃN = {F ∈ AN : h(pF, pF0 ) � LδN},

and, using the first display in (A9), decompose the probability of interest as

PN
F0

(
ΠN(Ãc

N |Y (N), X(N)) � e−DNδ2
N

)
= PN

F0

(
ΠN(Ãc

N |Y (N), X(N)) � e−DNδ2
N ,ΨN = 0

)
+ PN

F0

(
ΠN(Ãc

N |Y (N), X(N)) � e−DNδ2
N ,ΨN = 1

)
= PN

F0

(
ΠN(Ãc

N |Y (N), X(N)) � e−DNδ2
N ,ΨN = 0

)
+ o(1).

Next, let ν(·) = ΠN(· ∩ BN)/ΠN(BN) be the restricted normalised prior on BN , and define
the event

CN =

{∫
BN

N∏
i=1

pF

pF0

(Yi, Xi)dν(F) � e−2Nδ2
N

}
, (A10)

for which lemma 7.3.2 in Giné and Nickl (2016) implies that PN
F0

(CN) → 1 as N →∞. We then
further decompose

PN
F0

(
ΠN(Ãc

N |Y (N), X(N)) � e−DNδ2
N ,ΨN = 0

)
= PN

F0

(
ΠN(Ãc

N|Y (N), X(N)) � e−DNδ2
N ,ΨN = 0, CN

)
+ o(1)

and in view of condition (A5) and the above definition of CN , we see that

PN
F0

(
ΠN(Ãc

N |Y (N), X(N)) � e−DNδ2
N ,ΨN = 0, CN

)

= PN
F0

(∫
Ãc

N

∏N
i=1 pF/pF0 (Yi, Xi)dΠN(F)∫

F
∏N

i=1 pF/pF0 (Yi, Xi)dΠN(F)
� e−DNδ2

N ,ΨN = 0, CN

)

� PN
F0

(∫
Ãc

N
(1 −ΨN)

∏N
i=1 pF/pF0 (Yi, Xi)dΠN(F)∫

BN

∏N
i=1 pF/pF0 (Yi, Xi)dν(F)

� ΠN(BN)e−DNδ2
N , CN

)

� PN
F0

(∫
Ãc

N

(1 −ΨN)
N∏

i=1

pF

pF0

(Yi, Xi)dΠN(F) � ae−(A+D+2)Nδ2
N

)
.
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We conclude applying Markov’s inequality and Fubini’s theorem, jointly with the fact that for
all F ∈ F

EN
F0

[
(1 −ΨN)

N∏
i=1

pF

pF0

(Yi, Xi)

]
= EN

F0

[
(1 −ΨN)

N∏
i=1

dP1
F

dP1
F0

(Yi, Xi)

]
= EN

F [1 −ΨN],

to upper bound the last probability by

1
a

e(A+D+2)Nδ2
N

(∫
Ac

N

EN
F [1 −ΨN]dΠN(F) +

∫
{F∈AN :h(pF0

,pF )>LδN}
EN

F [1 −ΨN]dΠN(F)

+

∫
{F∈Ac

N :h(pF0
,pF )>LδN}

EN
F [1 −ΨN]dΠN(F)

)

� 1
a

e(A+D+2)Nδ2
N

(
2ΠN(Ac

N) +
∫
{F∈AN :h(pF0 ,pF )>LδN}

EN
F [1 −ΨN]dΠN(F)

)

� e−(B−A−D−2)Nδ2
N = o(1)

as N →∞ since B > A + D + 2, having used the excess mass condition (A6) and the second
display in (A9). �

A.2. Contraction rates for rescaled Gaussian priors

While the previous result assumed a general sequence of priors, we now derive explicit con-
traction rates in L2−prediction risk for the specific choices of priors considered in section 2.2.
We start with the ‘re-scaled’ priors of section 2.2.1.

Theorem 14. Let the forward map G satisfy (A2) and (A3) for given β, γ,κ � 0 and
S > 0. For integer α > β + d/2, consider a Gaussian prior ΠN constructed as in (11) with
scaling Nd/(4α+4κ+2d) and with base prior F′ ∼ Π′ satisfying condition 3 with RKHS H.
Let ΠN(·|Y (N ), X (N )) be the resulting posterior arising from observations (Y (N ), X (N )) in (A1),
assume F0 ∈ H and set δN = N−(α+κ)/(2α+2κ+d).

Then for any D > 0 there exists L > 0 large enough (depending on σ, F0, D,α, and
β, γ,κ, S, d) such that, as N →∞,

ΠN(F : ‖G(F) − G(F0)‖L2(D) > LδN |Y (N), X(N)) = OPN
F0

(e−DNδ2
N ), (A11)

and for sufficiently large M > 0 (depending on σ, D,α, β, γ,κ, d)

ΠN(F : ‖F‖Cβ > M|Y (N), X(N)) = OPN
F0

(e−DNδ2
N ). (A12)

Remark 15. Inspection of the proof shows that if κ = 0 in (A12), then the RKHS H in
condition 3 can be assumed to be continuously imbedded in Hα(O) only instead of Hα

c (O).
The same remark in fact applies for κ < 1/2.

Proof. In view of the boundedness assumption (A3) on G, we have by lemma 23 below that
for some q > 0 (depending on σ, S)
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E1
F0

[
log

pF0 (Y1, X1)
pF(Y1, X1)

]
∨ E1

F0

[
log

pF0 (Y1, X1)
pF(Y1, X1)

]2

� q‖G(F0) − G(F)‖2
L2(D).

Hence, for BN the sets from (A4) we have {F : ‖G(F0) − G(F)‖L2(D) � δN/q} ⊆ BN , which in
turn implies the small ball condition (A5) since by lemma 16 below (premultiplying if needed
δN by a sufficiently large but fixed constant):

ΠN(F : ‖G(F) − G(F0)‖L2(D) � δN/q) � e−ANδ2
N

for some A > 0 and all N large enough. Next, for all D > 0 and any B > A + D + 2, we can
choose sets AN as in lemmas 17 and 18 and verify the excess mass condition (A6) as well as the
complexity bound (A7). Note that ‖F‖Cβ � M for all F ∈ AN . We then conclude by theorem
13 that for some L′ > 0 large enough

ΠN(F ∈ AN : h(pF, pF0 ) � L′δN |Y (N), X(N)) = 1 − OPN
F0

(e−DNδ2
N )

yielding the claim for some appropriate L > 0 using the first inequality in (A26). �

The following key lemma shows that the (non-Gaussian) prior induced on the regression
functions G(F) assigns sufficient mass to a L2-neighbourhood of G(F0).

Lemma 16. Let ΠN, F0 and δN be as in theorem 14. Then, for all sufficiently large q > 0
there exists A > 0 (depending on q, F0,α, β, γ,κ, d) such that

ΠN(F : ‖G(F) − G(F0)‖L2(D) � qδN) � e−ANδ2
N (A13)

for all N large enough.

Proof. Using (A2) and noting that ‖F0‖Cβ < ∞ for F0 ∈ H by a Sobolev imbedding, for
any fixed constant M > 1 ∨ ‖F0‖Cβ ,

ΠN(F : ‖G(F) − G(F0)‖L2(D) � qδN) � ΠN(F : ‖F − F0‖(Hκ)∗ � q′δN , ‖F − F0‖Cβ � M)

= ΠN(F : F − F0 ∈ C1 ∩ C2),

having defined

C1 := {F : ‖F‖(Hκ)∗ � q′δN}, C2 := {F : ‖F‖Cβ � M},

whose intersection is a symmetric set in the ambient space C(O). Then, since F0 ∈ H, recalling
that the RKHS HN of ΠN coincides with H with RKHS norm ‖ · ‖HN given in (12), now with
scaling Nd/(4α+4κ+2d) =

√
NδN , we can use corollary 2.6.18 in Giné and Nickl (2016) to lower

bound the last probability by

e
−‖F0‖2

HN
/2
ΠN(C1 ∩ C2) = e−

1
2 Nδ2

N‖F0‖2
HΠN(C1 ∩ C2)

� e−
1
2 Nδ2

N‖F0‖2
H
(
ΠN(C1) −ΠN(Cc

2)
)
.

We proceed finding a lower bound for the prior probability of C1, which, by construction of
ΠN, satisfies
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ΠN(F ∈ C1) = Π′(F′ : ‖F′‖(Hκ)∗ � q′√Nδ2
N).

For any integer α > 0 and any κ � 0, letting Bα
c (r) := {F ∈ Hα

c , ‖F‖Hα � r}, r > 0, we have
the metric entropy estimate:

log N(η; Bα
c (r), ‖ · ‖(Hκ)∗ ) � (r/η)d/(α+κ) ∀η > 0, (A14)

see the proof of lemma 19 in Nickl et al (2020) for the case κ � 1/2, and theorem 4.10.3 in
Triebel (1978) for κ < 1/2 (in the latter case, we note in fact that the estimate holds true also
for balls in the whole space Hα). Hence, since H is continuously imbedded into Hα

c , letting
BH(1) be the unit ball of H, we have BH(1) ⊆ Bα

c (r) for some r > 0, implying that for all η > 0

log N(η; BH(1), ‖ · ‖(Hκ)∗) � log N(η; Bα
c (r), ‖ · ‖(Hκ)∗) � η−d/(α+κ).

Then, for all N large enough, the small ball estimate in theorem 1.2 in Li and Linde (1999)
yields

− logΠ′(F′ : ‖F′‖(Hκ)∗ � q′√Nδ2
N) � (

√
Nδ2

N)−2 d
α+κ (2−d/(α+κ))−1

= [N−(α+κ−d/2)/(2α+2κ+d)]−
2d

2α+2κ−d

= Nδ2
N , (A15)

implying ΠN(C1) � e−q′′Nδ2
N , for some q′′ > 0. Note that q′′ can be made as small as desired

by taking q in (A13) large enough.
We conclude obtaining a suitable upper bound for ΠN(Cc

2). In particular, by construction of
ΠN, recalling Nd/(2α+2κ+d) = Nδ2

N ,

ΠN(C2) = Pr(‖F′‖Cβ � MNδ2
N ), F′ ∼ Π′.

By condition 3, F′ defines a centred Gaussian Borel random element in a separable measurable
subspace C of Cβ , and by the Hahn–Banach theorem and the separability of C, ‖F′‖Cβ can then
be represented as a countable supremum

‖F′‖Cβ = sup
T∈T

|T(F′)|

of actions of bounded linear functionals T = (Tm)m∈N ⊂ (Cβ)∗. It follows that the collection
{Tm(F′)}m∈N is a centred Gaussian process with almost surely finite supremum, so that by
Fernique’s theorem Giné and Nickl (2016), theorem 2.1.20:

E‖F′‖Cβ = E sup
m∈N

|Tm(F′)| < ∞; τ 2 := sup
m∈N

E|Tm(F′)|2 < ∞.

We then apply the Borell–Sudakov–Tirelson inequality Giné and Nickl (2016), theorem 2.5.8,
to obtain for all N large enough,

Pr
(
‖F′‖Cβ � M

√
NδN

)
� Pr

(
‖F′‖Cβ � E‖F′‖Cβ + M

√
NδN/2

)
� e−

1
8 (M/τ )2Nδ2

N .

Given our initial choice of M, the proof is then concluded taking q in lemma 16 sufficiently
large so that q′′ < (M/τ )2/8. �
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We now construct suitable approximating sets for which we check the excess mass condition
(A6).

Lemma 17. Let ΠN and δN be as in theorem 14. Define for any M, Q > 0

AN = {F : F = F1 + F2 : ‖F1‖(Hκ)∗ � QδN , ‖F2‖H � M, ‖F‖Cβ � M}. (A16)

Then for any B > 0 and for sufficiently large M, Q (both depending on B,α, β, γ,κ, d), for all
N large enough,

ΠN(Ac
N) � 2e−BNδ2

N . (A17)

Proof. We note that the last inequality at the end of the proof of the previous lemma implies

that for M �
√

B and all N large enough, ΠN(F : ‖F‖Cβ � M) � 1 − e−BNδ2
N . Thus, the claim

will follow if we can derive a similar lower bound for

ΠN(F : F = F1 + F2 : ‖F1‖(Hκ)∗ � QδN , ‖F2‖H � M)

� Π′(F′ : F′ = F′
1 + F′

2, ‖F′
1‖(Hκ)∗ � Q

√
Nδ2

N , ‖F′
2‖H � M

√
NδN),

having used that Nd/(4α+4κ+d) =
√

NδN . Using theorem 1.2 in Li and Linde (1999) as before
(A15), we deduce that for some q > 0

− logΠ′(F′ : ‖F′‖(Hκ)∗ � Q
√

Nδ2
N) � q(Q

√
Nδ2

N)−
2d

2α+2κ−d

so that taking any Q > (B/q)−(2α+2κ−d )/(2d ) implies

− logΠ′(F′ : ‖F′‖(Hκ)∗ � Q
√

Nδ2
N) � B(

√
Nδ2

N)−
2d

2α+2κ−d = BNδ2
N. (A18)

Next, denote

MN = −2Φ−1(e−BNδ2
N )

where Φ is the standard normal cumulative distribution function. Then by standard inequalities
for Φ−1 we have MN �

√
BNδN as N →∞, so that taking M �

√
B

Π′(F′ : F′ = F′
1 + F′

2, ‖F′
1‖(Hκ)∗ � Q

√
Nδ2

N , ‖F′
2‖H � M

√
NδN)

� Π′(F′ : F′ = F′
1 + F′

2, ‖F′
1‖(Hκ)∗ � Q

√
Nδ2

N , ‖F′
2‖H � MN).

By the isoperimetric inequality for Gaussian processes Giné and Nickl (2016), theorem 2.6.12,
the last probability is then lower bounded, using (A18), by

Φ(Φ−1[Π′(F′ : ‖F′‖(Hκ)∗ � Q
√

Nδ2
N)] + MN) � Φ(Φ−1[e−BNδ2

N ] + MN)

= 1 − e−BNδ2
N ,

concluding the proof. �
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We conclude with the verification of the complexity bound (A7) for the sets AN .

Lemma 18. Let AN be as in lemma 17 for some fixed M, Q > 0. Then,

log N(δN ;AN , h) � CNδ2
N ,

for some constant C > 0 (depending on σ, M, Q,α, β, γ,κ, d, S) and all N large enough.

Proof. If F ∈ AN , then F = F1 + F2 with ‖F1‖(Hκ)∗ � QδN and ‖F2‖Hα � M′, the latter
inequality following from the continuous imbedding of H into Hα

c . Thus, recalling the metric
entropy estimate (A14), if

{H1, . . . , HP} ⊂ Bα
c (M′), P � e−qδ

−d/(α+κ)
N = e−qNδ2

N , q > 0,

is a δN-net with respect to ‖ · ‖(Hκ)∗ , we can find Hi such that ‖F2 − Hi‖(Hκ)∗ � δN . Then, using
the second inequality in (A26) below and the local Lipschitz estimate (A2),

h(pF, Hi) � ‖G(F) − G(Hi)‖L2(D) � (1 + ‖F‖γ
Cβ ∨ ‖Hi‖γCβ )‖F − Hi‖(Hκ)∗ .

Recalling that if F ∈ AN then also ‖F‖Cβ � M, and using the Sobolev imbedding of Hα into
Cβ to bound ‖Hi‖Cβ , we then obtain

h(pF, Hi) � ‖F − Hi‖(Hκ)∗ � ‖F − F2‖(Hκ)∗ + ‖F2 − Hi‖(Hκ)∗ � δN.

It follows that {H1, . . . , HP} also forms a q′δN-net for AN in the Hellinger distance for some
q′ > 0, so that

log N(δN ;AN , h) � log N(δN/q′; Bα
c (M), ‖ · ‖(Hκ)∗) � Nδ2

N .

�

A.3. Contraction rates for hierarchical Gaussian series priors

We now derive contraction rates in L2-prediction risk in the inverse problem (A1), for the
truncated Gaussian random series priors introduced in section 2.2.3. The proof again proceeds
by an application of theorem 13.

Theorem 19. Let the forward map G satisfy (A2) and (A3) for given β, γ,κ � 0 and S > 0.
For any α > β + d/2, let Π be the random series prior in (19), and let Π(·|Y (N ), X (N )) be
the resulting posterior distribution arising from observations (Y (N ), X (N )) in (A1). Then, for
each α0 � α, any F0 ∈ Hα0

K (O) and any D > 0 there exists L > 0 large enough (depending on
σ, F0, D,α, β, γ,κ, S, d) such that, as N →∞,

Π(F : ‖G(F) − G(F0)‖L2(D) > LξN |Y (N), X(N)) = OPN
F0

(e−DNξ2
N ), (A19)

where ξN = N−(α0+κ)/(2α0+2κ+d) log N. Moreover, for HJ the finite-dimensional subspaces
from (18) and JN ∈ N such that 2JN � N1/(2α0+2κ+d), we also have that for sufficiently large
M > 0 (depending on D,α, β, d):
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Π(F : F ∈ HJN , ‖F‖Hα � M2JNαNξ2
N |Y (N), X(N)) = OPN

F0
(e−DNξ2

N ). (A20)

We begin deriving a suitable small ball estimate in the L2-prediction risk.

Lemma 20. Let Π, F0 and ξN be as in theorem 19. Then, for all sufficiently large q > 0 there
exists A > 0 (depending on q, F0,α, β, γ,κ, d) such that

Π(F : ‖G(F) − G(F0)‖L2(D) � qξN) � e−ANξ2
N (A21)

for all N large enough.

Proof. For each j ∈ N, denote by Πj the Gaussian probability measure on the finite dimen-
sional subspace H j in (18) defined as after (19) with the series truncated at j. For JN ∈ N : 2JN

� N1/(2α0+2κ+d), note

2JN d log 2JN d � Nd/(2α0+2κ+d) log N = Nξ2
N , (A22)

so that, recalling the properties (20) of the random truncation level J, for some s > 0,

Pr(K = JN) � e−2JN d log 2JN d � e−sNξ2
N

for all N large enough. It follows

Π(F : ‖G(F) − G(F0)‖L2 � qξN) � ΠJN (F : ‖G(F) − G(F0)‖L2 � qξN) Pr(K = JN)

� ΠJN (F : ‖G(F) − G(F0)‖L2 � qξN)e−sNξ2
N .

Next, let

PHJN
(F0) = χ

∑

�JN ,r∈R


〈F0,Ψ
r〉L2Ψ
r

be the ‘projection’ of F0 onto HJN . Since F0 ∈ Hα0
K ⊂ Cβ by a Sobolev imbedding, it follows

using (A2) and standard approximation properties of wavelets (B6),

‖G(F0) − G(PHJN
(F0))‖L2(D) � ‖F0 − PHJN

(F0)‖(Hκ)∗ � 2−JN (α0+κ) = N
− α0+κ

2α0+2κ+d ,

which implies by the triangle inequality that

ΠJN (F : ‖G(F) − G(F0)‖L2 � qξN)

� ΠJN (F : ‖G(F) − G(PHJN
(F0))‖L2 � qξN − ‖G(F0) − G(PHJN

(F0))‖L2)

� ΠJN (F : ‖G(F) − G(PHJN
(F0))‖L2 � q′ξN).

Using again that Hα imbeds continuously into Cβ as well as (A2) and (B5), we can lower bound
the last probability by

ΠJN (F : ‖G(F) − G(PHJN
(F0))‖L2(D) � q′ξN , ‖F − PHJN

(F0)‖Hα(O) � ξN)

� ΠJN (F : ‖F − PHJN
(F0)‖(Hκ(O))∗ � q′′ξN , ‖F − PHJN

(F0)‖Hα(O) � ξN)

� ΠJN (F : ‖F − PHJN
(F0)‖Hα(O) � q′′′ξN),
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which, by corollary 2.6.18 in Giné and Nickl (2016) and in view of (B2) is further lower
bounded by

e
− 1

2 ‖PHJN
(F0)‖2

HJN ΠJN (F : ‖F‖Hα � q′′′ξN) � e−s′‖F0‖2
Hα0 ΠJN (F : ‖F‖Hα � q′′′ξN).

Now since f �→ χ f ,χ ∈ C∞(O), is continuous on Hα(O),

ΠJN (F : ‖F‖Hα � q′′′ξN) = Pr

⎛
⎝
∥∥∥∥∥∥χ

∑

�JN ,r∈R


2−
αF
rΨ
r

∥∥∥∥∥∥
Hα

� q′′′ξN

⎞
⎠

� Pr

⎛
⎝dim(HJN )∑

m=1

Z2
m � tξ2

N

⎞
⎠

for some t > 0, where Zm
iid∼ N(0, 1), and where we have used the wavelet characterisation of

the Hα(Rd) norm. To conclude, note that the last probability is greater than

Pr

(√
dim(HJN ) max

m�dim(HJN )
|Zm| �

√
tξN

)
� Pr

(
max

m�dim(HJN )
|Zm| � t′N

− α0+κ
2α0+2κ+d N

− d/2
2α0+2κ+d

)

=
∏

m�dim(HJN )

Pr

(
|Zm| � t′N

− α0+κ+d/2
2α0+2κ+d

)
.

Finally, a standard calculation shows that Pr(|Z1| � t) � t if t → 0, and hence the last product
is lower bounded, for large N, by

(
t′N

− α0+κ+d/2
2α0+2κ+d

)dim(HJN )

= e
dim(HJN ) log

⎛
⎝t′N

− α0+κ+d/2
2α0+2+d

⎞
⎠

� e−t′′2JN d log N = e−t′′′Nξ2
N .

�

In the following lemma we construct suitable approximating sets, for which we check the
excess mass condition (A6) and the complexity bound (A7) required in theorem 13.

Lemma 21. Let Π, ξN and JN be as in theorem 8, and let HJN be the finite dimensional
subspace defined in (18) with J = JN. Define for each M > 0

AN =
{

F ∈ HJN , ‖F‖Hα � M2JNαNξ2
N

}
. (A23)

Then, for any B > 0 there exists M > 0 large enough (depending on B,α, β, d) such that, for
sufficiently large N

Π(Ac
N) � 2e−BNξ2

N . (A24)

Moreover, for each fixed M > 0 and all N large enough
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log N(ξN ;AN , h) � CNξ2
N (A25)

for some C > 0 (depending on σ,α, β, γ,κ, S, d ).

Proof. Letting Zm
iid∼ N(0, 1), noting ‖F‖2

Hα � 22JNα
∑


�JN ,r∈R

F2

r for all F ∈ HJN (cf. (B2))

and using (A22) and (20), we have for sufficiently large N

Π(Ac
N) � Pr(J > JN) + Pr

⎛
⎝ ∑


�J∧JN ,r∈R


F2

r � MNξ2

N

⎞
⎠

� e−2JN d log 2JN d
+ Pr

⎛
⎝ ∑

m�dim(HJN )

Z2
m > MNξ2

N

⎞
⎠

� e−BNξ2
N + Pr

⎛
⎝ ∑

m�dim(HJN )

(Z2
m − 1) > M̄Nξ2

N

⎞
⎠

for any constant 0 < M̄ < M2 − 1, since dim(HJN ) � 2JNd � Nd/(2α+2+d) = o(Nξ2
N). The

bound (A24) then follows applying theorem 3.1.9 in Giné and Nickl (2016) to upper bound the
last probability, for any B > and for sufficiently large M and M̄, by

e
− M̄2(Nξ2

N )2

4dim(HJN
)+M̄Nξ2

N � e−BNξ2
N .

We proceed with the derivation of (A25). By choice of JN, if F ∈ AN then ‖F‖2
Hα

� N(2α)/(2α+2κ+d)Nξ2
N . Hence, by the second inequality in (A26), using (A2) and the Sobolev

imbedding of Hα into Cβ , if F1, F2 ∈ AN then

h(pF1 , pF2) � ‖G(F1) − G(F2)‖L2(D)

�
(

1 +
(

N
α

2α+2κ+d
√

NξN

)γ)
‖F1 − F2‖(Hκ)∗

� N
αγ

2α+2κ+d (
√

NξN)γ
√ ∑


�JN ,r∈R


(F1,
r − F2,
r)2.

Therefore, using the standard metric entropy estimate for balls BRp(r), r > 0, in Euclidean
spaces (Giné and Nickl (2016), proposition 4.3.34), we see that for N large enough

log N(ξN ;AN , h) � log N
(
ξNN

−αγ
2α+2κ+d (

√
NξN)−γ; B

R
dim(HJN

) (M
√

NξN), ‖ · ‖
R

dim(HJN
)

)

� dim(HJN ) log
3M

√
NξN

ξNN
αγ

2α+2κ+d (
√

NξN)−γ
� Nξ2

N .

�
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A.4. Information theoretic inequalities

In the following lemma due to Birgé (2004) we exploit the boundedness assumption (A3) on G
to show the equivalence between the Hellinger distance appearing in the conclusion of theorem
13 and the L2-distance on the ‘regression functions’ G(F).

Lemma 22. Let the forward map G satisfy (A3) for some S > 0. Then, for all F1, F2 ∈ F

1 − e−S2/(2σ2)

4S2
‖G(F1) − G(F2)‖2

L2(D) � h2(pF1 , pF2 ) � 1
4σ2

‖G(F1) − G(F2)‖2
L2(D).

(A26)

Proof. Note h2(pF1 , pF2 ) = 2 − 2ρ(pF1 , pF2 ), where

ρ(pF1 , pF2 ) :=
∫
R×D

√
pF1 (y, x)pF2(y, x)dydx

is the Hellinger affinity. Using the expression of the likelihood in (8) (with D instead of O),
the right hand side is seen to be equal to

∫
R×D

1√
2πσ2

e−{[y−G(F1)(x)]2−[y−G(F2)(x)]2}/(4σ2)dydx

=

∫
D

e−{[G(F1)(x)]2+[G(F2)(x)]2}/(4σ2)

×
[∫

R

e−y2/(2σ2)

√
2πσ2

ey[G(F1)(x)+G(F2)(x)]/(2σ2)dy

]
dx

=

∫
D

e−{[G(F1)(x)]2+[G(F2)(x)]2}/(4σ2)e[G(F1)(x)+G(F2)(x)]2/(8σ2)dx

having used that the moment generating function of Z ∼ N(0, σ2) satisfies EetZ = eσ
2t2/2,

t ∈ R. Thus, the latter integral equals

∫
D

e−{[G(F1)(x)]2+[G(F2)(x)]2−2G(F2)(x)G(F2)(x)}/(8σ2)dx = Eμe−{G(F1)(X)−G(F2)(X)}2/(8σ2).

To derive the second inequality in (A26), we use Jensen’s inequality to lower bound the
expectation in the last line by

e−Eμ{G(F1)(X)−G(F2)(X)}2/(8σ2) = e
−‖G(F1)−G(F2)‖2

L2(D)
/(8σ2)

.

Hence

h2(pF1 , pF2 ) � 2

[
1 − e

−‖G(F1)−G(F2)‖2
L2(D)

/(8σ2)
]

,

whereby the claim follows using the basic inequality 1 − e−z/c � z/c, for all c, z > 0.
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To deduce the first inequality we follow the proof of proposition 1 in Birgé (2004): note that
for all 0 � z1 < z2

e−z1 � z1

z2
e−z2 +

(
1 − z1

z2

)
=

e−z2 − 1
z2

z1 + 1.

Then taking z1 = {G(F1)(X) − G(F2)(X)}2/(8σ2) and z2 = S2/(2σ2),

Eμe−{G(F1)(X)−G(F2)(X)}2/(8σ2) � e−S2/(2σ2) − 1
4S2

‖G(F1) − G(F2)‖2
L2(D) + 1

which in turn yields the result. �

The next lemma bounds the Kullback–Leibler divergences appearing in (A4) in terms of
the L2-prediction risk.

Lemma 23. Let the observation Yi in (A1) be generated by some fixed F0 ∈ F . Then, for
each F ∈ F ,

E1
F0

[
log

pF0 (Y1, X1)
pF(Y1, X1)

]
=

1
2σ2

‖G(F0) − G(F)‖2
L2(D),

and

E1
F0

[
log

pF0 (Y1, X1)
pF(Y1, X1)

]2

� 2(S2 + σ2)
σ4

‖G(F0) − G(F)‖2
L2(D).

Proof. If Y1 = G(F0)(X1) + σW1, then

log
pF0 (Y1, X1)
pF(Y1, X1)

= − 1
2σ2

{[G(F0)(X1) + σW1 − G(F0)(X1)]2 − [G(F0)(X1) + σW1 − G(F)(X1)]2}

=
1

2σ2
{G(F0)(X1) − G(F)(X1)}2 +

1
σ

W1{G(F0)(X1) − G(F)(X1)}.

Hence, since EW1 = 0 and X1 ∼ μ,

E1
F0

[
log

pF0 (Y1, X1)
pF(Y1, X1)

]
= Eμ

[
1

2σ2
{G(F0)(X1) − G(F)(X1)}2

]

=
1

2σ2
‖G(F0) − G(F)‖2

L2(D).

On the other hand,
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[
log

pF0 (Y1, X1)
pF(Y1, X1)

]2

=

[
1

2σ2
{G(F0)(X1) − G(F)(X1)}2 +

1
σ

W1{G(F0)(X1) − G(F)(X1)}
]2

� 2

[
1

2σ2
{G(F0)(X1) − G(F)(X1)}2

]2

+2

[
1
σ

W1{G(F0)(X1)−G(F)(X1)}
]2

� 2S2

σ4
{G(F0)(X1) − G(F)(X1)}2 +

2
σ2

W2
1{G(F0)(X1) − G(F)(X1)}2,

whence the second claim follows since EW2
1 = 1. �

Appendix B. Additional background material

In this final appendix we collect some standard materials used in the proofs for convenience
of the reader.

Example 24. Take

φ : R→ (0,∞), φ(t) =
1

1 − t
1{t<0} + (1 + t)1{t�0},

and let ψ : R→ [0,∞) be a smooth compactly supported function such that
∫
R
ψ(t)dt = 1.

Define for any Kmin ∈ (0, 1)

Φ(t) = Kmin +
1 − Kmin

ψ ∗ φ(0)
ψ ∗ φ(t), t ∈ R. (B1)

Then it is elementary to check that Φ is a regular link function that satisfies condition 2 (with
a = 2).

Example 25. For any real α > d/2, the Whittle–Matérn process with index set O and reg-
ularity α− d/2 > 0 (cf. example 11.8 in Ghosal and van der Vaart (2017) is the stationary
centred Gaussian process M = {M(x), x ∈ O} with covariance kernel

K(x, y) =
∫
Rd

e−i〈x−y,ξ〉
Rd μ(dξ), μ(dξ) = (1 + ‖ξ‖2

Rd )−αdξ, x, y ∈ O.

From the results in chapter 11 in (Ghosal and van der Vaart 2017) we see that the RKHS of
(M(x) : x ∈ O) equals the set of restrictions to O of elements in the Sobolev space Hα(Rd),
which equals, with equivalent norms, the space Hα(O) (since O has a smooth boundary).
Moreover, lemma I.4 in Ghosal and van der Vaart (2017) shows that M has a version with paths
belonging almost surely to Cβ ′ for all β′ < α− d/2. Let now K ⊂ O be a nonempty compact
set, and let M be a Cβ ′-smooth version of a Whittle–Matérn process on O with RKHS Hα(O).
Taking F′ = χM implies (cf. exercise 2.6.5 in Giné and Nickl (2016)) that Π′ = L(F′) defines
a centred Gaussian probability measure supported on Cβ ′, whose RKHS is given by

H = {χF, F ∈ Hα(O)},

and the RKHS norm satisfies that for all F ∈ Hα(O) there exists F∗ ∈ Hα(O) such that
χF = χF∗ and
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‖χF‖H = ‖F∗‖Hα(O).

Thus if F′ = χF is an arbitrary element of H, then

‖F′‖Hα = ‖χF∗‖Hα � ‖F∗‖Hα = ‖F′‖H,

which shows that H is continuously embedded into Hα
c (O).

Remark 26. Let {Ψ
r, 
 � −1, r ∈ Zd} be an orthonormal basis of L2(Rd) composed of S-
regular and compactly supported Daubechies wavelets (see chapter 4 in Giné and Nickl (2016)
for construction and properties). For each 0 � α � S, we have

Hα(Rd) =

{
F ∈ L2(Rd) :

∑

,r

22
α〈F,Ψ
r〉2
L2(Rd ) < ∞

}
,

and the square root of the latter series defines an equivalent norm to ‖ · ‖Hα(Rd ). Note that S > 0
can be taken arbitrarily large.

For any α � 0 the Gaussian random series

F̄ j =
∑


� j,r∈R


F
r2
−
αΨ
r, F
r

iid∼ N(0, 1)

defines a centred Gaussian probability measure supported on the finite-dimensional space H̄ j

spanned by the {Ψ
r, 
 � j, r ∈ R
}, and its RKHS equals H̄ j endowed with norm

‖H̄ j‖2
H̄ j

=
∑


� j,r∈R


22
αH2

r = ‖H̄ j‖2

Hα(Rd ) ∀H̄ j ∈ H̄ j

(cf. example 2.6.15 in Giné and Nickl 2016). Basic wavelet theory implies dim(H̄ j) � 2 jd.
If we now fix compact K′ ⊂ O such that K � K′, and consider a cut-off functionχ ∈ C∞

c (O)
such that χ = 1 on K′, then multiplication by χ is a bounded linear operator χ : Hs(Rd)
→ Hs

c(O). It follows that the random function

F j = χ(F̄ j) =
∑


� j,r∈R


F
r2−
αχΨ
r, F
r
iid∼ N(0, 1)

defines, according to exercise 2.6.5 in Giné and Nickl (2016), a centred Gaussian probability
measure Π j = L(F j) supported on the finite dimensional subspace H j from (18), with RKHS
norm satisfying∥∥∥∥∥∥χ

⎛
⎝ ∑


� j,r∈R


H
rΨ
r

⎞
⎠
∥∥∥∥∥∥
H j

�

∥∥∥∥∥∥
∑


� j,r∈R


H
rΨ
r

∥∥∥∥∥∥
H̄ j

=

√ ∑

� j,r∈R


22
αH2

r. (B2)

Arguing as in the previous remark one shows further that for some constant c > 0,

‖H j‖Hα(O) � c‖H j‖H j ∀H j ∈ H j. (B3)
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Remark 27. Using the notation of the previous remark, for fixed F0 ∈ Hα
K(O), consider the

finite-dimensional approximations

PH j(F0) =
∑


� j,r∈R


〈F0,Ψ
r〉L2χΨ
r ∈ H j, j ∈ N. (B4)

Then in view of (B2), we readily check that for each j � 1

‖PH j(F0)‖H j �
√ ∑


� j,r∈R


22
α〈F0,Ψ
r〉2
L2 � ‖F0‖Hα(O) < ∞. (B5)

Also, for each κ � 0, and any G ∈ Hκ(O), we see that (implicitly extending to 0 on Rd\O
functions that are compactly supported inside O)

〈F0 − PH j(F0), G〉L2(O) = 〈F0 − PH j(F0),χ′G〉L2(Rd ),

where χ′ ∈ C∞
c (O), with χ′ = 1 on supp(χ). We also note that, in view of the localisation

properties of Daubechies wavelets, for some Jmin ∈ N large enough, if 
 � Jmin and the support
of Ψ
r intersects K, then necessarily supp(Ψ
r) ⊆ K′, so that

χΨ
r = Ψ
r ∀
 � Jmin, r ∈ R
.

Therefore, for j � Jmin, by Parseval’s identity and the Cauchy–Schwarz inequality

〈F0 − PH j(F0),χ′G〉L2(Rd ) =
∑


′> j,r′∈R


2
α〈F0,Ψ
′r′ 〉L2(Rd )2

′κ〈χ′G,Ψ
′r′ 〉L2(Rd )2

−
′(α+κ)

� 2− j(α+κ)
√ ∑


′> j,r′∈R


22
α〈F0,Ψ
′r′ 〉2
L2(Rd )

×
√ ∑


′> j,r′∈R


22
κ〈χ′G,Ψ
′r′ 〉2
L2(Rd )

� 2− j(α+κ)‖F0‖Hα(O)‖χ′G‖Hκ(Rd ).

It follows by duality that for all j large enough

‖F0 − PH j(F0)‖(Hκ(O))∗ � 2− j(α+κ)‖F0‖Hα(O). (B6)

We conclude remarking that

‖F‖Hα(O) � 2 jα‖F‖L2(O), ∀F ∈ H j, j � Jmin. (B7)

Indeed, let j � Jmin, and fix F ∈ H j; then

F = PHJmin
(F) + (F − PHJmin

(F)) =
∑


�Jmin,r∈R


F
rχΨ
r +
∑

Jmin<
� j,r∈R


F
rΨ
r.

But as HJmin is a fixed finite dimensional subspace, then we have ‖PHJmin
(F)‖Hs(O)

� ‖PHJmin
(F)‖L2(O) � ‖F‖L2(O) for some fixed multiplicative constant only depending on Jmin.

On the other hand, we also have
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‖F − PHJmin
(F)‖2

Hα(O) =
∑

Jmin<
� j,r∈R


22
αF2

r

� 22 jα‖F − PHJmin
(F)‖2

L2(O) � 22 jα‖F‖2
L2(O),

yielding (B7).

Example 28. Consider the integer-valued random variable

J = 	log2(φ−1(T)1/d)
+ 1, T ∼ Exp(1),

where φ(x) = x log x, x � 1. Then for any j � 1

Pr(J > j) = Pr(φ−1(T) � 2 jd) = Pr(T � 2 jd log 2 jd) = e−2 jd log 2 jd
.

On the other hand, since e−2 jd(1−2−d) log 2( j−1)d → 0 as j →∞,

Pr(J = j) = Pr(2( j−1)d � φ−1(T) < 2 jd) = e−2( j−1)d log 2( j−1)d
+ 1 − e−2 jd log 2 jd − 1

� e−2( j−1)d log 2( j−1)d
(1 − e−2 jd(1−2−d) log 2( j−1)d

) � e−2 jd log 2 jd
.
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