TOPICS IN STATISTICAL THEORY – EXAMPLES 2/2

Part III, Lent 2019, RN (email: r.nickl@statslab.cam.ac.uk)

Ex. 1 a) For $g_k \sim^{i.i.d.} N(0,1)$, denote by P_{θ}^Y the law in \mathbb{R}^p of the random vector $(Y_k = \theta_k + g_k/\sqrt{n} : k = 1, \dots, p)$. Show that P_0^Y is a common dominating measure for P_{θ}^{Y} and any $\theta \in \mathbb{R}^{p}$, and that the Radon-Nikodym derivative is almost surely equal to

$$\frac{dP_{\theta}^{Y}}{dP_{0}^{Y}}(y) = \exp\left\{n\langle\theta, y\rangle_{\mathbb{R}^{p}} - \frac{n}{2}\|\theta\|_{\mathbb{R}^{p}}^{2}\right\}.$$

b^{*}) Show that the conclusions in a) remain true if P_{θ}^{Y} is the law of an observation $(Y_k = \theta_k + g_k / \sqrt{n} : k \in \mathbb{N})$ in the Gaussian sequence space model, for any $\theta \in \ell_2$, and if the inner product and norm of \mathbb{R}^p are replaced by the ones of ℓ_2 .

Ex. 2 Consider a product prior distribution Π on ℓ_2 with each coordinate drawn independently as $\theta_k \sim N(0, k^{-1-2\alpha}), k \in \mathbb{N}, \alpha > 0$. a) Denote the Sobolev norm by $\|\theta\|_{H^{\beta}}^2 = \sum_k k^{2\beta} \theta_k^2$. For which β do we have

 $E^{\Pi} \|\theta\|_{H^{\beta}}^2 < \infty$? Show that $\Pi(\theta \in \ell_2) = 1$.

b) Show that the posterior distribution $\Pi(\cdot|Y)$ given observations $Y \sim P_{\theta}^{Y}, \theta \in \ell_{2}$, in the Gaussian sequence space model, is also Gaussian and find its mean vector $E^{\Pi}[\theta|Y]$ and covariance. Show further that the distribution of $\theta | Y - E^{\Pi}[\theta | Y]$ does not depend on the data Y.

c) Assume that a penalised least squares estimator $\hat{\theta}(Y)$ maximising

$$2 \langle \theta, Y \rangle_{\ell_2} - \|\theta\|_{\ell_2}^2 - \frac{1}{n} \|\theta\|_{H^{\alpha+1/2}}^2$$

over $\theta \in \ell_2$ exists. Show that $\hat{\theta}(Y) = E^{\Pi}[\theta|Y]$ almost surely.

Ex. 3 Let $\theta_0, \theta_1 \in \ell_2$ be such that $\|\theta_0 - \theta_1\|_{\ell_2} \ge \epsilon$ for some $\epsilon > 0$. Suppose you are given observations $Y \sim P_{\theta}^Y$ in the Gaussian sequence space model. Show that the test

$$\Psi_n = \mathbf{1}\{2\langle \theta_1 - \theta_0, Y \rangle_{\ell_2} > \|\theta_1\|_{\ell_2}^2 - \|\theta_0\|_{\ell_2}^2\}$$

satisfies, for all $n \in \mathbb{N}, \epsilon > 0$,

$$E_{\theta_0}^{Y} \Psi_n \le e^{-n\epsilon^2/8}, \quad \sup_{\theta: \|\theta-\theta_1\|_{\ell_2} \le \epsilon/4} E_{\theta}^{Y} (1-\Psi_n) \le e^{-n\epsilon^2/32}.$$

Ex. 4 Consider a random vector $\theta = (\theta_k, k = 1, ..., N)$ in ℓ_2 with entries drawn independently as uniform U(-1,1) random variables. Let θ_0 be such that $\|\theta_0\|_{H^{\alpha}}^2 = \sum_{k \in \mathbb{N}} \theta_k^2 k^{2\alpha} \leq 1$ for some $\alpha > 0$. Show that for $N = n^{1/(2\alpha+1)}$ and $\varepsilon_n = c\sqrt{\log n} \times n^{-\alpha/(2\alpha+1)}$, any c > 0, we can find a constant $C = C(c, \alpha)$ such that for all n large enough

$$\Pr(\|\theta - \theta_0\|_{\ell_2} < \varepsilon_n) \ge e^{-Cn\varepsilon_n^2}$$

Deduce that the posterior distribution arising from observations in the Gaussian sequence space model contracts about θ_0 at rate ε_n in $P_{\theta_0}^Y$ -probability.

Ex. 5 Suppose a posterior distribution on $\Theta \subseteq \ell_2$ satisfies

$$\Pi(\theta \in \Theta : \|\theta - \theta_0\|_{\ell_2} > \varepsilon_n | Y) \to^P 0 \text{ as } n \to \infty$$

for some sequence $\varepsilon_n \to 0$. Show that if $\hat{\theta}_n$ is the centre of the smallest ball that contains posterior mass at least 1/2, then $\|\hat{\theta}_n - \theta_0\|_{\ell_2} = O_P(\varepsilon_n)$ as $n \to \infty$. [For random variables Z_n we write $Z_n = O_P(\varepsilon_n)$ if $\forall \delta > 0$ there exists M_{δ} such that $P(\varepsilon_n^{-1}|Z| > M_{\delta}) < \delta$ for all *n* lage enough.]

Ex. 6 Let X be a Poisson random variable with parameter $\lambda = e$. Show that for every $k \in \mathbb{N}$ large enough and a numerical constant c_0 ,

$$\Pr(X > k) \le e^{-c_0 k \log k}, \quad \Pr(X = k) \ge e^{-k \log k}.$$

Ex. 7 Let D_n be a sequence of measurable sets whose posterior probability $\Pi(D_n|Y) \to^P 1$ as $n \to \infty$. [Here *P* is the 'frequentist' law of the data *Y* and it is assumed that the posterior distribution arises from a dominated likelihood model]. Let $\Pi^{D_n} = \Pi(\cdot \cap D_n)/\Pi(D_n)$ denote the prior restricted to D_n and renormalised, and let $\Pi^{D_n}(\cdot|Y)$ be the new posterior distribution arising from the prior Π^{D_n} and observations *Y*. Show that

$$\sup_{A \text{ measurable}} |\Pi^{D_n}(A|Y) - \Pi(A|Y)| \to^P 0 \quad \text{as } n \to \infty.$$

Ex. 8 Let X_1, \ldots, X_n be i.i.d. from some law P_0 of probability density function p_0 on [0, 1] and let \mathcal{P} be a set of probability densities p that are all absolutely continuous with respect to p_0 . Let ν be a probability measure on

$$B = \{ p \in \mathcal{P} : E_{P_0} \log(p_0/p) \le \varepsilon^2, E_{P_0} (\log p/p_0)^2 \le \varepsilon^2 \}, \quad \varepsilon > 0.$$

Show that for all $c > 0, \varepsilon > 0$ and $n \in \mathbb{N}$ we have

$$P_0^n\left(\int_B \prod_{i=1}^n \frac{p(X_i)}{p_0(X_i)} d\nu(p) \le e^{-(c+1)n\varepsilon^2}\right) \le \frac{1}{c^2 n\varepsilon^2}.$$

Ex. 9 * Let $(P_n : n \in \mathbb{N})$ be a sequence of *random* probability measures on \mathbb{R} (defined on a suitable probability space $(\Omega, \mathcal{A}, \Pr)$ such that $P_n(\omega)$ are Borel probability measures on \mathbb{R} for each fixed $\omega \in \Omega$ and $n \in \mathbb{N}$), and let P be a fixed (non-random) probability measure on \mathbb{R} . Show that if

$$E_{P_n}e^{tX} \to^{\Pr} E_P e^{tX} \quad \forall t \in \mathbb{R},$$

as $n \to \infty$ then also

$$E_{P_n}f(X) \to^{\Pr} E_Pf(X)$$

for every bounded continuous function $f:\mathbb{R}\to\mathbb{R}$ and deduce further that, if P is Gaussian, then

$$\sup_{s \in \mathbb{R}} |P_n((-\infty, s]) - P((-\infty, s])| \to^{\Pr} 0 \text{ as } n \to \infty.$$