
STATISTICAL THEORY – EXAMPLES 1/2

Part III, Michaelmas 2013, RN

Ex. 1 Let Θ be an open interval (possibly equal to R) and let Sn be a sequence of random
real-valued continuous functions defined on Θ such that, as n → ∞, Sn(θ) →P S(θ) ∀θ ∈ Θ,
where S : Θ → R is nonrandom. Suppose for some θ0 ∈ Θ and every ε > 0 small enough we
have S(θ0 − ε) < 0 < S(θ0 + ε), and that Sn has exactly one zero θ̂n for every n ∈ N. Deduce

that θ̂n →P θ0 as n → ∞.

Ex. 2 Give an example of (possibly random) functions Qn, Q defined on Θ ⊂ R that have unique

maximisers θ̂n, θ0, respectively, such Qn(θ) → Q(θ) (almost surely) for every θ ∈ Θ as n → ∞,

but θ̂n 6→ θ0 (almost surely).

Ex. 3 Derive an analogue of the consistency result for the maximum likelihood estimator for
the nonlinear least squares estimator with random design, under the assumptions that the Yi =
(Zi, xi) are i.i.d., that E(yi|xi) = g(xi, θ0) for some θ0 ∈ Θ. Which further assumptions on g do
you need (be as economical as you can)? Show that the general normal linear model

Y = Xθ + u

with X a n × p matrix, θ ∈ R
p, u ∼ N(0, σ2In), σ

2 > 0, is a special case of the NLS model,
and show further that the uniqueness condition for θ0 is satisfied if the n× p matrix X has full
column rank.

Ex. 4 ∗ Consider the problem of Exercise 3 above, but now with Θ = R. Assuming that

E

[

inf
θ

(

∂g(xt, θ)

∂θ

)2
]

> 0,

show that one can find a compact set Θ∗ = [θ0 −M, θ0 +M ] such that

inf
θ/∈Θ∗

Qn(θ) > Qn(θ0)

with probability approaching one, and use this to prove consistency of the NLS estimator. How
does the condition on the derivative of g simplify in linear regression where g(xi, θ) = xiθ?

Ex. 5 Formulate mild conditions on K(θ) such that the conditions for asymptotic normality of
maximum likelihood estimators are satisfied for an exponential family of order 1.

Ex. 6 Let Y1, . . . , Yn be i.i.d. N(µ, σ2) distributed. Derive the maximum likelihood estimator
for (µ, σ2) and show that it is asymptotically normal. Calculate the Fisher information and its
inverse for this parameter.

Ex. 7 Consider Y1, . . . , Yn i.i.d. Poisson random variables with parameter λ. Derive explicit
formulas for the MLE and for the likelihood ratio test statistic for testing H0 : λ = λ0 against
H1 : λ 6= λ0. Deduce the asymptotic distribution of

√
n(λ̂n−λ) directly, and verify that it agrees

with what the general asymptotic theory predicts.
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Ex. 8 Consider an i.i.d. sample X1, . . . , Xn arising from the model

{f(·, θ) : θ ∈ R} , f(x, θ) =
1

2
e−|x−θ|, x ∈ R,

of Laplace distributions. Assuming n to be odd for simplicity, show that the MLE is equal to the
sample median. Discuss what happens when n is even. Can you calculate the Fisher information?

Ex. 9 Let Y1, . . . , Yn be independent U(0, θ) random variables, where θ ∈ Θ ≡ [1, 2]. Find the

maximum likelihood estimator θ̂n as well as its distribution function, mean and variance. What
is the asymptotic distribution of n(θ − θ̂n)/θ? Why does the standard theory not apply?

Ex. 10 [Estimation of the Fisher Information.] Assuming that the regularity conditions for
asymptotic normality of maximum likelihood estimators are satisfied, prove that

în = − 1

n

n
∑

i=1

∂2 log f(θ̂n, Yi)

∂θ∂θT
→Pθ0 i(θ0) as n → ∞.

Ex. 11 [Confidence Sets and the Wald test.] Working in the framework and under the regularity
conditions for asymptotic normality of maximum likelihood estimators, and using Exercise 10,
construct a random set Cn ∈ R

p (a ’confidence region’) that depends only on α and Y1, . . . , Yn

such that
lim
n

Pθ0(θ0 ∈ Cn) = 1− α.

If θ̂n is the MLE, derive further the asymptotic distribution of the Wald statistic

n(θ̂n − θ0)
T în(θ̂n − θ0)

under Pθ0 , and use it to design an asymptotic level α test for the null hypothesis H0 : θ = 0
against H1 : θ ∈ Θ, θ 6= 0.

Ex. 12 The following result is known as Hoeffding’s inequality: If X1, ..., Xn are mean zero
independent random variables taking values in [bi, ci] for constants bi < ci, then

Pr

{

n
∑

i=1

Xi > u

}

≤ exp

(

− 2u2

∑n
i=1

(ci − bi)2

)

(1)

of which an obvious consequence is (why?)

Pr

{∣

∣

∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

∣

∣

> u

}

≤ 2 exp

(

− 2u2

∑n
i=1

(ci − bi)2

)

. (2)

Provide a proof of this inequality. [You may find it useful to first prove the auxiliary result
E(exp{vXi}) ≤ exp{v2(bi − ai)

2/8} for v > 0, and then use Markov’s inequality in conjuction
with a bound for the moment generating function of v

∑

Xi.]
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