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ETH Zürich, University of Washington

October 29, 2015

1 Introduction

Evarist Giné, or Evarist Giné-Masdéu, 1944-2015, was an influential, brilliant
and prolific contributor to modern probability theory and mathematical statis-
tics, with a focus on problems arising in infinite-dimensional settings. His work
has had a profound impact on modern probability theory, mathematical statis-
tics and recently also machine learning. This article constitutes an attempt to
describe Evarist’s major mathematical achievements, which we divide into sep-
arate subsections each of which are focused on a major area of work, including
probability in Banach spaces, empirical processes, the bootstrap, U -statistics and
processes, and mathematical statistics. We refer to the editorial of this memorial
volume for a biographical summary of Evarist’s life. A list of all of Evarist’s
publications, including his three books, can be found at the end of this article.

A unifying aspect of most of Evarist’s work was the masterly combination
of techniques from real and functional analysis with fundamental ideas from
probability theory: Evarist had a deep knowledge of analytic techniques that he
often applied with ingenious simplicity in probabilistic problems. At the same
time Evarist was a versatile and classically trained probabilist who mastered
several core areas ranging from limit theorems and inequalities for sums of
independent random variables to Gaussian processes and martingale arguments.

2 The main building blocks of Evarist’s work

2.1 The PhD thesis

Evarist wrote his PhD thesis under the supervision of Richard M. Dudley at the
Massachusetts Institute of Technology (MIT).

Five remarkable papers came out of this thesis: Two of them ([1,2]) were
published in the Annals of Probability and were side-products of Evarist’s time
as a graduate student. Paper [1] led Evarist into the area described in the next
subsection, and paper [2] with R. Klein established limiting properties of the
quadratic variation of processes with Gaussian increments generalising results
by Dudley (1973) for Brownian motion.
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But the main topic of Evarist’s thesis was the construction of computable sta-
tistical tests for observations that take values in a general compact Riemannian
manifold, published in the Annals of Statistics in 1975, see [4]. The handling
editor for this substantial paper was Lucien Le Cam, who found the mathemat-
ical level so high that the only referee he could think of was Richard Dudley!
This paper basically initiated the whole area of ‘Sobolev tests’ that has been
important ever since in the area of directional statistics, and required the devel-
opment of some important mathematical results of independent interest, such
as a proof of the fact that a Sobolev ball defined on any compact Riemannian
manifold satisfies the empirical central limit theorem (i.e., is a P -Donsker class –
see Subsection 2.3 for more on this). At that time the general empirical process
machinery was not yet available but Evarist succeeded with a clever reduction
of the problem to the central limit theorem in C(S) (the space of continuous
functions on a compact metric space S) using duality theory for Sobolev spaces.
The thesis also required the proof of some exact identities in geometric analysis
that were published in a separate paper [3], and led to a (and also Evarist’s
only) genuinely applied paper [5], published in the Journal of Geology. Overall
it can be said that this thesis was absolutely outstanding in its breadth and
depth.

2.2 Probability in Banach spaces

Departing from the paper [1] that was part of the PhD thesis, Evarist embarked
on one of the hot topics in probability theory in the 1970s: the problem of
deriving the classical limit theorems for sums

∑n
i=1Xi of centred i.i.d. random

variables Xi that take values in an infinite-dimensional Banach space B: For in-
stance the central limit theorem (CLT): for a suitable Gaussian random variable
G taking values in B one wants to show the distributional limit theorem

1√
n

n∑
i=1

Xi →d G as n→∞.

While in finite-dimensional spaces a necessary and sufficient condition for the
CLT to hold is finiteness of E‖X1‖2, in infinite dimensions this is not the case,
and geometric properties of the Banach space start to play a key role. The math-
ematical techniques developed in this area during that time were of fundamental
importance to many areas in modern mathematics, including geometric func-
tional analysis, concentration of measure, statistical learning and mathematical
statistics.

Evarist’s contributions to the area were substantial, including about 20 pa-
pers and culminating in Evarist’s first book The central limit theorem for real
and Banach-valued random variables published in 1980. His work in the area,
which was carried out jointly with several co-authors including Alejandro de
Acosta, Aloisio Araujo and Joel Zinn, included the derivation of the Lévy-
Khintchine formula for infinitely divisible laws in Banach spaces and related
characterisations of the domain of attraction of a normal law in Banach spaces
[12,14], convergence of moments in the CLT in Banach spaces [15], and CLTs
for some specific spaces of functions [7,10, 16, 28, 29].

An elegant application of these techniques to the theory of random sets (see
Kendall (1974), Matheron (1975)) is given in the paper [33] jointly with Marjorie
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Hahn and Joel Zinn: If B is a separable Banach space, we can define the set
K(B) of all non-empty compact subsets of B, which is a complete metric space
when endowed with the Hausdorff distance δ. Moreover (Minkowski-) addition
is a well-defined operation on K(B) and for A ∈ K(B) we can even define a
norm ‖A‖ = sup{‖a‖B : a ∈ A}. A random compact set is any Borel random
variable X taking values in K(B), and its expectation EX can be defined in
a suitable (‘Bochner’-) sense. Using a clever reduction to the CLT in C(S)
with an appropriate choice of S, the paper [33] proved the central limit theorem
for random sets: For instance, if B = Rd, E‖X‖ < ∞ and if the Xi’s are
i.i.d. random compact sets, then

√
nδ

(
1

n

n∑
i=1

Xi, EX

)

converges in distribution to a suitable norm of a Gaussian process. A result for
the case where B is infinite-dimensional is also proved.

2.3 Empirical Processes

Techniques for probability in Banach spaces were mostly developed for separable
spaces, which is quite reasonable as probability distributions on complete metric
spaces necessarily concentrate most of their mass on compact sets (i.e., they are
Radon measures). At the same time, a key open problem in the late 1970s was
the central limit theorem for empirical processes indexed by abstract classes
F of functions f : S → R, and where S is an arbitrary sample space where
i.i.d. random variables X1, . . . , Xn of law P take their values.

The empirical measure Pn := n−1
∑n
j=1 δXj

is a natural statistical estima-
tor of the unknown law P and it is of importance to understand how close the
sample means Pnf = n−1

∑n
j=1 f(Xj) are to the true means Pf = Ef(X), uni-

formly over a large class F of functions f. In the late 60s - early 70s, Vapnik and
Chervonenkis, motivated by applications in statistical theory of pattern recog-
nition (a part of what is nowadays called statistical learning theory) obtained
striking necessary and sufficient conditions for the uniform law of large numbers
for empirical measures (the Glivenko-Cantelli problem)

sup
f∈F
|Pnf − Pf | → 0 as n→∞ a.s.

in the case when F = {IC : C ∈ C}, where C is a class of measurable subsets
of S. They later extended these results to the classes of uniformly bounded
functions (Vapnik and Chervonenkis (1981)). However, the extension of the
celebrated ‘Donsker theorem’, that is, the central limit theorem for classical
empirical processes on the real line, to the same general framework remained
open. In today’s notation the general empirical processes are written as

f 7→ νn(f) = n1/2(Pnf − Pf) =
1√
n

n∑
i=1

(f(Xi)− Ef(X)), f ∈ F ,

and the question is whether νn converges to some Gaussian process (GP (f) : f ∈
F) uniformly in f ∈ F . Even if this looks at first like a very abstract problem,
the techniques required for its solution have had the most profound impact on
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modern theoretical statistics and learning theory. In a seminal paper Dudley
(1978) studied such limit theorems, and showcased that even in the simplest
cases where F consists of indicators of a class C of subsets of Euclidean space,
techniques very different from those used in probability in Banach spaces are
required. This is partly due to the fact that empirical processes typically do not
concentrate on some Banach space of continuous (for some metric) functions on
F – think of the empirical distribution function where F = {1(−∞,t] : t ∈ Rd}
– and the resulting lack of separability of the Banach space `∞(F) of bounded
functions on F in which νn takes values. Dudley (1978) studied the central limit
theorem for empirical processes indexed by classes of sets calling such a class C
Donsker for the law P of X1, . . . , Xn if the CLT holds on the class. He obtained
sufficient conditions for Donsker property in terms of the bracketing metric en-
tropy of C and proved that Vapnik-Chervonenkis classes of sets (the notion also
being introduced by Dudley) are Donsker for any law P subject only to proper
measurability assumptions. After Dudley’s key contribution some useful sets of
sufficient conditions for the CLT for empirical processes to hold were given by
V. Koltchinskii (1981) in terms of random entropies of function classes and by
D. Pollard (1982) in terms of their uniform entropies. Le Cam (1983) obtained
sufficient conditions for the CLT on classes of sets in terms of random entropies.
These conditions were similar in spirit to Vapnik-Chervonenkis conditions for
the laws of large numbers. The proofs of these results were based on what is
now called symmetrization inequalities for tail probabilities. By a conditioning
argument, they allowed to reduce the bounds on the sup-norms of empirical
processes to the bounds for a subgaussian (conditionally on X1, . . . , Xn) pro-
cess of the following type: F 3 f 7→ n−1

∑n
j=1 εjf(Xj), where {εj} are i.i.d.

Rademacher random variables independent of {Xj}. This subgaussian process
(called nowadays the Rademacher process) was controlled in terms of entropies
of random sets {(f(X1), . . . , f(Xn)) : f ∈ F} ⊂ Rn. Evarist’s entrance to the
stage of empirical processes could not have been more impressive, in a 70 page
special invited paper [34] in The Annals of Probability in 1984, jointly written
with Joel Zinn. This paper not only gave some very final results about the
CLT for empirical processes, but also introduced powerful new techniques to
the area and developed to perfection the techniques used before. In particular,
the symmetrization method used by Koltchinskii (1981), Pollard (1982) and Le
Cam (1983) has reached its final form in two beautiful Giné-Zinn symmetriza-
tion inequalities used ever since, and the reduction of bounding of the empirical
process to bounding the Rademacher process has been studied to its full ex-
tent. Moreover, this technique was combined with other tools from probability
in Banach spaces, such as the multiplier inequality of Pisier, and the paper es-
tablished connections of the emerging theory of empirical processes with a large
body of literature on probability in Banach spaces. The idea of Gaussian or
Rademacher symmetrization via the multiplier inequality of Pisier was to play
an important role in Evarist’s later work, also with Zinn, on bootstrapping the
empirical process; see subsection 2.4 below. Specific important results obtained
in the Giné and Zinn (1984) paper include the final versions of random en-
tropy conditions for the central limit theorem for empirical processes, the proof
of necessity of such conditions for the classes of sets (the necessity of condi-
tions in terms of Vapnik-Chervonenkis shattering numbers was proved later by
Talagrand) and the extension of Vapnik-Chervonenkis necessary and sufficient
condition for the law of large numbers (Glivenko-Cantelli theorem) to the case

4



of unbounded classes of functions.

Another deep and beautiful result that Evarist obtained in empirical process
theory is the Gaussian characterisation of uniform Donsker classes. Again in
joint work with Joel Zinn, published in The Annals of Probability [53], Evarist
asked the question: when does the CLT for the empirical process holds uniformly
in the distribution P of the Xi’s? More precisely, if β is a metric for weak
convergence in `∞(F) and G the limiting Gaussian process, when is it true that

sup
P
β(νPn , GP )→ 0 as n→∞

where the supremum extends over all probability measures in P? Such a re-
sult is of key importance for the statistical interpretation of the CLT, as in its
typical applications it is used to infer unknown properties of P and hence no
prior knowledge of P should be required for its validity. In essence this is a
question about the structure of the class F , and F is called uniform Donsker
if the last limit holds true. The striking result of [53] is that a necessary and
sufficient condition for the uniform Donsker property is that the limit GP is
pregaussian uniformly in P (which effectively means that the sample-continuity
of the Gaussian process GP in its argument f ∈ F for the intrinsic covariance
metric holds uniformly in P ). Therefore, to check whether a class F is a uniform
Donsker class is a problem that can be decided entirely in terms of properties
of Gaussian processes, which is in remarkable contrast to the otherwise existing
gap between the Donsker and the pregaussian property. If much of Evarist’s
work in empirical process theory was inspired by the idea of establishing pow-
erful connections between empirical and (sub-)Gaussian processes, this result
may be considered as a high-point of that program.

2.4 The Bootstrap

A fundamental idea in statistics, due to Efron (1979), is the resampling method-
ology known as the bootstrap. In can be used for inference and confidence sets
in situations where limit distributions exist but are not accessible for the statis-
tician (because they are complex or depend on unknown parameters). This
can be illustrated in the situation where X1, . . . , Xn are i.i.d. random variables
from law P with mean µ. Then we can draw at random from the sample val-
ues to create a bootstrap sample: Let Xb

ni, i = 1, . . . , n, be i.i.d. draws of the
random variable Xb

n with law Pn(Xb
n = Xi) = 1/n for every i = 1, . . . , n. If

X̄n = 1
n

∑n
i=1 is the sample mean and X̄b

n = 1
n

∑n
i=1X

b
ni is the mean of the

resampled values, then the idea is that the (known, given the Xi’s) distribu-
tion of X̄b

n − X̄n is pivotal for the (unknown) distribution X̄n − µ. Thus, when
computing quantiles for the latter, we can resort to computing (approximate)
quantiles of the former. That this works in many situations is fundamentally
linked to the central limit theorem, and Evarist (together with Joel Zinn) made
several substantial contributions to the field, among them [46] showing necessity
of the sufficient conditions found in Bickel and Freeman (1981) and providing a
general bootstrap CLT for empirical processes, that basically completely settles
the question of ‘consistency’ of the (nonparametric) bootstrap. The key result
of the 1990 Annals of Probability paper [51] with Joel Zinn is that, for νbn the
bootstrap empirical process,

νbn →d GP (in probability) if and only if νn →d GP .
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The 1990 paper remains a tour de force of techniques from empirical process
theory and probability theory in Banach spaces in several respects, including:
(a) providing another use of the “multiplier inequality” of Pisier which played a
role with Gaussian multipliers in their 1984 paper, this time with (symmetrized)
Poisson multipliers after applying Poissonization and symmetrization to the
multinomial weights of Efron’s bootstrap; (b) connecting the striking results
of Ledoux and Talagrand (1986, 1988) concerning multiplier and conditional
multiplier CLT’s in Banach spaces to an important set of statistical questions.

Evarist, in collaboration with several co-authors (notably his late student,
Miguel Arcones), also addressed a number of other issues in connection with
bootstrap resampling methods. Arcones and Giné [47] show that the bootstrap
of the sample mean of i.i.d. random variables with finite variance “works” if
both the bootstrap sample size mn and the original sample size go to infinity.
In [54] they studied several bootstrap test of symmetry, and in [57] they showed
how to bootstrap U− and V− statistics. The important issue of bootstrapping
M−estimators and other smooth statistical functionals was addressed in [59].
This whole set of research directions and problems culminated in Evarist’s St.
Flour Lecture lotes on asymptotic theory for bootstrap resampling. These notes
continue to serve an an important reference and touchstone for current research.

2.5 U-statistics and U-processes

The notion of U -statistic is a natural extension of the most classical object in
probability, the sum of independent random variables. Given an i.i.d. sequence
X1, . . . , Xn, . . . of random variables in a measurable space S and a measurable
function h : S × · · · × S 7→ R (a kernel), the U -statistic of order k is defined as

Un(h) :=
(n− k)!

n!

∑
i1,...,ik

h(Xi1 , . . . , Xik)

with the sum being extended to all 1 ≤ i1, . . . , ik ≤ n such that il 6= il′ , l 6= l′.
This notion originated in the work of Halmos (1946) on unbiased estimation
and von Mises (1947) on expansions of smooth statistical functionals in the
late 40s. U -statistics were formally introduced and studied by Hoeffding in
1948. Evarist started being interested in the asymptotic theory of U -statistics
in the early 90s, when this theory was already relatively well developed, both in
the case of U -statistics based on i.i.d. observations and in more general cases.
Moreover, Nolan and Pollard (1987, 1988) initiated the study of U -processes
(empirical processes of U -statistic structure indexed by their kernels). However,
by the early 90s, many of these results had not reached the same degree of
finality as the classical limit theorems for the sums of independent random
variables and a number of hard and challenging problems remained open. Many
of these problems were solved in the 90s in a series of papers by Evarist with
several co-authors, including Joel Zinn, Miguel Arcones, Stanislaw Kwapien and
Rafal Latala. The results obtained by Evarist and his collaborators included
Marcinkiewicz type laws of large numbers for U -statistics (Giné and Zinn [61])
and the necessity of finiteness of the second moment and degeneracy of the kernel
for the Central Limit Theorem for U -statistics (Giné and Zinn [65]). They
also included important results on the central limit theorem for U -processes
indexed by Vapnik-Chervonenkis classes of functions (Arcones and Giné [64])
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and striking applications of these results to asymptotics of M -estimators based
on U -statistics, in particular, a beautiful proof of asymptotic normality of the
simplicial median (Arcones, Chen, and Giné [67]). These developments were
based on new and powerful technical tools, such as the Hoffmann-Jørgensen
inequality for U -processes (Giné and Zinn [61]) and decoupling inequalities by
de la Peña (1992), de la Peña and Montgomery-Smith (1994, 1995). The method
of decoupling became particularly important and it gave the name to the (1999)
book ‘Decoupling’ written by Evarist with Victor de la Peña that remains to be
the most important reference on the modern theory of U -statistics. However,
one of the most spectacular results of this theory was obtained after this book
was published. In several papers written in the later 90s, Evarist and his co-
authors were trying to find a necessary and sufficient condition for the law of
iterated logarithms (LILs) for degenerate U -statistics, a problem that happened
to be extremely hard. The sufficiency of finiteness of the second moment of
the kernel for the LIL was known since the late 80s (Dehling (1989)). Giné
and Zhang [71] showed that there are degenerate kernels with infinite second
moment for which the LIL does hold. They provided sufficient conditions on
the kernel that did not imply the finiteness of the second moment, but these
conditions were still not necessary. This challenging problem was solved for the
second order U -statistics in a remarkable paper by Giné, Kwapien, Latala and
Zinn [82] who proved the following result. Suppose X,Y,X1, X2, . . . are i.i.d.
random variables with values in a measurable space (S,A) and let h : S×S 7→ R
be a measurable symmetric kernel. Then,

lim sup
n

1

n log log n

∣∣∣∣ ∑
1≤i6=j≤n

h(Xi, Xj)

∣∣∣∣ <∞ a.s.

if and only if the following conditions hold for some constant C <∞ :
(a) h is canonical (degenerate) for the law of X (that is, Eh(X, y) = 0 for

almost all y)
(b) for all u ≥ 10,

E(h2(X,Y ) ∧ u) ≤ C log log u

(c) for some C > 0,

supE
{
h(X,Y )f(X)g(Y ) : max(Ef2(X),Eg2(X)) ≤ 1; f, g ∈ L∞

}
≤ C.

The proof of this completely unexpected result was a masterpiece of tech-
nique and it relied on a variety of tools of U -statistics theory (many of them
developed by the authors such as exponential bounds for Rademacher chaos due
to Latala) and on rather sophisticated truncation arguments. A related result
is a new and final version of a Bernstein type concentration inequality for U -
statistics (Giné, Latala and Zinn [84]) that is one of the most important and
useful inequalities in this area of probability. This inequality was proved for U -
statistics of order 2, but later extended to higher orders by Adamczak (2006).
Adamczak and Latala (2008) obtained necessary and sufficient conditions for
bounded LIL for higher order U -statistics.
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2.6 The asymptotic distribution of the t-statistic

Student’s one-sample t−statistic

Tn =

∑n
i=1Xi/n

1/2{∑n
i=1(Xi −Xn)2/(n− 1)

}1/2 =
Sn/Vn√
n−(Sn/Vn)2

n−1

where Sn =
∑n
i=1Xi, Vn =

∑n
i=1X

2
i and X1, . . . , Xn are i.i.d. random vari-

ables, plays a key role in basic applied statistics. While its exact distribution
is well-known under Gaussian sampling theory, it is important to understand
the properties of Tn under non-Gaussian (or other non-standard) assumptions.
Efron (1969) reviewed early studies of Tn under non-standard conditions (in-
cluding Hotelling (1961), Hoeffding (1963), and others), and studied the limit-
ing behavior of Tn and self-normalized sums. Logan, Mallows, Rice, and Sheep
(1973) showed that if X is in the domain of attraction of an α−stable law,
0 < α ≤ 2, centered if α > 1 and symmetric if α = 1, then Sn/Vn →d Zα where
Zα is sub-Gaussian. They conjectured that “Sn/Vn is asymptotically normal if
[and perhaps only if] X is in the domain of attraction of the normal law” and
X is centered. The direct part of this conjecture follows fairly easily from stan-
dard results, see Maller (1981). The converse or “only if” part was proved in
[72] in 1997 by Evarist in collaboration with David Mason and Friedrich Götze.
This beautiful paper shows Evarist’s complete mastery of the Paley-Zygmund
inequality and the use thereof to show that if {Sn/Vn} is stochastically bounded,
then it is L1−bounded as well.

Evarist returned to this theme in at least two other papers: in [73] (with
David Mason) he studied laws of the iterated logarithm for self-normalized sums;
in [95] (with Friedrich Götze) he established asymptotic normality of multivari-
ate t−statistics under non-standard conditions.

2.7 Nonparametric Statistics

In the 21st century, Evarist started to work on problems in nonparametric statis-
tics, an area within mathematical statistics of high activity since the mid 90s.
Evarist’s interest was sparked by the broad applicability of empirical process
tools to the area. A main insight was that Talagrand’s (1996) deep inequality
for empirical processes could be used with great effect, particularly to deal with
problems that involve risk bounds in supremum-norm loss in density estimation,
see the papers [87, 107]. For example consider a kernel estimator of the form

fn(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, Xi ∼ i.i.d. P,

with K a suitable kernel function. If we ignore the estimation ‘bias’, the uniform
risk can be viewed as the empirical process

‖fn − Efn‖∞ =
1

h
sup
g∈G
|(Pn − P )g|, G =

{
g = K

(
x− ·
h

)
: x ∈ Rd

}
.

A first key idea used in the paper [87] is that under simple conditions on K,
such as that it is of bounded variation, the class G can be shown to be a Vapnik-
Chervonenkis type class and hence, by the usual chaining argument and if P
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has a bounded density,

E sup
g∈G
|(Pn − P )g| .

√
h log(1/h)

n

for relevant choices of h. Moreover, by Talagrand’s inequality the concentration
of ‖fn−Efn‖∞ around its expectation is effectively Gaussian (again for relevant
choices of h), and this can be used for various things: Initially Evarist derived
from it the exact almost sure limiting constant of

√
nh/ log(1/h)‖fn − Efn‖∞

as n→∞, h→ 0, both for the kernel estimator [87] and for wavelet estimators
[107], where a slightly different scaling is required. In later work [106,108]
these exponential inequalities were shown to be of great use also to construct
adaptive estimators of densities that successfully deal with the bias ‖Efn−f‖∞
too (by applying Lepski’s (1990) method). Related techniques were also used
in the paper [97] to give empirical approximations (using the graph Laplacian)
of the true Laplace operator on a Riemannian manifold (a result that has been
used in the machine learning community), and also in the paper [113], where
these concentration inequalities were used to give a new approach to derive
contraction rates in Bayesian nonparametric function estimation, ideas which
have since been used in Bayesian non-parametrics in the recent papers Ray
(2013) and Nickl and Söhl (2015), among others.

In another influential paper [110] Evarist constructed adaptive confidence
bands for unknown densities by deriving the exact Gumbel limit distribution of
‖fn − f‖∞, suitable scaled and centred, where fn is a fully adaptive estimator
(again based on Lepski’s (1990) method). This was the first exact limiting distri-
bution result for any adaptive estimator, and required a subtle use of Gaussian
approximation techniques and limit theory for non-stationary Gaussian pro-
cesses. Next to the probabilistic challenges this required the introduction of
some new qualitative assumptions on f , which have now become known under
the name of ‘self-similarity’, and which were shown in [110] to be effectively
generic for Hölder spaces. These ‘self-similarity’ conditions have turned out to
be more or less the ‘right’ conditions for the existence of adaptive nonparametric
confidence sets, and have been further studied in several recent papers including
Hoffmann and Nickl (2011), Chetverikov, Chernozhukov and Kato (2014) and
the recent discussion paper by Szabó, van der Vaart and van Zanten (2015), all
in the Annals of Statistics.

A further result that deserves mentioning here, and that is related to some
techniques dating back to the famous 1984 paper [34] of Evarist with Joel Zinn, is
the paper [103], where it is shown that certain pre-gaussian classes F of functions
exist that are a) not P -Donsker for certain P but for which b) the smoothed
empirical process

√
n(Pn ∗Kh−P ) corresponding to a kernel density estimator

does converge in distribution in `∞(F) to the generalised Brownian bridge GP
– thus Pn ∗ Kh is strictly better than Pn in this case. These results have
been instrumental in the recent study of statistical inference for the distribution
function of Lévy measures and infinitely divisible distributions, see the articles
Nickl and Reiß (2012) and Nickl, Reiß, Söhl and Trabs (2015).

The key relevance of probabilistic techniques for the foundations of non-
parametric statistics have led to Evarist’s third monograph, which is currently
in press, of the title Mathematical Foundations of Infinite-Dimensional Statis-
tical Models. It summarises and contains much of Evarist’s work in the area,
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and demonstrates yet again the deep insight Evarist had into the mathematical
foundations that underpin modern probability theory and statistics. In partic-
ular in the chapters on Gaussian and empirical processes in this book Evarist
has left us a great intellectual monument that will be a reference for generations
to come.
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for preferred orientation. J. Geology, 83:685–705, 1975.

10
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Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78), volume 721 of
Lecture Notes in Math., pages 22–40. Springer, Berlin, 1979.
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[33] Evarist Giné, Marjorie G. Hahn, and Joel Zinn. Limit theorems for ran-
dom sets: an application of probability in Banach space results. In Prob-
ability in Banach spaces, IV (Oberwolfach, 1982), volume 990 of Lecture
Notes in Math., pages 112–135. Springer, Berlin, 1983.
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[41] Evarist Giné and Joel Zinn. Empirical processes indexed by Lipschitz
functions. Ann. Probab., 14(4):1329–1338, 1986.
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of spectra of integral operators. Bernoulli, 6(1):113–167, 2000.
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