
Uniform Central Limit Theorems

for the Grenander Estimator

Richard Nickl

University of Connecticut

January 2008

Abstract

The classical result of Kiefer and Wolfowitz (1976) on the asymptotic closeness of the

distribution function of the maximum likelihood estimator of a monotone decreasing

density and the empirical distribution function is generalized to Donsker classes of

functions, paralleling recent results for other density estimators obtained in Nickl (2007)

and Giné and Nickl (2007, 2008). These results are then applied to efficiently estimate

the entropy functional by the associated plug-in MLE.
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1 Introduction

Let X,X1, ..., Xn be i.i.d. on [0, 1] with law P and distribution function F . Define the

empirical measure Pn = n−1
∑n

i=1 δXi
and the empirical cdf Fn(x) =

∫ x

0
dPn. If P is

known to have a monotone decreasing density f , it is natural to estimate this density by

the (nonparametric) maximum likelihood estimator fn(y) defined by the solution of the

optimization problem maxf∈F n
−1
∑n

i=1 log f(Xi) where

F =
{
f : [0, 1] → [0,∞),

∫ 1

0

f(x)dx = 1, f is monotone decreasing
}
.

This estimator is known as the ’Grenander’ estimator, since it was introduced by Grenan-

der (1956), who also showed that fn has a simple geometric interpretation: fn is the left

derivative of the least concave majorant F̂n of the empirical distribution function Fn, see,

e.g., Section 24.4 in van der Vaart (1998). Of course F̂n(x) is, by absolute continuity of F̂n,

equal to the distribution function
∫ x

0
fn(y)dy of fn.
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The following is a classical result of Kiefer and Wolfowitz (1976): Under several assump-

tions on f – including strict monotonicity and existence of a continuous derivative of f –

Kiefer and Wolfowitz proved that

‖F̂n − Fn‖∞ = Oa.s.

((
log n
n

)2/3
)
, (1)

so that, in particular,
√
n(F̂n−F ) converges in law to the P -Brownian bridge in the Banach

space `∞([0, 1]) of bounded functions on [0, 1]. We also refer to Balabdaoui and Wellner

(2007), who recently gave an ’updated’ version of the Kiefer and Wolfowitz proof, using

results by Kulikov and Lupohaä (2006).

One way to generalize this result is along the lines of recent results on uniform central

limit theorems (UCLTs) for density estimators, see Nickl (2007), Giné and Nickl (2007,

2008). In these articles, density estimators f̂n are viewed as random measures P̂n acting on

general classes of functions H via integration, and quite general central limit theorems were

proved for the processes(√
n(P̂n − P )

)
h∈H

=
(√

n

∫
h(f̂n − f)

)
h∈H

,

allowing, in particular, for Donsker classesH of smooth functions (such as bounded variation,

Sobolev, Hölder and Besov classes). These results contain (1) as a special case upon choosing

H = {1[0,x] : x ∈ [0, 1]}. Such more general results have several statistical applications, see

Bickel and Ritov (2003) as well as Section 3 in Nickl (2007). In the present article we

show how the fact that the rate of convergence in (1) is faster than 1/
√
n can be used

together with methods from approximation theory to prove such general results also for

the Grenander estimator. We then apply these results to efficiently estimate the entropy

functional by the plug-in MLE, see Theorem 3. We should remark that results similar to

(1) were also proved for estimators of monotone regression functions, see, e.g., Durot and

Tocquet (2003) and Wang and Woodroofe (2007). The proof methods of the present article

should apply to regression models as well, with the natural modifications.

2 Main Results

For Borel-measurable functions h : [0, 1] → R and Borel measures µ on [0, 1], we set µh :=∫ 1

0
hdµ, and we denote by Lp([0, 1], µ) the usual Lebesgue-spaces of real-valued functions,

normed by ‖ · ‖p,µ. If dµ(x) = dx is Lebesgue measure on [0, 1], we set Lp([0, 1]) :=

Lp([0, 1], µ), and we abbreviate the norm by ‖ · ‖p if 1 ≤ p < ∞. We also denote by

L∞([0, 1]) the space of bounded measurable functions on [0, 1], normed by the supnorm

‖ · ‖∞, and, for an arbitrary (non-empty) set H, `∞(H) denotes the space of bounded

functions g : H → R normed by ‖g‖H := suph∈H |g(h)| . Throughout, the variables Xi are
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the coordinate projections of ([0, 1]N,BN, PN), and we set Pr := PN. The empirical process

indexed by H ⊂ L2([0, 1], P ) is given by f 7→
√
n (Pn − P )h, h ∈ H. Convergence in law →d

of random elements in `∞ (H) is defined as, e.g., in Chapter 5 of de la Peña and Giné (1999).

The class H is said to be P -Donsker if the centered Gaussian process GP with covariance

EGP (f)GP (g) = P [(f − Pf)(g− Pg)] is sample-bounded and sample-continuous w.r.t. the

covariance semimetric, and if
√
n (Pn − P ) →d GP in `∞(H).

We start with the classical result of Kiefer and Wolfowitz (1976), that we give, without

loss of generality, for densities defined on [0, 1]. In this case the assumptions simplify es-

sentially to requiring strictly monotone, continuously differentiable f that is bounded away

from zero.

Theorem 1 (Kiefer and Wolfowitz (1976)) Let X1, ..., Xn be i.i.d. with monotone de-

creasing density f on [0, 1], assume that f ′ is continuous on [0, 1] and that f and f ′ are

bounded away from zero. Then

√
n sup

t∈[0,1]

|F̂n(t)− Fn(t)| = Oa.s.(n−1/6(log n)2/3), (2)

so that in particular
√
n(F̂n − F ) →d GP in `∞([0, 1])

Proof. See Kiefer and Wolfowitz (1976) or Balabdaoui and Wellner (2007).

Our goal now is to generalize Theorem 1 to general Donsker classes of functions. The

following corollary is immediate. BV ([0, 1]) will denote the space of measurable functions

h : [0, 1] 7→ R of bounded variation, equipped with the total variation norm

‖h‖BV = sup

{
n∑

i=1

|h(xi)− h(xi−1)| : n ∈ N, 0 < x1 < · · · < xn < 1

}
.

Corollary 1 Let the assumptions of Theorem 1 hold. Define P̂n by dP̂n(y) = fn(y)dy. Let

HR = {h right-continuous : ‖h‖∞ + ‖h‖BV ≤ 1}. Then

√
n sup

h∈HR

∣∣∣∣∫ 1

0

hd(P̂n − Pn)
∣∣∣∣ = √

n‖P̂n − Pn‖HR
= Oa.s.(n−1/6(log n)2/3), (3)

and, if H = {h : ‖h‖∞ + ‖h‖BV ≤ 1}, then

√
n(P̂n − P ) →d GP in `∞(H).

To obtain a result more general than the previous corollary, we define Besov spaces as

follows.

Definition 1 (Besov spaces) Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, 0 < s < ∞. For a function

h : R → R, the difference operator ∆z is defined by ∆zh(·) = h(· + z) − h(·) as well as
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∆2
zh(·) = ∆z(∆zh(·)), and, iteratively, also ∆r

z. For h : [0, 1] → R, we define ∆r
z(h)(x) as

above if x, x + rz ∈ [0, 1] and set it equal to zero otherwise. For h ∈ Lp([0, 1]) and r > s,

define

‖h‖∗s,p,q :=

(∫
|z|≤1

[z−s−1/q‖∆r
z(h)‖p]qdz

)1/q

with the modification in case q = ∞

‖f‖∗s,p,∞ := sup
0 6=|z|≤1

|z|−s‖∆r
z(f)‖p.

The Besov space is defined as the linear space

Bs
pq([0, 1]) := {f ∈ Lp([0, 1]) : ‖f‖∗s,p,q <∞},

normed by ‖f‖s,p,q := ‖f‖p + ‖f‖∗s,p,q.

If p = q = ∞, these spaces are the Hölder-Zygmund spaces, which contain the classical

Hölder-Lipschitz spaces. Furthermore, Sobolev spaces of order s correspond to Bs
22([0, 1]),

so these Besov scales include many classical spaces but also much more, see, e.g., Triebel

(1983). In particular, for p > 1 and/or s < 1, these Besov classes contain functions that are

not of bounded variation, so that Corollary 1 does not apply.

The following proposition, which can be shown to be (essentially) best possible, follows

from results in Nickl and Pötscher (2007).

Proposition 1 Let H be a bounded subset of Bs
pq([0, 1]) where 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞,

and let P be a probability measure on [0, 1]. Let either s > max(1/p, 1/2) or suppose that

1 ≤ p < 2, q = 1, s = 1/p simultaneously hold. Then H is P -Donsker.

Nickl (2007) showed that certain nonparametric MLEs (not including the Grenander

estimator) satisfy UCLTs over Besov classes with p ≥ 2 and s > 1/2. More generally, Giné

and Nickl (2007, 2008) showed that kernel and wavelet density estimators satisfy UCLTs

over any Besov class featured in the previous proposition, in fact, they considered Besov

spaces over the real line. Using Corollary 1, the rate of convergence of fn to f in the

L2-norm, and an approximation argument by wavelets, one can prove the main theorem of

this article, which shows that fn satisfies the same UCLTs as kernel and wavelet density

estimators, if f satisfies the assumptions from Theorem 1.

Theorem 2 Let the assumptions of Theorem 1 hold. Define P̂n by dP̂n(y) = fn(y)dy. Let

H be a bounded subset of Bs
pq([0, 1]), where s, p, q satisfy one of the conditions of Proposition

1. Then
√
n‖P̂n − Pn‖H = oP (1)

so that, in particular,
√
n(P̂n − P ) →d GP in `∞(H).
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Corollary 2 Let

Hs :=

{
f ∈ L∞([0, 1]) : ‖f‖∞ + sup

x6=y

|f(x)− f(y)|
|x− y|s

≤ 1

}

for some 1/2 < s ≤ 1. Then ‖P̂n − Pn‖Hs = oP (n−1/2) and

√
n(P̂n − P ) →d GP in `∞(Hs).

A consequence of the above results is, for example, that

β(P̂n, P ) = ‖P̂n − P‖H1 = OP (n−1/2),

where β is the usual bounded-Lipschitz metric for weak convergence of probability measures.

Note that, under the assumptions of Theorem 2, P̂n outperforms the empirical measure Pn

in that it is not only
√
n-consistent in metrics for the weak topology, but also consistent in

the strong total variation norm (see Theorem 24.6 in van der Vaart (1998))

‖P̂n − P‖TV ' ‖fn − f‖1 = OP (n−1/3).

Furthermore, the above results can be applied to construct simple and efficient plug-in

estimators of integral functionals. For example, proceeding as in Corollary 5 in Nickl (2007),

one shows that
∫ 1

0
f2

n is a
√
n-consistent and efficient estimator of the quadratic functional

T (f) =
∫ 1

0
f2. A slightly more involved application is estimation of the entropy functional

T (f) =
∫ 1

0

f(y) log f(y).

If X(n) is the largest order statistic, then fn is positive on [0, X(n)], but fn(y) is zero for all

y > X(n), so the direct plug in estimator T (fn) cannot be used. The natural modification is

Tn :=
∫ X(n)

0

fn(y) log fn(y),

which is in fact very easy to compute: As is well known, fn is a piecewise constant function

with jumps only at the observations, so that Tn is a finite sum consisting of terms cj log cj ,

j = 1, ...,m, where cj are some positive numbers and m ≤ n. Using the results from above

together with Fréchet-differentiability of T (·) and control of the probability of the event

that infx∈[0,X(n)] fn(x) is small, one can prove the following result. Note that σ2(f) in the

following theorem is the efficient Cramér-Rao lower bound for estimation of the parameter

T (f), see, e.g., Laurent (1996).

Theorem 3 Let the assumptions of Theorem 1 hold. Then

√
n(Tn − T (f)) →d N(0, σ2(f))

where σ2(f) =
∫
f log2 f −

(∫
f log f

)2.
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3 Proofs

Proof. (Corollary 1) If h is of bounded variation, right-continuous and satisfies h(0) = 0,

then there exists a unique finite signed Borel measure µh such that h(x) =
∫

1[0,x](v)dµh(v).

Since (P̂n − Pn)c = 0 for c constant, we may assume that the elements in HR all satisfy

h(0) = 0. We then have by Fubini, for h ∈ HR,

|(P̂n − Pn)h| =
∣∣∣∣∫ 1

0

∫ 1

0

1[0,x](v)dµh(v)d(P̂n − Pn)(x)
∣∣∣∣

=
∣∣∣∣∫ 1

0

∫ 1

0

1[v,1](x)d(P̂n − Pn)(x)dµh(v)
∣∣∣∣

≤
∫ 1

0

d|µ(v)|‖F̂n − Fn‖∞ ≤ ‖F̂n − Fn‖∞.

This already proves the first claim of the corollary by Theorem 1. To prove the second

claim, observe that any h ∈ H is right-continuous except at most at a countable number

of points, in particular there exists a right continuous function h̃ such that h̃ = h almost

everywhere. Since P̂n, P are absolutely continuous measures, we have
√
n(P̂n − P )h =

√
n(P̂n − P )h̃ =

√
n(P̂n − Pn)h̃+

√
n(Pn − P )h̃,

which proves the second claim by using the first, and since H is P -Donsker (e.g., Theorem

2.1 in Dudley (1992)).

Proof. (Theorem 2)

Step I: We will first approximate h ∈ Bs
pq([0, 1]) by a suitable sequence of functions

Kj(h) ∈ B1
11([0, 1]) whose Besov norm ‖Kj(h)‖1,1,1 does not increase too fast as a function

of j. For the approximation argument, we will use wavelets, hence we will imbed our

approximation problem into a Besov space Bs
pq(R) defined over the real line. In slight abuse

of notation, we use ‖ · ‖p also to denote the norm on the sequence spaces `p(Z), and we

denote by ‖ · ‖p,R the usual Lp-norms on the real line (w.r.t. Lebesgue measure on R), and

by Lp(R) the associated function spaces.

Definition 2 Let 1 ≤ p, q ≤ ∞, 0 < s < S, s ∈ R, S ∈ N. Let φ, ψ be bounded, compactly

supported father and mother wavelet, let φ be S-times differentiable, and denote by αk(h) =∫
R h(x)φ(x−k)dx and βlk(h) =

∫
R 2l/2h(x)ψ(2lx−k)dx the wavelet coefficients of h ∈ Lp(R).

The Besov space Bs
pq(R) is defined as the set of all functions{

h ∈ Lp(R) : ‖h‖s,p,q,R := ‖α(·)(h)‖p +

( ∞∑
l=0

(
2l(s+1/2−1/p)‖βl(·)(h)‖p

)q
)1/q

<∞

}
,

with modification in case q = ∞

‖h‖s,p,∞,R := ‖α(·)(h)‖p + sup
l≥0

2l(s+1/2−1/p)‖βl(·)(h)‖p.
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Note that wavelets satisfying the above conditions for any given S exist, e.g., Daubechies’

wavelets, see Section 7 in Härdle, Kerkyacharian, Picard and Tsybakov (1998). Given these

definitions, the following lemma is not difficult to prove.

Lemma 1 Let φ, ψ be bounded, compactly supported father and mother wavelet and let φ

be S-times differentiable. Suppose g ∈ Bs
p∞(R) ∩ Bs

1∞(R) for some 1/2 < s < S. Then the

truncated wavelet series

Kj(g)(y) =
∑

k

αk(g)φ(y − k) +
j−1∑
l=0

∑
k

βlk(g)2l/2ψ(2ly − k)

(convergence pointwise and in Lp(R)) satisfies, for constants c, c′,

‖Kj(g)‖s,p,∞,R ≤ ‖g‖s,p,∞,R

and

‖Kj(g)− g‖p,R ≤ c2−js‖g‖s,p,∞,R

as well as

‖Kj(g)‖1,1,1,R ≤ c′2j(1/2−δ)‖g‖s,1,∞,R.

for some δ > 0 as j →∞. (If s < 1, δ can be taken to equal s− 1/2.)

Proof. The first claim is obvious from definition of Kj(g) and the Besov norm. For the

third claim, we have that g ∈ Bs
1∞(R) implies, by Definition 2, that

‖βl(·)(g)‖1 ≤ D2−l(s−1/2)‖g‖s,1,∞,R

as well as ‖α(g)(·)‖1 ≤ ‖g‖s,1,∞,R so that, since s > 1/2

‖Kj(g)‖1,1,1,R = ‖α(g)(·)‖1 +
j−1∑
l=0

2l/2‖βl(·)(g)‖1

≤ D′‖g‖s,1,∞,R

j−1∑
l=0

2l(1−s)

≤ c′2j(1/2−δ)‖g‖s,1,∞,R.

For the second claim, we will need that

sup
u

∑
k

|ψ(u− k)| ≤ Ψ,

where Ψ is some fixed finite constant, which follows from Lemma 8.5 in Härdle et al. (1998).

Note also that g ∈ Bs
p∞(R) implies

‖βl(·)(g)‖p ≤ C2−l(s+1/2−1/p)‖g‖s,p,∞,R
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by Definition 2. Now, by change of variables and Hölder’s inequality (with 1/p+ 1/q = 1),

we have

‖Kl(g)− g‖p,R =

∥∥∥∥∥∥
∑
l≥j

∑
k

βlk(g)2l/2ψ(2l(·)− k)

∥∥∥∥∥∥
p,R

≤
∑
l≥j

2l/22−l/p

(∫ (∑
k

|βlk(g)||ψ(u− k)|1/p|ψ(u− k)|1/q

)p

du

)1/p

≤
∑
l≥j

2l(1/2−1/p)

∫ ∑
k

|βlk(g)|p|ψ(u− k)|

(∑
k

|ψ(u− k)|

)p/q

du

1/p

≤
∑
l≥j

2l(1/2−1/p)‖βl(·)(g)‖pΨ1/q

(∫
|ψ(u)|du

)1/p

≤ C ′
∑
l≥j

2l(1/2−1/p)‖βl(·)(g)‖p

≤ C ′′‖g‖s,p,∞,R
∑
l≥j

2−ls ≤ c2−js‖g‖s,p,∞,R

which completes the proof.

To apply the above lemma to approximate a function h ∈ Bs
pq([0, 1]), we will use that

Bs
pq([0, 1]) is equal (with equivalent norms) to the space of restrictions of elements of Bs

pq(R)

to [0, 1] (equipped with the usual quotient norm). This follows from the fact that the wavelet

definition of Bs
pq(R) given above coincides (with equivalent norms) with the more classical

definitions of Besov spaces on R; in particular it coincides with Definition 2 on p.45 in

Triebel (1983) – see, e.g., Theorems 9.1 and 9.6 in Härdle et al. (1998) – so that we can use

the extension and restriction theorems in Triebel (1983) in what follows.

To approximate h ∈ Bs
pq([0, 1]) ⊂ Bs

p∞([0, 1]), observe first that any h ∈ Bs
p∞([0, 1])

can be extended to a function hext : R → R (with hext = h on [0, 1]) that is contained in

Bs
p∞(R) and satisfies the norm estimate ‖hext‖s,p,∞,R ≤ c‖h‖s,p,∞, see Theorem 3.3.4 and

Section 3.4.2 in Triebel (1983). This extension can furthermore be taken to be compactly

supported (if it is not, multiply hext with an infinitely differentiable function that is equal

to one on [0, 1] and has compact support, and use the fact that Bs
pq(R) is a multiplication

algebra under the assumptions on s, p, q, see Theorem 2.8.3 in Triebel (1983)). Now, since

hext is compactly supported and contained in Bs
p∞(R), one has also hext ∈ Bs

1∞(R) and

‖hext‖s,1,∞,R ≤ c‖hext‖s,p,∞,R (e.g., Theorem 3.3.1 in Triebel (1983)), so that we can apply

the previous lemma to approximate hext by Kj(hext), and use the restriction Kj(h) :=

Kj(hext)|[0, 1] of Kj(hext) to [0, 1] to approximate h. The norm ‖ · ‖s,p,q is equivalent to the

restricted norm (again Theorem 3.3.4 in Triebel (1983)). Summarizing, we conclude

‖Kj(h)‖s,p,∞ ≤ c′‖h‖s,p,∞, (4)
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and

‖Kj(h)− h‖p ≤ c′′2−js‖h‖s,p,∞ (5)

as well as

‖Kj(h)‖1,1,1 ≤ c′′′2j(1/2−δ)‖h‖s,p,∞ (6)

for some δ > 0 as j →∞, using ‖ · ‖s,1,∞ ≤ k‖ · ‖s,p,q on Bs
pq([0, 1]) in the last step.

Step 2: The main idea to take advantage of the approximating sequence from the

previous step is similar as in the proof of Theorem 2 in Nickl (2007):

sup
h∈H

|(P̂n − Pn)(h)| ≤ sup
h∈H

|(P̂n − Pn)(Kj(h)− h)|+ sup
h∈H

|(P̂n − Pn)(Kj(h))|

≤ sup
h∈H

|(P̂n − P )(Kj(h)− h)|+ sup
h∈H

|(Pn − P )(Kj(h)− h)|

+ sup
h∈H

(
|(P̂n − Pn)(Kj(h)/‖Kj(h)‖1,1,1)|‖Kj(h)‖1,1,1

)
= (i) + (ii) + (iii).

We first prove s > max(1/p, 1/2) and comment on the modifications for the limiting case

s = 1/p, q = 1, p < 2 at the end of the proof. Hence, for p < 2 one has s > 1/p > 1/2, so it

follows that Bs
pq([0, 1]) ⊂ Br

2q([0, 1]) for r = s− 1/p+ 1/2 > 1/2 (Theorem 3.3.1 in Triebel

(1983)), and we may further restrict ourselves to the case p ≥ 2 and s > 1/2. Choose now

j := jn such that 2j ' n1/3 and recall the continuous injection Bs
pq([0, 1]) ⊂ Bs

p∞([0, 1]).

The term (i) is bounded by∫ 1

0

|(fn − f)(Kj(h)− h)| ≤ ‖fn − f‖q‖Kj(h)− h‖p = OP (n−1/32−js) = oP (n−1/2),

uniformly in H, using Hölder’s inequality, (5) and the fact that ‖fn − f‖q = OP (n−1/3) for

all q ≤ 2, e.g., Theorem 24.6 in van der Vaart (1996).

For the second term, note suph∈H ‖Kj(h)− h‖s,p,∞ <∞ by (4) and that

sup
h∈H

‖Kj(h)− h‖2,P ≤ c sup
h∈H

‖Kj(h)− h‖p → 0

as j →∞ by (5) and boundedness of f . Consequently

sup
h∈H

|(Pn − P )(Kj(h)− h)| = oP (n−1/2)

has to hold since bounded subsets of Bs
p∞([0, 1]) are P -Donsker under the maintained con-

ditions on s, p (see Proposition 1).

For the third term (iii), observe that any bounded subset of B1
11([0, 1]) consists of ab-

solutely continuous functions h (e.g., 2.5.7/10 and 3.4.2 in Triebel (1983)) with uniformly

bounded ‖h‖∞, ‖Dh‖1, and hence is bounded in BV ([0, 1]), so that, using Corollary 1 and

(6), the term (iii) is bounded by

‖P̂n − Pn‖HR
sup
h∈H

‖Kj(h)‖1,1,1 = Oa.s.(n−2/3(log n)2/3n1/6n−δ/3) = oa.s.(n−1/2).
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We finally turn to the limiting case s = 1/p, q = 1, 1 ≤ p < 2, and consider first

p > 1: As above, one imbeds B1/p
p1 ([0, 1]) ⊂ B

1/2
21 ([0, 1]), but now one chooses jn such that

2jn ' (n log n)1/3. By the same reasoning as above (with s = 1/2), the term (i) is then of

order OP (n−1/3(n log n)−1/6) = oP (n−1/2). The treatment of the second term is identical

to above. For the the third term, note that we can choose δ = 1/p− 1/2 in (6), cf. Lemma

1, so that by Corollary 1 this term is of order

Oa.s.

(
n−2/3(log n)2/3(n log n)(1/3)(1−1/p)

)
= oa.s.(n−1/2)

since p < 2 implies 2/3− (1/3)(1− 1/p) > 1/2. If p = 1, then s = 1, so the theorem follows

from Corollary 1 since, as mentioned above, B1
11(R) ⊂ BV (R) with continuous injection.

Proof. (Theorem 3) Denote by X(1), ..., X(n) the order statistics of the sample, and set

X(0) = 0. Also define Sn = n−1
∑n

i=1(log f(Xi) − E log f(X)). We will prove that, for all

ε, δ > 0 there exists a finite index N such that for n ≥ N one has

Pr(
√
n|Tn − T (f)− Sn| > ε) < δ,

which implies the theorem by the CLT
√
nSn →d N(0, σ2(f)). Define

A1 =
{

inf
x∈[0,X(n)]

fn(x) < ξ

}
.

Then by Lemma 2 below, one has

Pr{
√
n|Tn − T (f)− Sn| > ε} ≤ Pr

(
{
√
n|Tn − T (f)− Sn| > ε} ∩Ac

1

)
+ δ/2

for some small enough ξ, 0 < ξ < infx∈[0,1] f(x), and n large enough. So in what follows we

can work on the event Ac
1.

The (random) functional

g 7→ T̄n(g) :=
∫ X(n)

0

g log g

from L∞([0, X(n)]) to R is Fréchet-differentiable on the open subset

V = {g ∈ L∞([0, X(n)]) : g(x) > ξ/2 for all x ∈ [0, X(n)]}

of L∞([0, X(n)]), with first derivative

DT̄n(g)[h] =
∫ X(n)

0

(log g + 1)h

for g ∈ V, h ∈ L∞([0, X(n)]) and second derivative (for h1, h2 ∈ L∞([0, X(n)]))

D2T̄n(g)[h1, h2] =
∫ X(n)

0

(1/g)h1h2.
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To see this, differentiate f 7→ f(x) log f(x) = (w ◦ δx)(f) from L∞([0, X(n)]) to R with

w(t) := t log t, using the chain rule on Banach spaces, and then observe that differentiation

and integration can be interchanged, using, e.g., Proposition 4 in Nickl (2007).

Now since fn, f ∈ V on Ac
1 and since fn = 0 on (X(n), 1], we can write, by Taylor’s

expansion and the (pathwise) mean value theorem

Tn − T (f) = T̄n(fn)− T̄n(f)−
∫ 1

X(n)

f log f

= DT̄n(f)[fn − f ] +D2T̄n(f̃n)[fn − f, fn − f ]−
∫ 1

X(n)

f log f

=
∫ Xn

0

(log f + 1)(fn − f) +
∫ X(n)

0

(1/f̃n)(fn − f)2 −
∫ 1

X(n)

f log f

=
∫ 1

0

(log f + 1)(fn − f) +
∫ X(n)

0

(1/f̃n)(fn − f)2 +
∫ 1

X(n)

f

= I + II + III

on the event Ac
1. Let now ε = ε/3. Since f has a continuous derivative and is bounded from

below, log f is bounded Lipschitz, so that we know from Corollary 2 that∣∣∣∣∫ 1

0

(log f + 1)(fn − f)− Sn

∣∣∣∣ = ∣∣∣∣∫ 1

0

(log f)(fn − f)− Sn

∣∣∣∣ = oP (n−1/2) (7)

and hence, Pr({
√
n(I − Sn) > ε} ∩Ac

1) ≤ Pr({
√
n(I − Sn) > ε}) → 0 as n→∞.

It therefore remains to prove that also the terms II and III are oP (n−1/2). For the

term II, note that on the event Ac
1, the mean values f̃n on the line segment between fn and

f are bounded from below by ξ on [0, X(n)], so that II is bounded from above by

ξ−1

∫ X(n)

0

(fn − f)2 ≤ ξ−1‖fn − f‖22

which is OP (n−2/3), see, e.g., Theorem 24.6 in van der Vaart (1998), hence Pr({
√
n(II) >

ε} ∩Ac
1) → 0.

The quantity III is bounded by ‖f‖∞(1 −X(n)). Using the formula for the density of

the n-th order statistic (e.g., Lemma 13.1 in van der Vaart (1998)), we have by the mean

value theorem and boundedness from below of F ′ = f on [0, 1] that, for all ε > 0

Pr(
√
n(1−X(n)) > ε) = n

∫ 1−εn−1/2

0

F (x)n−1f(x)dx

= (F (1− εn−1/2))n =
(
F (1)− F ′(η)

ε
√
n

n

)n

≤
(

1− cε
√
n

n

)n

→ 0

as n→∞, which implies that also Pr({
√
n(III) > ε} ∩Ac

1) → 0.

It remains to prove the following lemma, which controls the probability of the event A1.
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Lemma 2 Suppose the true density f satisfies f(x) ≥ ζ > 0 for all x ∈ [0, 1]. Then, for

every δ > 0, there exists ξ > 0 and a finite index N(δ) such that, for all n ≥ N(δ),

Pr
(

inf
x∈[0,X(n)]

fn(x) < ξ

)
= Pr

(
fn(X(n)) < ξ

)
< δ/2

Proof. The first equality of the lemma is obvious, since fn is monotone decreasing. On

each interval (X(j−1), X(j)], fn is the slope of the least concave majorant of Fn (see, e.g.,

van der Vaart (1998, p.350)). The least concave majorant touches (X(n), 1) and at least one

other order statistic (X(n−j), (n− j)/n), so that

{fn(X(n)) < ξ)} ⊆
{
X(n) −X(n−j) > j/(ξn) for some j = 1, ..., n

}
.

Note next that Xi = F−1F (Xi) where F−1 is a differentiable function since F is strictly

monotone and differentiable. Hence, by the mean value theorem,

F−1F (X(n))− F−1F (X(n−j)) ≤
1

f(η)
(
F (X(n))− F (X(n−j))

)
≤ ζ−1

(
U(n) − U(n−j)

)
where U(i) are the order statistics of a sample of size n of uniform random variables on [0, 1],

and where U(0) = 0 by convention. Hence it suffices to bound

Pr
(
U(n) − U(n−j) >

ζj

ξn
for some j = 1, ..., n

)
. (8)

By Proposition 13.15 in Breiman (1968), the joint distribution of the order statistics U(i),

i = 1, ..., n, is the same as the one of Zi/Zn+1 where Zn =
∑n

l=1Wl and where Wl are in-

dependent standard exponential random variables. Consequently, for γ > 0, the probability

in (8) is bounded by

Pr
(
Wn−j+1 + ...+Wn

Zn+1
>
ζj

ξn
for some j

)
= Pr

(
n

Zn+1

Wn−j+1 + ...+Wn

n
>
ζj

ξn
for some j

)
≤ Pr(n/Zn+1 > 1 + γ) + Pr

(
Wn−j+1 + ...+Wn

n
>

ζj

ξn(1 + γ)
for some j

)
= A+B.

To bound A, note that it is equal to

Pr

(
1

n+ 1

n+1∑
l=1

(Wl − EWl) <
−γ − (1 + γ)/n

1 + γ

n

n+ 1

)
,

which, since γ > 0, is less than δ/4 > 0 arbitrary, from some n onwards, by the law of large
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numbers. For the term B we have, for ξ small enough and by Markov’s inequality

Pr
(
Wn−j+1 + ...+Wn >

ζj

ξ(1 + γ)
for some j

)
≤

n∑
j=1

Pr
(
Wn−j+1 + ...+Wn >

ζj

ξ(1 + γ)

)

=
n∑

j=1

Pr

(
j∑

l=1

(Wn−l+1 − EWn−l+1) >
ζj

ξ(1 + γ)
− j

)

≤
n∑

j=1

ξ4E(
∑j

l=1(Wn−l+1 − EWn−l+1))4

j4C(γ, ζ, ξ)

≤ ξ4C ′(γ, ζ, ξ)
n∑

j=1

j−2 = ξ4C ′′(γ, ζ, ξ) < δ/4,

where C(γ, ζ, ξ) = (1 + γ)/(ζ − ξ(1 + δ)), since, for Yl = Wn−l+1−EWn−l+1, by Hoffmann-

Jorgensen’s inequality (de la Peña and Giné (1999), Theorem 1.5.13)∥∥∥∥∥
j∑

l=1

Yl

∥∥∥∥∥
4,P

≤ K

∥∥∥∥∥
j∑

l=1

Yl

∥∥∥∥∥
2,P

+
∥∥∥∥max

l
Yl

∥∥∥∥
4,P

 ≤ K ′
(√

j + j1/4
)
,

using the fact that V ar(Y1) = 1 and E|Y1|p = p!.
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