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GLOBAL UNIFORM RISK BOUNDS FOR WAVELET
DECONVOLUTION ESTIMATORS

By KARIM LouNicl AND RICHARD NICKL
University of Cambridge

We consider the statistical deconvolution problem where one ob-
serves n replications from the model Y = X + ¢, where X is the
unobserved random signal of interest and where € is an independent
random error with distribution ¢. Under weak assumptions on the
decay of the Fourier transform of ¢ we derive upper bounds for the
finite-sample sup-norm risk of wavelet deconvolution density estima-
tors f, for the density f of X, where f : R — R is assumed to be
bounded. We then derive lower bounds for the minimax sup-norm risk
over Besov balls in this estimation problem and show that wavelet de-
convolution density estimators attain these bounds. We further show
that linear estimators adapt to the unknown smoothness of f if the
Fourier transform of ¢ decays exponentially, and that a correspond-
ing result holds true for the hard thresholding wavelet estimator if
¢ decays polynomially. We also analyze the case where f is a ’su-
persmooth’/analytic density. We finally apply our results and recent
techniques from Rademacher processes to construct global confidence
bands for the density f.

1. Introduction. Consider the statistical deconvolution model
(1.1) Y=X+e¢

where X is a real-valued random variable with unknown probability density f : R — R*
and € is an error term independent of X that is distributed according to the probability
measure ¢ on R. The law P of Y equals the convolution f * ¢ and we denote its density
by g. Let Y7,...,Y, be iid replications of Y in the model (1.1), and denote by P,
the associated empirical measure. The deconvolution problem is about recovering the
unknown density f from the noisy observations (Y7,...,Y},). It has been extensively
studied: We refer to Carroll and Hall (1988), Stefanski (1990), Stefanski and Carroll
(1990), Fan (1991, 1993), Diggle and Hall (1993), Goldenshluger (1999), Pensky and
Vidakovic (1999), Delaigle and Gijbels (2004), Hesse and Meister (2004), Johnstone,
Kerkyacharian, Picard and Raimondo (2004), Johnstone and Raimondo (2004), Bissantz,
Diimbgen, Holzmann and Munk (2007), Bissantz and Holzmann (2008), Meister (2008),
Butucea and Tsybakov (2008a, 2008b), Pensky and Sapatinas (2009); and also to the
monograph Meister (2009) as well as to Cavalier (2008) for a survey of the literature on
general inverse problems in statistics, of which deconvolution is a special case.
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One key lesson from the above mentioned literature is that a lower bound on the
regularity of the signal € is necessary to be able to estimate f with reasonable accuracy.
This lower bound is often quantified by a lower bound on the decay of the Fourier
transform F'[¢] of ¢, and Fourier inversion techniques are applied to construct estimators
for f.

Most of the literature on this problem (with some notable exceptions to be discussed
below) deals with the L2-theory, that is, involves the loss function d2(f,f) = [(f —
f)?, and is often restricted to the case of periodic and hence compactly supported f.
These restrictions are theoretically convenient, in particular since Fourier-analysis based
methods can be used without too much difficulty using the Parseval-Plancherel isometry.
However, a sound understanding of the local behaviour of deconvolution estimators seems
to be of significant statistical importance. In particular a theory that could deal with sup-
norm loss d(f, f) = sup,cg |f(z) — f(z)| could be used in the construction of confidence
bands for the object f of statistical interest. A fortiori it is not at all clear whether
the intuitions from L2-theory carry over to pointwise and uniform loss functions in
generality, in the same way as L2-convergence properties of Fourier series can give a
completely inadequate picture of their pointwise or uniform behaviour.

In the present article we use methods from empirical process theory to derive finite
sample sup-norm risk bounds for deconvolution density estimators based on Fourier
inversion with Meyer (or similar band-limited) wavelets. These estimators were studied
in Pensky and Vidakovic (1999) and Johnstone et al. (2004), and have been successfully
used in inverse problems ever since. Our results hold under minimal assumptions on the
density f and the distribution ¢: We require f to be bounded, which is unavoidable if one
considers sup-norm loss, and we assume that the Fourier transform of ¢ is nonzero on
the intervals of support of the Meyer wavelet, which is necessary to define any estimator
based on Fourier inversion, and also makes f identifiable. Our risk bounds imply rates of
convergence for the deconvolution density estimator that are optimal in global sup-norm
loss, without any moment or support restrictions whatsoever, both in the severely-ill
posed case (where linear methods suffice) as well as in the moderately-ill posed case
(where we propose a suitable thresholding method). To be more precise, given the law ¢
of the error term and a density f belonging to some Besov body B(s, L) with unknown
s > 0, we devise purely data driven estimators fn such that, for every n € N,

sup  Esup|fn(z) — f(z)| < ruls, ¢, L),
feB(s,L) z€R
where 7,(s,, L) is the minimax rate of convergence in sup-norm loss over the given
Besov body and given the error law ¢. We also obtain a result of this kind for the case
where f is ’supersmooth’; that is, has an exponentially decaying Fourier transform. To
the best of our knowledge also the minimax lower bounds derived in this article are
novel.

We should note that the main delicate mathematical point in this work is to link the
L?-based procedure of Fourier inversion to a pointwise or even uniform control of the
random fluctuations of the centered linear density estimator: This problem is already
implicit in the conditions on F[p] and f imposed by Stefanski and Caroll (1990), Fan
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(1991) and Goldenshluger (1999), who considered pointwise loss. Even stronger assump-
tions were imposed in the nice paper Bissantz et al. (2007), who derive the limiting
(extremal-type) distribution of the uniform deviations over compact sets of certain ker-
nel deconvolution density estimators for f — this is the only result in the literature on
deconvolution estimation that deals with sup-norm loss in the moderately ill-posed case
that we are aware of (Stefanski (1990) deals with the simpler severely-ill posed case
only). Our empirical process approach gives results under minimal conditions, and also
yields the relevant concentration inequalities that allow for a satisfactory treatment of
adaptation, which the results in Bissantz et al. (2007) do not address. We should note
that applying empirical process tools in this setting is not at all straightforward: the
usual approach would be to show that certain kernels are of bounded variation and thus
the associated sets of translates and dilates are of Vapnik-Cervonenkis type (e.g., Nolan
and Pollard (1987), Einmahl and Mason (2000), Giné and Guillou (2002)), but this seems
not viable in the deconvolution problem due to the fact that the bounded variation norm
does not possess a nice Fourier-analytical characterization. We can, however, solve this
problem by combining recent results on VC-properties of functions of quadratic variation
in Giné and Nickl (2009) with Littlewood-Paley theory and the fact that wavelet bases
are compatible with both the L? and L™ structure simultaneously. See Lemma 1 for this
key result.

Our results can be used to construct confidence bands in the deconvolution problem,
and we discuss this in some detail below, as well as relations to work in [3, 4]. We suggest a
new approach to nonparametric confidence bands based on Rademacher symmetrization,
in a similar vein as in recent work of Koltchinskii (2006). While these confidence bands
may be conservative, they allow for an explicit finite sample analysis under minimal
assumptions.

Let us finally remark that this article contains novel results also for the standard
density estimation problem (where ¢ equals Dirac measure g at 0). In this field our
results add in several respects: First, Vapnik-Cervonenkis properties of wavelet projection
kernels have been derived so far only for Daubechies wavelets [19] and Battle-Lemarié
wavelets [21], and the present article achieves the same for wavelets with compactly
supported Fourier transform (e.g., Meyer wavelets). Furthermore our main adaptation
result Theorem 4 is completely free of any moment conditions and thus shows, as may
have been suspected, that the moment conditions imposed in Theorem 8 in [19] are not
necessary. Finally, the confidence bands we suggest can also be used for regular wavelet
density estimators, and we are not aware of any other results on global confidence bands
in density estimation, except for the rather technical ones in [17].

2. Main Results. We start with some preliminary definitions and facts. For any
Lebesgue-integrable function h € L*(R) the Fourier transform F[h] of h is defined as

FIA)(t) = /R h(z)e " dz, t € R

and we use the natural extension of ' to L?(R). We further denote by F~! the inverse
Fourier transform, so that F~'Ff = f for f € L?(R). The Fourier transform of the
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density g from (1.1) is then given by

(2.1) Flg(t) = FIfI()Fe(t)

for every t € R. Another standard property of the Fourier transform we shall use fre-
quently is its scaling property: for h € L*(R) and o € R\ {0} the function h,(z) := h(az)
has Fourier transform F[h,](t) = a L F[h](a"'t).

Let ¢(-) and (-) be, respectively, a scaling function and the associated wavelet func-
tion of a multi-resolution analysis. We refer to [32, 23] for the basic theory of wavelets
that we shall use freely in this article. The dilated and translated scaling and wavelet
functions at resolution level j and scale position k/27 are defined as

din(x) = 22920z — k), Py(z) =292z —k),  jkeZL

Denote now by (-,-) the inner product in the Hilbert space L?(R), that is,

(u,v) :/Ru(m)v(x)da:

for any u,v € L?(R), where @ denotes the complex conjugate of the complex number w.
The density f can be formally expanded into its wavelet series

F=Y (o + D> Bl F)vu
keZ I=j keZ

where the coefficients are given by

ap(f) = (fo5k), B = (V) l,j,k € Z.

As is well known, the regularity properties of a function f can be measured by the decay
of their wavelet coefficients. We define Besov spaces as follows.

DErFINITION 1. Let1 <p,q<o00,s>0orlets=0 and qg=1. Let ¢ and ¢ be the
Meyer scaling function and mother wavelet (see, e.g., Section 2 in [36] for a definition).
The Besov space B;q(R) is defined as the set of functions

00 1/q
st1/9— q
{f € P(R) : [Ifllspa = lloo.llp + (Z (2221600 ()] ) < oo} :
1=0
where || - ||, are the norms of the sequence spaces (P(Z), and with the usual modification

in case q = co. Moreover, for any L > 0 the Besov Ball of radius L is defined as

B(s,p,q, L) ={f € L"(R) : [|flls.p.g < L} -
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2.1. Minimax Lower Bounds over Besov Bodies. Before we construct explicit estima-
tors for the density f of X in the deconvolution model (1.1) we derive a result that gives
a benchmark for the best performance of any estimator fn More precisely we derive
lower bounds for the minimax rate of convergence of f, — f in sup-norm loss uniformly
over Besov-bodies of densities f under various assumptions on the error law . We will
show subsequently that these lower bounds can be attained by certain wavelet based
estimators, and are thus optimal.

To this end, define the minimax L*-risk over the Holder class

B(s,L) := B(s,00,00,L)N{f: R — [0,00),/Rf(a;)da: =1}

(2'2) Rn(B(S’L)) =inf sup FEsup |fn($) - f(.l?)|,
Jn f€B(s,L) z€R
where the infimum is taken over all possible estimators f,. Note that an estimator in
the deconvolution problem means any measurable function of a sample Y7, ...,Y,, from
density f * ¢ that takes values in the space of bounded functions on R.
We shall make the following assumption on F[p] to establish the lower bounds.

CONDITION 1. There exist constants C,C’ > 0, w,w’ € R and t1,co > 0 such that
Flp|(t) is differentiable for every t satisfying |t| > t1 and

|F[p](t)] < CA+t2)"Fe M a5 well as  |(Flg]) ()] < C'(1 4 t2)~ T el

This condition is weaker than the standard ones employed in deconvolution problems
to establish lower bounds, cf. [14, 8], where an additional condition is imposed on the
second derivative of F'[g]. It covers the usual candidates for ¢ including the case ¢ = dp
which corresponds to classical density estimation (w = ¢y = 0).

The following theorem distinguishes the 'moderately ill-posed’ case, where F[p] decays
only polynomially, and the ’severely ill-posed’ case where F'[¢] decays exponentially fast,
and shows that the optimal rates of estimation in the global sup-norm depend both on
the smoothness of f and the decay of F|p].

THEOREM 1. Let Condition 1 be satisfied. Then for any s,L > 0 there exists a
constant ¢ := ¢(s, L,C,C’, a,w,w', cy) > 0 such that for every n > 2 we have

1 \a :
. (bgn) if cg >0

(10%) R ifeo =0 and w' > w > 0.

Rn(B(s, L))

One may be interested in replacing the Holder class B(s, L) by a more general Besov-
body B(r,p,q,L),r > 1/p, of densities. It follows from the proof of Theorem 1 that the
minimax rate over B(r,p,q, L) equals the one for B(s,L) with s = r — 1/p, and the
Sobolev-imbedding B, (R) C B, (R) will imply that our upper risk bounds derived in
the following sections attain this rate. We thus restrict ourselves to B(s, L) without loss
of generality.
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2.2. Uniform Fluctuations of Wavelet Deconvolution Estimators.

2.2.1. The Linear Wavelet Deconvolution Estimator. Recall the model (1.1). We now
show, following [36], how one can estimate f from a sample of P by ’deconvolving’ P, or
rather a suitable approximation of it, on a wavelet basis ¢, that satisfies the following
condition.

CONDITION 2. Assume ¢,1 € LP(R) for every 1 < p < oo, and for some 0 < a’ <
a we have supp(F[¢]) C [—a,a] as well as supp(F[¢]) C [—a,—a] \ [—d’,a’]. Assume
furthermore that

(23) (@) =sup ] |6@ — B < o0, c®) :=sup > [p(z — k)| < oo,
zeER zeER

This condition is satisfied for Meyer wavelets with a = 87/3 and o’ = 27/3 (these
choices are not optimal but feasible), see, for instance, Section 2 in [36], but other band-

limited wavelet bases are admissible as well.
If
K(y.z):=Y oy —k)¢(z — k)

keZ

then the functions Kj(y,z) := 2/ K(2/y,2z), j € N, are the kernels of the orthogonal
projections of L*(R) onto the closed subspaces V; C L?(R) spanned by {¢;; : k € Z}.
We write, for x € R, j > 0 real-valued,

Ki(N@) = Y 2o@e =k [ 6@y—Ridy = [ K@) W

keZ

where the second equality holds pointwise in view of (2.3).

Suppose the Fourier transform of the error law ¢ satisfies | F[]| > 0 on supp(F[¢](277(+))).

We then have from Plancherel’s theorem that

K@) = 2 6@z k) [ o2y kf )y
k
j L [ T ood@ 0
= Yoo -y | FoulET0r (|0
= oa Ky [ FoulCI0FLIO (Flele)
= YD 0a =) [ Sulot)dy

(24 = [ K@y,
where the (nonsymmetric) kernel K J* is given by

Ki(z,y) =20y 6200 — k)ju(y)

keZ
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with

- F 2-7. . 1
(25) () = [2‘]%] () = dou(2 ) + P [1[-2]-@,2]-[4@] (2).

We should note that Young’s inequality for convolutions implies, for fixed 7, that ||55]k lloo <
oo and then also [|K7 |l < oo, which justifies the above operations.

Since we have a sample Y7,...,Y, from the density g the identity (2.4) suggests a
natural estimator of f, namely the wavelet deconvolution density estimator

. 1 O s )
(2.6) fulz,j) = n 2_: Kj (z,Ym), z€R,j>0.

2.2.2. Uniform Moment and FExponential Bounds for the Fluctuations of f, — Ef,.
We start with some results for the uniform deviations

% i (¢ak Eéjk(Y))’

m=1

(2.7) sup | (. §) — Efu(z,5)| < c(¢)27 sup
rER keZ

where the inequality follows from (2.3). This suggests to study the empirical process
indexed by the class of functions

f:{(gjkikEZ},

in fact, some further scaling depending on the error distribution ¢ will be useful to
obtain a class with constant envelope.

The rather intricate Fourier-analytical definition of qgjk in (2.5) makes it difficult to
apply standard results from empirical process theory. What is needed is that F be
a Vapnik-Cervonenkis (VC-type) class of functions. In the classical density estimation
case (where F[¢] = 1) this follows from results in Nolan and Pollard (1987) for translates
of a fixed function of bounded variation. We could, however, not control the bounded
variation norm of q;jk for general ¢ in a way that would be useful, mostly because the
bounded variation norm does not interact well with Fourier transforms. Recent results by
Giné and Nickl (2009) show that the bounded variation condition in Nolan and Pollard
(1987) can be replaced by p-variation for general 1 < p < oo, and the case p = 2, which
corresponds to 'quadratic variation’, can be linked in a more efficient way to Fourier
analysis by using Littlewood-Paley theory.

The following key lemma shows that F, suitably normalized, is indeed a V C-type class
of functions, under minimal conditions on F[y]. Denote by N (g, F, L?(Q)) the e-covering
numbers of a class of functions F w.r.t. the L?(Q)-distance.

LEMMA 1. Suppose ¢, satisfy Condition 2, and that |F[p](t)| > 0 on [-27a,2’a].
Define

28) = min - [Fle|0)
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(which ezists and is positive for every j since ¢ is a probability measure). Then the class
Hj:{aj&jk;kez}, j>0,
is uniformly bounded by the constant U and satisfies, for every 0 < e < A
A v
sup N (e, H;, L*(Q)) < (;)
Q

for finite positive constants A,v,U depending only on ¢,v, and where the supremum
extends over all probability measures QQ on R.

Combining this lemma with moment bounds for empirical processes indexed by VC-
type classes of functions in [13, 16] as well as with Talagrand’s [39] inequality, we obtain
the following result.

PROPOSITION 1.  Suppose ¢, satisfy Condition 2, that |F[p](t)| > 0 on [-27a,27a],
let §; be as in (2.8) and define j' = max(1,j). Let fn(z,j) be the deconvolution wavelet
density estimator from (2.6), and assume that X has a bounded density f : R — [0, 00).
Then there exists a constant L' depending only on ¢,1,p such that for every n > 1,
every j > 0 and 1 <p < oo

»\ 1/p o -
) . 1 214 274
<E (i‘;ﬁ‘f"(“”]) —Efn(w,.y)l> ) §L5—j (G\/ i )

where G = max(||g||éé2, 1). In addition, there exists a constant C' depending only on ¢, 1)
such that for every j > 0 and u >0
(2.9)

Pr {sup |fr(z,j) — Efpx, )] >
zeR

Gl YOl ,
(G (1 —i—u)zﬁ7 + (1 +u)27;7 ) } < e (W,

The constant C' is unspecified here, although it could be computed explicitly. Obtain-
ing realistic constants is an intricate matter, but one can use symmetrization techniques
to circumvent this problem, see Proposition 3 below.

S Q

2.2.3. Uniform Fluctuations of the Empirical Wavelet Coefficients. The techniques
from the previous section allow to establish similar uniform estimates for the deviations
of the empirical wavelet deconvolution coefficients ﬁlk from their means. Such results are
particularly interesting for nonlinear thresholding procedures that we shall study below.

We have, for ¢ satisfying Condition 2

12
Bik(f) = 2l/2/R?[)(2l$—k‘)f($)dl‘: Z—/RZ

2
ol/2 /R zﬁlk(az)g(az)da:

1 Flpor)(271)

o (OFlal (0
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where

7 o —ZFWOk](Q_l')}
wlk(y) =F l2 W (y)

A natural unbiased estimator of Gy (f) is therefore

ol/2

(2.10) Bu(f) = e z": i (Ym),
m=1

and the object of interest in this subsection is the random variable supycy |Blk — Bkl
We should note that for wavelets satisfying Condition 2 (for instance, Meyer wavelets),
and even if g has compact support, the last supremum is one over an infinite set, so that

empirical process techniques are particularly useful. Lemma 1 has the following analogue
for 1.

LEMMA 2. Suppose ¢, satisfy Condition 2, that |F[¢](t)| > 0 on [~2'a,2'a] and let
0; be as in (2.8). Then the class

Dl:{él’(/;lkik‘EZ}, [>0

s uniformly bounded by a fixed constant U and satisfies, for every 0 < e < A,

sgp N(e, Dy, LQ(Q)) < <§>U

for constants U, A,v depending only on ¢, (the supremum extending over all probability
measures Q) on R).

The analogue of Proposition 1 on the level of wavelet coefficients is as follows.

PROPOSITION 2.  Suppose ¢, satisfy Condition 2, that |F[p](t)| > 0 on [~2'a,2'a],
let 0; be as in (2.8) and define ' = max(l,1). Assume that X has a bounded density
f:R —[0,00). Then, for every n > 1, for everyl >0 and 1 < p < oo, we have

N 1/p s 1 U 2l/2l/
Esup |G — Bix|? <L'— |Gy —+ ;
keZ 01 n n

where L" > 0 depends only on p,¢,v) and where G is as in Proposition 1. In addition
there exists a constant D depending only on ¢, such that for every l >0 and u > 0

N D U 2l/21/ ,
(2.11) Prsup |G — Bl = = | G/ (1+u)— + (14 u) < e~ (W)l
keZ 0y n n
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2.3. Optimal Estimation over Hoélder Classes. We now show how the risk bounds
from the previous section imply optimal rates of convergence for densities f € B3 (R)
in the deconvolution problem, under the standard decay conditions on F[y| from the
inverse problem literature.

We first consider the case where the error law ¢ decays exponentially fast. In this
’severely ill-posed’ case one can find a universal choice of j for which the linear estimator
attains the exact minimax rate even without having to know the value s.

THEOREM 2.  Suppose ¢, 1 satisfy Condition 2, and assume that |F[p](t)] > Ceclt*
for everyt € R and some C,co, o« > 0. Let f, (-, jn) be the estimator defined in (2.6) where
= élog2(ulog n) for some v satisfying coa®v < 1/2. Then there exists a constant L"
depending only on s, L, ¢, 1, cy,C,a, v such that for every n > 2 we have

1 \a
sup  Esup|fu(x,jn) — f(x)] < L <—) .
feB(s,L) x€R logn

We now turn to the case where F[p] decays polynomially, the so-called 'moderately
ill posed’ case. Here the linear estimator f, is only minimax optimal if one knows the
value of s.

THEOREM 3. Suppose ¢, satisfy Condition 2, and assume that |F[p](t)] > C(1 +
t}2)"% for everyt € R and some C' >0, w > 0. Let fu(-,jn) be the estimator defined in

(2.6) with j = j, satisfying
oin ( n )Wluﬂ—l
~ \logn ’

Then there exists a constant C' depending only on s, L,¢,1,C,w such that for every
n > 2 we have

S
log n) 2s+2w+t1

sup Esup|fn<x,jn>—f<w>|§0'( n

feB(s,L) x€R

The question arises as to whether we can achieve this rate of convergence without
having to know the value of s in our choice of j,, so that we can adapt to the unknown
smoothness s of f. This can be done using the wavelet thresholding deconvolution es-
timator proposed in Johnstone, Kerkyacharian, Picard and Raimondo (2004) in the
periodic setting, defined as follows: For j; positive integers to be specified below, the
hard thresholding estimator equals

Ji—1 .
(2.12) fa (@) = fal@,0) + 30 Bl g, o V(@)

=0 &k

where Blk was introduced in Section 2.2. The threshold 7 is chosen such that

1
T =7(n,lw, k) = k2% _ogn7
V' n
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where k = Gr’, with G from Proposition 1, and ' a "large enough’ constant that depends
only on w, C, ¢, . If G is unknown it can be replaced by an estimate as in [21].

THEOREM 4.  Suppose ¢, satisfy Condition 2. Suppose that ¢ is such that |F[p|(t)| >
C(1+t[*)~2 for everyt € R and some C >0, w >0 . Let fI be the thresholded esti-
mator in (2.12) with

n O\ 1/Qu+1) ' n O\ 1/Qut1)
(=) < 2 <2 >0,
logn logn

Then we have for every n > 2 and every s > 0 that

S
]og n) Zwt2s+1

(2.13) sup Bsup|f (@) - (@) < D (<%

feB(s,L) z€R

where D > 0 depends only on s, L, p, v, C,w.
2.4. Extensions and Applications.

2.4.1. Estimation of a Supersmooth Density. In the last sections we established the
minimax rate of estimation of a density in B . (R) for the sup-norm error both in the
moderately and severely ill-posed cases, and constructed estimators that attain this rate.
It was pointed out in [36] for the L? error that the linear and thresholded estimators
attain faster rates of convergence if we consider classes of supersmooth densities instead
of the usual Besov spaces. In this section, we investigate this phenomenon for the sup-
norm error. We show that the minimax rate of convergence for the sup-norm is the same
as that obtained for the L? error up to an additional v/loglog n factor, and that wavelet
estimators can attain this rate. For simplicity, and to highlight the main ideas, we only
consider the non-adaptive case.

Assume that f belongs to the class of supersmooth densities:

Ay o(L) = {f R—0.00), [ f=1 and [ IFI0P exp2ali)d < 27TL},
R R
where ¢y, s, L > 0. In the moderately-ill posed case we have the following result.

COROLLARY 1.  Let ¢, satisfy Condition 2. Assume f € Ag s(L) for some ¢y, s,L >
0 and that |F[@](t)] > C(1+[t|*)"2 for everyt € R and some C > 0,w > 0. Let f, (-, jn)
be the estimator defined in (2.6) with j = j, satisfying

- 1
20 = ————1
<2(a’)550 o8 ")
Then there exists a constant C' depending only on ¢,v, ¢y, s, L, C,w such that for every
n > 3 we have

1

E]

. log log n\ /2 wt1/2
sup  Esup|fu(z,in) — f(x)] < ' (7,53; g ) (logn)™ s .
fE€Asy,s(L) z€R n
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The rates we obtained for the sup-norm error are similar to those obtained by [36]
and [7, 8] for the L? error, up to the presence of the additional factor \/loglogn. This
additional factor can be heuristically explained by the presence of the quantity /7 in
the deviation term 5;1(29' §/n)Y/? derived in Proposition 1. The next theorem implies
that this v/loglog n factor is indeed necessary.

THEOREM 5. Fizx 0 < s <1 and ¢y, L > 0. Assume that ¢ satisfies Condition 1 with
co =0 and w' > w > 0. Then there exists a positive constant ¢ := ¢(s, ¢y, L, C,C’,w,w'")
such that

. log1 1/2 w1/
inf  sup Esup|fu(z) — f(x)] >c <w) (logn) e .
fn fEAchS(L) z€R n

We can also obtain faster rate of convergence in the severely ill-posed case for super-
smooth densities, balancing the bias bound from Proposition 4 below with the variance
bound from Proposition 1 above. We can then obtain similar results as in [7, 8] with
additional logarithmic terms in the rate of convergence due to the fact that we consider
sup-norm loss instead of L2-loss.

2.4.2. Confidence Bands. One of the main statistical challenges in the nonparametric
deconvolution problem is the construction of confidence bands for f, cf. [3, 4]. In [3] the
exact uniform (over compact subsets of R) limit distribution of certain linear kernel-based
deconvolution estimators for f is derived, assuming that f satisfies [p [F[f](u)||u|"du <
oo for r > 0 and that g is once differentiable with bounded derivative, and if the Fourier
transform of the error variable decays exactly like a polynomial, i.e. |F[¢](t)| ~ C[t|™%
for some C' > 0,w > 0. If the underlying smoothness r of f is known these results can
be used to construct asymptotic confidence bands for f that shrink at certain rates of
convergence

We suggest here an alternative approach to confidence bands in the nonparametric
deconvolution problem. Instead of extreme value theory we use concentration inequalities
and Rademacher processes. This allows for almost assumption-free results and has the
advantage that the confidence band can be shown to be valid on the whole real line and
for every sample size n. On the downside these bands are likely to be too conservative
in the limit.

One fundamental problem of using concentration inequalities as in Proposition 1 in
practice is that often no reasonable values for the leading constant C are available. To
circumvent this problem, we use here an idea that goes back to Koltchinskii (2001, 2006)
and Bartlett, Boucheron and Lugosi (2002), see also Giné and Nickl (2010b), where this
approach was introduced in density estimation. Define a Rademacher process and the
associated supremum

1 \ . 1 ¢ )
{— E sij(:r,Ym)} , Ry(j):=sup|— E em K (2, Yin)
z€R

[p— zeR |1
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with (&m,)1—; an ii.d. Rademacher sequence, independent of the Y,,’s (and defined on
a large product probability space). R, can be computed in practice by first simulating
n i.i.d. random signs, applying these signs to the summands K ]*(a:, Y,,) of the wavelet
deconvolution density estimator (2.6), and maximizing the resulting function. Similarly
one can consider E.R,(j), the expectation of R, (j) with respect to the Rademacher
variables only, which is a stochastically more stable quantity.

We shall use that this is the supremum of a centered process which can be shown to
concentrate around 2F||f,(-,j) — Efn(-,j)||lco- To describe the concentration property,
recall §; from (2.8) and define the random variable

&\/m”gum(zz +log2) | Dy %(z +1log2)

R ; — 1
(2.14) 0" (n, j,z) = 6Rn(j) + 5; n 0; n

where Dy = 10¢(o)||d]|1/a/7 < 5.7¢(9)||o||1/a, Dy = 44c(@)v/a/2n% < 11¢(p)/a, and

() as in (2.3). If [glloc is unknown it can be replaced by || f,(; jn)lloo in practice, so
that o't is completely data-driven. We start with a confidence band C,, = [fn(d) —
oB(n, j,2), fu(5) + 0%(n, j,2)] for the mean Ef, of f,.

PROPOSITION 3.  Let fn(x,j) be the estimator from (2.6) and suppose |F[p]| > 0 on
[—27a,27a). Assume that X has a bounded density f : R — [0,00). Then we have for
everyn > 1, every j > 0 and every z > 0 that

Pr {sup fula,5) = Efalw, )| > o®(n, j, z)} <e
zeR

Moreover, the band C,, has expected diameter (j' = max(j,1))

2] -/ 2] -/
2E"(n, j,2) < €571 (\/—] + 2 )
n n

for every z > 0, every n € N, every j > 0 and some constant C' depending only on

9lloo, @59, 2.

Proposition 3 still holds true when R,,(j) is replaced by E.R,(j), the expectation of
R, (j) w.r.t. the Rademacher variables only. [This follows from combining the proof of
Proposition 3 with the arguments in the proof of Proposition 2 in [21].]

We did not try to optimize the constants in the choice of o, and they are likely
to be suboptimal as they depend on the constants in the lower-deviation version of
Talagrand’s inequality, where sharp constants are not known yet. A ’practical’ choice
maybe to replace 6 by 4 in front of R,, and ignore the third "Poissonian’ term in (2.14).

We emphasize again that we simply need |F[¢](t)| to be bounded from below on the
fixed interval [—27a,2/a] for our results to hold, and we do not need any support or
moment assumptions on f. In particular this nonasymptotic result can even be used in
principle when F'[¢] equals zero eventually by choosing j small enough.
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If f e B5 (R), with s known, the last proposition can be readily applied for the
construction of confidence bands C), for the unknown density f using undersmoothing
(just as in [3]), and these bands can be shown to shrink at the optimal rate of convergence
depending on the smoothness of f. We do not detail this here, and neither do we address
the more difficult problem of adaptive confidence bands: using Proposition 3 such results
can be obtained in the same way as in the case of density estimation considered in [20].

Instead, and for sake of illustration, let us construct a nonasymptotic confidence band
in the supersmooth case f € Ag (L), s,¢0 known, with moderately ill-posed error
distribution.

COROLLARY 2. Let f, ¢, fu(-,jn) and j, be as in Corollary 1. Let of(n,j,2) be as
in (2.14) above and define the confidence band

Cn(l‘, z) = [fn(ajajn) + (1 + 5)JR(n7jna Z)],,Z‘ eR
where § is any positive real number. Then, for every z > 0 and every n € N

Pr{f(z) e Cp(z,z) Ve €eR} > 1—e 7 — v,

i

where (" = " (p,1), ¢, 8) as in Proposition 4)

satisfies v, — 0 as n — oo.
Moreover if |Cy,(2)| is the mazimal diameter of Cy(x, z) then

log 1 1/2 w1/
E|Ca(2)| < C (%) (log n) +1/2

where C' depends on ¢y, s, L, 0, z.

Since lim v, = 0 this confidence band has asymptotic coverage for § > 0 arbitrary, but
more is true: v, equals zero from some n onwards and one can in principle even obtain
coverage for every fixed sample size n by choosing ¢ in dependence of s, L, ¢y (and of the
constants that define o%?).

3. Proofs.

3.1. Proof of Theorem 1. Our proof adapts to the present situation standard lower
bounds techniques as in [14, 8, 35]. We recall that the Kullback-Leibler divergence be-

tween two distributions P and () is defined by
flog(%)dp, if P<@Q
~+00, elsewhere.

K(PIQ)Z{

To establish lower bounds for the minimax risk (2.2) we use the following lemma (see
Theorem 2.5 on p.99 in [40]), in fact an adaptation of it to the deconvolution problem
at hand.
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LEMMA 3. Letd be a metric on B(s, L). Let r, be a sequence of positive real numbers
and let C C B(s, L) be a finite set of probability densities such that card(C) > 2 and

Vf,geC.f#g=d(f g) =4 >0.

Let further ¢ be a fixed probability measure and let wa be the product probability measure
corresponding to a sample of size n from the law f x ¢, f € C, and assume the KL
divergences satisfy, for every f € C and some fy € C,

n n 1
K(Pf*QO|Pf0*§0) § 1_6 log(card(C))

Then,

infsup Ed(fn, f) > c17n,

fn fec
where inf in denotes the infimum over all estimators based on a sample of size n from
the density f x @, and where c1 > 0 is a constant that depends only on s, L.

We use this lemma to prove Theorem 1. Let 1) be the Meyer wavelet. Fix s, L > 0
and let j € N be arbitrary (to be chosen later). Define the set of functions C = {fx, k =
0,...,27 — 1} as follows: Consider the standard Cauchy density p(z) = 1/7(1 + 22), set
folz) = %p(%) for n > 0 and for any k =1,...,2/ —1,

fr(@) = fola) +27F Dy

where ky; = Mk for some integer M > 1 specified below. We show that the constants
n,c¢ > 0 can be chosen such that fj is a density on R and in fact belongs to B(s, L) for
every k =1,...,27—1 and every integer M. Clearly f} integrates to one since 1 is orthog-
onal on constants. We next prove fj € B(s, L) for all k£ and suitable ¢/, 7. First we have
I folls,00,00 < % for n > 1 large enough depending only on s, L, ), ¢ in view of F[fy](u) =
e, Definition 1, G(fo)] = |(1/27) fig ™ Flyue)(w)] < (2/n)2/2jp]re~ 21 with
a’ = 27/3 and a similar estimate for ay(fo). Thus we have, for 0 < ¢/ < L/2

i L
Felloes < Wollossoo + 1277 D50 oo g < 5+ < L.

Having chosen 7, we can choose ¢ < L/2 suitably small but positive and depending
on 7 and v so that fr > 0 on R for any k: This fact is easily established using that
the Meyer wavelet decays faster at infinity than any polynomial (that is the estimate
|Y(z)] < Cn/(1+ \m|2)% for every N € N and every x € R) whereas fy(x) decays at
infinity like 272,

To proceed with the proof, set shorthand ~; = ¢ 2-3(s+1/2) We first prove the sepa-
ration property in sup-norm for the fj’s: For any fj, fir distinct we have

1fi = frlle = %272 0(- — ME) — ¢(- — ME)] .
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By definition of the Meyer wavelet we have for any k # &k’

sup[(z — Mk) — ¢(z — MK)| = sup[(z) =yl + M(k —K))|
[¥lloo — [(@max + M (k — k)|

v

for some xpyax € argmax, [1p(z)|. By the decay property of the Meyer wavelets mentioned
above there exists a numerical constant M > 1 large enough but finite such that for any
x satisfying |x| > M we have |)(max + )| < [|#]|oo/2. Thus we have for any k # &’

T T
Il fr — frrlloo = fijJ/zToo —9 ]STOO'

We check now the second condition of Lemma 3. Let (Y3,...,Y,) be an i.i.d. sample
with distribution P’ admitting the density [[;_, (fx*¢)(yi) w.r.t. the Lebesgue measure
on R™. Fubini’s theorem and the fact that ¢ is orthogonal on constants give for k € Z
that [p(¢;r * ©)(y)dy = 0. Thus, by definition of the KL divergence and the inequality
log(1+ x) < z for 2 > —1, we obtain for any k =1,...,2/ — 1 that

KPR = n [105(2220) (o))

Joxo
= [og (14,22 ) ) (v )iy
< ny /ijm * ) (y) (1 + w%@) dy
. 2
(3.1) < ny? /]R 7(%%1:@@) (y)dy.

To proceed observe that fy Cauchy implies ( fo*@)(y) > c1/(1+y?) for some ¢; > 0 and
every y € R: This is obviously true for y in any compact set [—A, A], and for |y| > A
follows from

lim inf(1 + y?) fo * o(y) > ! lim inf Lty ()
im i 0 > — [ limi =
oo P e ule 14 [y = 2) /P

n
m
in view of Fatou’s lemma. Consequently we have

o) 1
/R %(y)d@/ < o1 /R(l + 1) (Wjiy * 0)* (y)dy.

Let us consider first the quantity [p(¥jk,, * ©)?(y)dy. Plancherel’s theorem gives

[ i 0P @y = o [ 1P, OF IFlel 1)t
R R

szl [ (148372l gy

(3.2)
supp(F[¥;r,,])

IN

for some constants co, c3 > 0 depending only on C, 7.
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For the quantity [ y2(1/1jkM * ©)?(y)dy we obtain similarly, using in addition the
spectral representation of the differential operator, that

[ @i =Py = e [ [Fl)OF )] d
R R
= e [ (P OF60) + Pl OFlel 0) ] dt
2

= [ |(2 2P o,/ 2 IOFIRI) + ity JOFI0)| di

. 2 .
227 ( [ lovtayar) [ (14 £2)- a2l gy
R supp(F [k, ])

(3.3) + 20,277 |02 / (1 4 £2)~w' e~ 200l gy
supp(F[¢

IN

ik g

where ¢4 depends only on C,C’. Combining (3.1) -(3.3) and the explicit formula for the
support of the Meyer wavelet we obtain

, 8r o N 8x 29 , N
K(P|P}) < emyj2” ( /szj (L) e aldr 4 | 7 (1427 el dt>,
3 3

where ¢5 > 0 depends only on C,C’,||¢¥||1, [ |z¢(z)|dz. It remains to estimate the size
of these integrals and select j appropriately, and we distinguish the moderately and
severely ill-posed cases.

In the moderately ill-posed case (¢g = 0, w' > w > 0). We have

K(P]?‘sz) < 06(0')2n2_j(25+2w+1),

. 1
for some constant ¢g > 0 independent of n, j. Taking 27 ~ (n/logn)@+2e+0 and ¢ > 0
small enough (independent of n and j) in the definition of v; gives

K(PLIP}) < co(c)(1og n) < < log(card (C)

where we recall that card(C) = 27. The separation rate r,, for this choice of j,, becomes,
for any k, k' distinct,

S
logn\\ 2s+2wt1
=Tn,

Ilfe — frrlloo > c7 (

for some constant ¢; > 0 independent of n. This proves Theorem 1 for the moderately
ill-posed case.
Now for the severely ill-posed case (c¢o > 0) we obtain similarly that

K(PFy) < cs(c/)2n2 il w ) g=do2®
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for dy = (2¢9(27/3)*)/ log 2 and constants cg > 0, ¢(s, w,w') independent of n, j. Taking
Jna = logy(4-logy n) with v > 1 large enough gives

log, n)c’(s,w,w’)

KB < o)

1
— < 16 log(card(C)).

nl/

where cg > 0, ¢(s,w,a) are some nonnegative constants independent of j,n. For this
choice of j, the separation rates r, become, for any k, k" distinct,

1N
1= Sl = 10 (=)
ogn

where c1g > 0 is independent of n. This concludes the proof of the theorem.

3.2. Proofs of VC-Properties.

PRrROOF OF LEMMA 1. Set

1
77](:1:) =F! <1[—2ja,2ja]ﬁ> (IL’)

which is bounded and continuous and rewrite
Gik(r) = Gop(27) xmj(z) = /R<b(2jw — 2y — k)n;(y)dy
= /Rz_j/2¢j0(33 —y =279k (y)dy = 279 2pjo x nj(x — 279k)

so that it is sufficient to study the class consisting of translates of the fixed function
2—j/2¢j0 * 1;. Note first that 6;¢;,,k € Z, is uniformly bounded in view of the last
estimate and since

(3-4) 27728) 640 * mjlloe < (277728l bjoll2lnjllz < V2a/2m

where we have used Young’s convolution inequality and Plancherel’s theorem.

To prove the entropy bound, we will show that ¢;q * 7; has finite quadratic variation
(i.e., 2-variation). In fact, to obtain a bound on the quadratic variation that is indepen-
dent of j, we renormalize and show that the function (Z_j/ 25j)gbj0 * 1; has quadratic
variation bounded by a constant D that depends only on ¢. This will complete the proof
of the lemma by using Lemma 1 in [19] which states that the set of dilates and translates
of a fixed function h of bounded p-variation, 1 < p < o0, is of VC-type with constants
A, v depending only on p and the p-variation norm of A.

We will prove that (277 / 25j)¢j0 *1); has bounded quadratic variation by showing that
it is contained in the (homogeneous) Besov space 35{2(]1%), which is sufficient in view
of the continuous imbedding of B;{z (R) into the space V2(R) of functions of quadratic
variation; a result due to Peetre, see Theorem 5 in [5] for a proof (cf. also the proof of
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Theorem 2 in [33] which applies to p = 2 as well). The semi-norm || - |.|1/2,271 of B%{Q(R)
has the following Littlewood-Paley characterization:

Ihlyjp2n =3 272 | P i F b))
leZ

2

where ~; is a dyadic partition of unity with +; supported in [21_1, 2”1] (see, for instance,
Theorem 6.3.1 and Lemma 6.1.7 in [2]). We bound the Littlewood-Paley norm: using
F[279/2¢;0] = 279 F[$](277-), Plancherel’s theorem, writing shorthand (u) = (14|u|?)'/2,
and in view of the support of 4; we have the bound

b S [ e en],
!

1

= —2775;) 22
27 J Xl:

<2778y H%FW(Q_j')l[—ma,zja] (W)—l<u>1/2u2

. (w2
fylF[qb](2_]')1[_2ja,2ja](F[90])_léuil/g )

) 2ia )
éc?‘]Z\/ [ S lFel s
a)2” ]/QZHF E[6) (27 )]l

ZHF Fbjolll2 < c(@)lldjollozr-

To bound the last quantity we use the inequality || - ‘.|0,2,1 < || llo,2,1 (which follows from
Definition 1 and results in [32], Section 6.10). By orthogonality of the wavelet basis

j—1
Igjollozs = /> Kbjo.bord? + D > [, djo)l>-
k =0 k

The first term on the right hand side is bounded by ||[Ko(¢jo)|l2 < ||¢joll2 < 1 since Ky is
a L2-projection. For the second term we note, writing v, for ¥(- — k), using the change
of variables 2/2 = v and Condition 2, that

) ) 2
> s dj0))* = Z(zmzﬂ/? / wk(QZx)qﬁ(Z]x)da:)
k

k

-y (21/22—J'/2 / zpk(Ql_ju)qﬁ(u)du)Q

k

c(¥)ll¢ll

< 2lo7i sup
k

@ otud
< C*y,9)2"
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IS 1 Wk, ¢j0) 2 < C(0, $)27 WZW < C'(1h, 9).
k =0

This shows that 2_j/25j | dj0*n; ||1/2,271 is bounded by a fixed constant that depends only
on ¢,, which finishes the proof of the entropy bound. O

so that

I
—

J

o~
I
o

PROOF OF LEMMA 2. The proof is the same as the one of Lemma 1. The last step
of the proof even simplifies since by orthogonality only the resolution level [ has to be
considered. O

3.3. Proof of Propositions 1 and 2.

PROPOSITION 1. We recall (2.7) and observe that H; is bounded by the fixed constant
U. We prove j > 0, the case j = 0 is the same except for notation. Using the moment
inequality (57) in [19] and Lemma 1 we obtain

E2 sup % i (&jk(Ym) - E(Z;jk(y))’ = ;JnE i (h(Ym) — ER(Y)
keZ m=1 m=1 H;
< C(v)% (\/ﬁa\/log(AU/a) + log(AU/a))
<

C0,AU) ( /G22Lj+£j)
0 n n

where 02 > SUPper, Eh?(Y) is obtained as follows: using Plancherel’s theorem,
BI(Y) = 6 [ $(@)g(e)do < lglocl Ol
= -2 gl / Floor) (2w Flel(w)| 2du

1 . 27a iy
< %2 % gl / Flgor)(2 7w du

< —2 Tllgllos | [box)(v)Pdv = 277 |lg]loc < 277G* =07,

a bound which does not depend on h. The claim for general p follows from standard
arguments for uniformly bounded empirical processes, using, for instance, Proposition
3.1 in [18].

We now prove the second statement. For every «’ > 0 Talagrand’s inequality in Bous-
quet’s version [6] applied to Z = (i—Jn 1> r 1 (h(Yi) — Eh(Y)HHj yields

2! 2 2U2 274/
PrlZ>EZ+ @2 [ 2UY L) U2 <e v
5j n5 n 35jn

~
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Now the first statement of the proposition and taking v’ = (1 + «)j" imply after some
elementary computations that

°"|Q

n n

Pr {su%fn(x,]) Efo(n,i)] > (G 275"(1 4 u) n 274'(1 +u)) } < o ()7
S

which completes the proof. ]

PROOF OF PROPOSITION 2. We prove [ > 0, the case [ = 0 is similar. The first claim
is proved in the same way as in the proof of Proposition 1 since

2l/2 n N 2l/2 n
Eilelg TmZ:l (¢lk E¢lk(Y)) = &—nE mz_l(d(ym) — Ed(Y)) N
2l/2
< O'(v)=— 5 <\/ﬁa\/log(AU/a) —i—log(AU/a))
<

1/2
oA 01 ( ol ﬁ)
0 n n
where supp,ep, Eh?(X) < 27'G? = 42 is obtained by the same computation as in the
proof of Proposition 1.
To prove the second statement, we again invoke Talagrand’s inequality in Bousquet’s
version [6] applied to

Z = sup |G — O] = =—
keZ

so that

2 1/2 1/2, 1 /
prlzspze |2 (E 202 ) U2
51 no; n 30mn

and the first statement of the proposition and taking v’ = (1 + u)l’ gives

N / /2 /
Pr {Sup ‘5”{: - ﬂlk| 2 52 (G (1 + U)l 4 2 (]- + U)l ) } S 6_(l+u)l,
keZ l

n n
which is the desired result. U
3.4. Proof of Theorems 2 and 3. We have the usual bias-variance decomposition

Esup | fn(z,jn) — f(2)| < Esup|fu(x, jn) — Efalx, jn)| +sup | f(z) — Eful, jn)l-
z€R z€R zeR

Consider first Theorem 2. The nonrandom term in the right hand side is bounded by

sup | f(x) = Efa(@, jn)l = |f = Kj, (N)]leo < C1279"° < O] < 1 )E7

z€R vlogn
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where C > 0 depends only on || f||s 00,00 (see Theorem 9.4 in [23]). For the ’variance’
term Proposition 1 and our choice for j, give

ESU% |fn(, 5n) — Efn(z, jn)|
S

S L/l/leCoaO‘Qj”a (G\/(V log n)% 10g2(V log n) + (V log n)% logQ(V log n) )
an an

Ca v 1 i
<pmgt NG \/(10gn)éloglogn:0<< ) )

logn

Using Proposition 1 and the above bias-variance decomposition the proof of Theorem
3 is similar to that of Theorem 2 and is left to the reader.

3.5. Proof of Theorem 4.

PROOF. For simplicity of notation we suppress the suprema over B(s, L) in most of
what follows — uniformity of the bound follows from tracking all the constants involved
and noting that any density in B(s, L) is bounded by a fixed constant U that depends
only on s, L. We have

sup  E|fF — flloo < sup Esup|fu(y,0) — Efa(y,0)]

fE€B(s,L) feB(s,L) yeR
+ sup E Bl o — B ()Y
FeB(s,L) ; Xk: 1Buie|>7( N
+ sup K5 (f) = flloo-

f€B(s,L)
The first term in the right-hand side is treated in Proposition 1 which implies that
1
sup Esup|£u(4.0) — Ef,(.0)] < ey/ .
feB(s,L) yeR n

which is of smaller order than the r.h.s. in (2.13) . For the third, 'deterministic’, term
we have from standard approximation results for wavelets (Theorem 9.4 in [23])

Jog n\ &/(2w+D)
=)

)

sup K, (1) flle < (L2 9 < (E)

J€B(s,L)

which is again of smaller order than the r.h.s. in (2.13).
We now treat the second term. For any f € B(s, L) we have

J1—1 Ji—1
% Xk:(ﬁlkllﬁmlw(l) o ﬁlk(f))d)lk - lzg Xk:(ﬁlk o ﬁlk)¢lk (1|Blk|>77|ﬁlk|>7—/2 + 1\Blk|>77|ﬁlk\ST/2)
j1—1
- % Ek:ﬂlkl/’lk (Ypntrisor T Unl<niaul<er)
=)+ {I)—III)—(1IV).
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We first treat the ”large deviations” terms (/1) and (III). For (II), using (2.3) and
Cauchy-Schwarz’s inequality we have

Jji—1
Esup Z Z(ﬁlk - ﬁlk)%k(y)l\glk|>T7|glk|<T/2
VER 1 1=0 & -

Jji—1

<FE Z sup | Bi. — B/ sup 1|Blk|>77|5”€|§7/g SUPZ [P (y)|
il k yeR 7

Ji—1 o R ) 1/2 1/2
(35) <L 2w Bsuliu— ol | | Bsunls, o)

We have, using the second Part of Proposition 2, choosing ' large enough depending

only on a,w, C, ¢,1, and using that y/2!]/n is bounded by a fixed constant independent
of

Esip1|ﬁlk\>7,\ﬂlk|§7/2 < E(S%p1|ﬁlk—ﬂlk>7/2)
5 K tw w [logn
< Pr(sup|Bi — G| > 5 G2 ——
k 2a% n
A ;41 [logn
< Pr | sup|Bi — Bik| > c(a,w,C)v'G—
k (51 n
5 cla,w,C)K 1+ (logn/l") — 1)U
< e (sl > 400 Gw (log n/1") ])
k l n
(3.6) < e2loem,

Now combining (3.5), (3.6) with the first part of Proposition 2 yields the bound

ji—1
. 12: ol(w+(1/2)) i l_/e—logn < C'Gelogn log”le(w+1/2)
=0 n B n

C// 1
< — = —1/2
< Coom
for (I1).
For term (III), using (3.6) as well as 3 |G| < ¢(1)2/? for any density f we have
J1—1 Jji—1 .
E81€l£ > ZBlkl/}lk(y)1‘glk‘§7.,‘ﬁlk‘>27. < Y 2214 oo > 1Bl Pr(|B| < 7. 18| > 27)
Yy =0 k 1=0 k
Jji—1
< C///e—2logn Z 2l
1=0
< C////n—2(n/logn)l/(2w+l) _ O(Tl_l/2).
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We now bound (I). Let ji(s) be such that 0 < ji(s) < j; — 1 and
(37) 2j1(s) ~ (’I’L/ log n)l/(2s+2w+1)
(such j1(s) exists by the definitions). Proposition 2 and (2.3) give

Ji(s)—1

Z Z(ﬁlk _Blk)wlk(y)1|Blk‘>77‘ﬁlk‘>7/2

=0 k
Ji(s)—1 Ji(s)—1

< Z Esgpmm—ﬁlkﬂl/%(@ﬁDG Z 2"
— =0

FE sup
Yy

2ll/

n

271(5) i (s)
n

< D/ G2 (s)w

e <logn>m

n

where D" > 0 depends only on 1), ¢, C, w. For the second part of (I), using that Definition
1 implies

(3.8) sup G (f)| < D(L)27/+2)
k
for f € B(s, L), the definition of 7 and Proposition 2 we obtain
Jji—1 .
Esup Z Z(ﬂlk N Blk)wlk(y)1|sz\>77\ﬁzk\>7/2
YR 1=ji(s) &
-l . 2 m
< > Esup|Gk — Bul=27" oo 7, SUP |Buel 22 ()
lzjl(s) k K ogn

ji—1 s

<" Z o-ls < <logn) ZsT2wT1

— — b
=51 (s) "

where D" depends only on L, s, k’,1, ¢, C,w.
For the term (IV), using again (3.8) we have

Jji—1 Jji—1
sub Z Zﬁlkzplk(y)l\ﬁlﬂﬁﬂ 1Bl <27 < ) Z sup 21/2|Blk|1‘ﬁlk‘§27'
YER | =0 & 1=0 k
-l logn
(3.9) < d Z min | 2/(wF1/2) 7,2_18 ,
1=0

Since the antagonistic terms in the minimum are strictly monotone in [, the [* € R for
which they are maximal is the one where they are equal, so that 2! ~ 271(5) (cf. (3.7)).
Denote by [I*] the integer part of I* then the last sum is bounded by

("] 11 s
J ZQl(wH/z) [logn ny le: o-ls < o <logn) Zwt2stl ,

=[*]+1

completing the proof. O



WAVELET DENSITY DECONVOLUTION 25

3.6. Proofs for Section 2.4.

3.6.1. Proofs for Supersmooth Densities. The following proposition establishes a sup-
norm upper bound on the error of approximation of functions in Ag s(L). It is the
wavelet-analogue of a similar result in Proposition 1 in [7] for kernel regularizations.

PROPOSITION 4.  Let ¢, satisfy Condition 2. Let f € Ag, (L) for some ¢y, s, L > 0.
Then we have for every j > 0 that

HK](f) - f”oo < cl/l\/zzj(l—s)/Qe—éo(a/)sm's’

i

where the constant " > 0 depends only on ¢,, ¢y, s.

ProoF. Using (2.3), Plancherel’s theorem and since f € Az, (L) we have

IK;(f) = flloo < c(¥) > 22 sup |Bu(f)]

S;  kez
= cZZl/2sup /Fﬂ)lk VF f(u)du

>3
< czsup/\F )21 | f () du

1>j
< colul® —60\u|5d
S I [ I e

1>7

< VI Z\// o du
>3

and the result follows from the inequality [ e~ du < C(c,s)a'~%e™* fora,s > 0. O

ProOOF OF COROLLARY 1. Decomposing the sup-norm error of the linear estimator
into ’bias’ and ’'variance’ terms and applying Propositions 1, 4 we have, for any j > 0

Esup|fu(z,j) — f()| <Sup|Efn(:L“ J) = f@)| + Esup|fn(z,j) — Efn(z, )]
zeR zeR

z€eR

< e 0@y 2 gi0-9/2 4 L (G\/ij' + M).
5]- n n

< ' (e—logn/2(logn)(1—s)/2s +2jw 2]_-7/) ,

n

where C’ > 0 depends only on C, s, L, ¢y, a, w. The result follows immediately for s > 1
and for s < 1 in view of (1 —s)/2s < (w+1/2)/s Vs > 0. O
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ProoF oF THEOREM 5. The proof of this theorem follows the one of Theorem 1 up
to the following modifications. Let p be the standard Cauchy density. Fix 0 < v < 1/2.
Since F[p](u) = e~ 1"l we see from the scaling property of Fourier transforms and since
s < 1 that there exists a constant 1 = n(v) large enough such that fo = (1/n)p(-/n) €
Ag s(V2L).

As in the proof of Theorem 1 we consider the functions fi(x) = fo(x) + Vj¥jky-
1<k<?2 —1, ky=kM, M > 1 with

vj = dVL\/j2ive ol 1127,

We have fi, € Ag (L) for every k if ¢ > 0 is a constant taken small enough depending
only on v, a, |[1]|; since

LIFIIORE de <2 [ Pl@PE o+ 298 [ 1Pl ar
R R R

. a2’ s
< Ar’L + 27]22—;”1/}”%/ 2lt’ g
a’29
< 4L + 2(0/)2[47'223'“’6_250[as"rl]zjS H1/J||%a2je2€°as2j5 < 2rL.

Take 27% = log n. Then the proof of Theorem 1 implies, Vk # k'

log logn wt1/2
e = firlloo > eay 2252 (logm) 5

for some constant c3 > 0 independent of n. Next, for any k£ the KL divergence between
P’ and F satisfies

1
2¢p[as+1]

K(PPPY) < canyj2 2"
_ C4(CI)QLnj22jwe—2cb[as+l]2js2—2jw

04(6')2Lj.

IN

This and Lemma 3 yield the result for ¢ > 0 chosen small enough independently of
n, k. O

3.6.2. Proofs for Confidence Bands. We start with the following inequality, which is
a Bernstein-type version of similar inequalities in [29]. Let ||H|z = supscr [H(f)| for
any set F and functions H : F — R.

PROPOSITION 5. Let Xq,...,X,, be i.i.d. with law P on a measurable space (S,A).
Let F be a countable class of real-valued measurable functions defined on S, uniformly
bounded by 1/2, and let o® > SUpfer Ef%(X). We have for everyn € N and x > 0

y

<e™®

LX) - P
i=1

+ 10

2
(z +1log2)o 22m+10g2}
f

n n

1 n
>6 HE ;&f(Xi)

f
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ProoFr. We first recall the lower-deviation version of Talagrand’s inequality as given
in [27], and a simple consequence of it. Using the notation Z = || Y (f(X;) — Pf)||r we

have, using v/a + b < v/a + v/b and Vab < (a +b)/2

e > Pr{Z < EZ - \/Qm (no?2+2EZ) — m} > Pr{Z <05EZ —V2xno? — 33:}

2z02 3z
n n [’

n

<05E H% S (F(X) — P)

i=1

LS (rx) - Py

n =1

F F

(3.10)= Pr {

and likewise one proves, using the upper-deviation version of Talagrand’s inequality [6]

(3.11)
(2102 7m}
+ +— 5.
n 3n

n

> 158 H%Zum) _pf)

i=1

—Z(f(Xz‘)—Pf)

F F

To prove the proposition observe

oo, o e

< Pr

() Pf)Hf > 382 e x)

) f—3EH%Zeif(XZ

{H;
Pr{6ugz@f<xz
{H Pf)Hf > 1'5E"%Z(f(Xi) _ Pf)Hf+ 2702 . 7_95}

1 1 2x0? 3w
P — (X SE || — (X — - —
r{anem o, <os Easn)], - 22 -2
where we have used the standard symmetrization inequality

see, for instance, (23) in [21]. The first quantity on the r.h.s. of the last inequality is
less than or equal to e™® by (3.11). For the second term, note that (3.10) applies to the
randomized sums Y ;" ; g f(X;) as well by taking the class of functions

G={g(r,z)=7f(x): f € F},

7 € {—1,1}, instead of F and the probability measure P = 271(§_; + 6;) x P instead of
P. It is easy to see that o can be taken to be the same as for F. This gives the overall
bound 2e7*, and a change of variables in x gives the final bound. O

9

f

SI'—‘

1>
<2F |- if (X5
<25} 2

f
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ProOF OF PROPOSITION 3. We use Proposition 5. Note that

Xn: (K;(x, Y,) — EK;(x,Y))‘ .

312) () = Bfa)le = sup |-
m=1

z€R

% . N oie—1 . .
The class {K7(z,) : * € R} has envelope U(j) = 276, c(¢)\/a/2m* in view of (2.3)
and (3.4). Since Proposition 3 deals with classes of functions bounded by 1/2 we have
to rescale, that is we consider the class

(3.13) G = G; = {K;(z,-)/2U()) : = € R}

which is uniformly bounded by 1/2. Furthermore the upper bound for the weak variances
SUp,eg Eg*(Y) < 02 can be taken to be 277(7/2)||¢||?||g/lcc in view of the estimate

E(K;(2,Y))? < 2|gllecc(9)?ll 90l 1n5 113 < llgllooc(e)? 1611785227 (a/m),
which uses Young’s inequality (and the definition of 7; from the proof of Lemma 1). To

prove the inequality, set d(¢) = ¢(¢)\/a/27? and d'(¢) = d(¢)||¢|l1 V27 so that

Pr{ 1£ais) = BfalG) oo 6Rn(j)+10(§;( >\/ Plolo(z + log?) 4;4 Vi) + log2>} _

|

1 & (K3 Yin) — EKI(,Y)) tllgllo(z +log2) 2+ log2
= >
n Z: 2U(j) - 2U + 101191k 2i+1n 22 n

1 & 1 & (2 + log 2)02 z + log 2
=P — Ym)— Eg(Y 6| — m9(Ym 10 22
r{ ng:jl(g( ) = Bg( ) anZIE 9( g+ 22—

and the last expression is less than or equal to e™* using Proposition 5 above.

For the second claim of the proposition we only have to show that ER,(j) has, up
to constants, the required order as a function of j,n. But this follows readily from the
usual desymmetrization inequality for Rademacher processes, cf., e.g., expression (23)
n [21], as well as from Proposition 1. O

PROOF OF COROLLARY 2. The probability of the event {f(z) € Cy(z,z) Vo € R}®
equals

Pr {sup|fn(a: Jn) — f(@)] > (1 + 5)UR(n,jn,z)}

zeR

< Pr {Slelﬁ |fn($>]n) - Efn(xajn” > UR(’I’L,ij) + 50R(n,jn,z) - HKn(f) - f”oo}

<Pr {Suplfn(af jn) = Efal@,ja)] > aR<n,jn,z>} +Pr {00 (n, ju, 2) < 1K, () = Flloo}

zeR
“+ g

using Propositions 3 and 4. The remaining claims of the corollary follow from the choice
of j, and from Proposition 3. O



WAVELET DENSITY DECONVOLUTION 29

Acknowledgement. We would like to thank two anonymous referees for their remarks.

References.

(1]

[19]

[20]
21]

22]
[23]
24]

[25]

P. Bartlett, S. Boucheron, and G. Lugosi. Model selection and error estimation. Machine Learning,
48:85-113, 2002.

J. Bergh and J. Lofstrom. Interpolation spaces. An introduction. Springer-Verlag, Berlin, 1976.
Grundlehren der Mathematischen Wissenschaften, No. 223.

N. Bissantz, L. Diimbgen, H. Holzmann, and A. Munk. Non-parametric confidence bands in decon-
volution density estimation. J. R. Stat. Soc. Ser. B Stat. Methodol., 69(3):483-506, 2007.

N. Bissantz and H. Holzmann. Statistical inference for inverse problems. Inverse Problems,
24(3):034009, 17, 2008.

G. Bourdaud, M. Lanza de Cristoforis, and W. Sickel. Superposition operators and functions of
bounded p-variation. Rev. Mat. Iberoam., 22(2):455-487, 2006.

O. Bousquet. Concentration inequalities for sub-additive functions using the entropy method. In
Stochastic inequalities and applications, volume 56 of Progr. Probab., pages 213-247. Birkh&user,
Basel, 2003.

C. Butucea and A. B. Tsybakov. Sharp optimality in density deconvolution with dominating bias.
1. Theory Probab. Appl., 52(1):24-39, 2008a.

C. Butucea and A. B. Tsybakov. Sharp optimality in density deconvolution with dominating bias.
I1. Theory Probab. Appl., 52(2):237-249, 2008b.

R.J. Carroll and P. Hall. Optimal rates of convergence for deconvolving a density. J. Amer. Statist.
Assoc., 83(404):1184-1186, 1988.

L. Cavalier. Nonparametric statistical inverse problems. Inverse Problems, 24(3):034004, 19, 2008.
A. Delaigle and I. Gijbels. Practical bandwidth selection in deconvolution kernel density estimation.
Comput. Statist. Data Anal., 45(2):249-267, 2004.

P.J. Diggle and P. Hall. A Fourier approach to nonparametric deconvolution of a density estimate.
J. Roy. Statist. Soc. Ser. B, 55(2):523-531, 1993.

U. Einmahl and D.M. Mason. An empirical process approach to the uniform consistency of kernel-
type function estimators. J. Theoret. Probab., 13(1):1-37, 2000.

J. Fan. On the optimal rates of convergence for nonparametric deconvolution problems. Ann.
Statist., 19(3):1257-1272, 1991.

J. Fan. Adaptively local one-dimensional subproblems with application to a deconvolution problem.
Ann. Statist., 21(2):600-610, 1993.

E. Giné and A. Guillou. Rates of strong uniform consistency for multivariate kernel density esti-
mators. Ann. Inst. H. Poincaré Probab. Statist., 38(6):907-921, 2002.

E. Giné, V. Koltchinskii, and L. Sakhanenko. Kernel density estimators: convergence in distribution
for weighted sup-norms. Probab. Theory Related Fields, 130(2):167-198, 2004.

E. Giné, R. Latala, and J. Zinn. Exponential and moment inequalities for U-statistics. In High di-
mensional probability, II (Seattle, WA, 1999), volume 47 of Progr. Probab., pages 13—-38. Birkh&duser
Boston, Boston, MA, 2000.

E. Giné and R. Nickl. Uniform limit theorems for wavelet density estimators. Ann. Probab.,
37(4):1605-1646, 2009.

E. Giné and R. Nickl. Confidence bands in density estimation. Ann. Statist., 38:1122-1170, 2010a.
E. Giné and R. Nickl. Adaptive estimation of the distribution function and its density by wavelet
and spline projections. Bernoulli, 2010b. to appear.

A. Goldenshluger. On pointwise adaptive nonparametric deconvolution. Bernoulli, 5(5):907-925,
1999.

W. Hardle, G. Kerkyacharian, D. Picard, and A. Tsybakov. Wavelets, approximation, and statistical
applications, volume 129 of Lecture Notes in Statistics. Springer-Verlag, New York, 1998.

C.H. Hesse and A. Meister. Optimal iterative density deconvolution. J. Nonparametr. Stat.,
16(6):879-900, 2004.

L.M. Johnstone, G. Kerkyacharian, D. Picard, and M. Raimondo. Wavelet deconvolution in a
periodic setting. J. R. Stat. Soc. Ser. B Stat. Methodol., 66(3):547-573, 2004.



30

[26]
[27]
[28]
[29]
[30]

31]
32]

33]

[34]
[35]

[36]
37]
[38]
[39]

[40]

K. LOUNICI AND R. NICKL

I.M. Johnstone and M. Raimondo. Periodic boxcar deconvolution and Diophantine approximation.
Ann. Statist., 32(5):1781-1804, 2004.

T. Klein and E. Rio. Concentration around the mean for maxima of empirical processes. Ann.
Probab., 33(3):1060-1077, 2005.

V. Koltchinskii. Rademacher penalties and structural risk minimization. [EEFE Trans. Inform.
Theory, 47(5):1902-1914, 2001.

V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization. Ann.
Statist., 34(6):2593-2656, 2006.

A. Meister. Deconvolution from Fourier-oscillating error densities under decay and smoothness
restrictions. Inverse Problems, 24(1):015003, 14, 2008.

A. Meister. Deconvolution problems in nonparametric statistics. Springer-Verlag, Berlin, 2009.

Y. Meyer. Wawvelets and operators, volume 37 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, 1992.

R. Nickl and B.M. Pé6tscher. Bracketing metric entropy rates and empirical central limit theorems
for function classes of Besov- and Sobolev-type. J. Theoret. Probab., 20(2):177-199, 2007.

D. Nolan and D. Pollard. U-processes: rates of convergence. Ann. Statist., 15(2):780-799, 1987.
M. Pensky and T. Sapatinas. Functional deconvolution in a periodic setting: uniform case. Ann.
Statist., 37(1):73-104, 20009.

M. Pensky and B. Vidakovic. Adaptive wavelet estimator for nonparametric density deconvolution.
Ann. Statist., 27(6):2033-2053, 1999.

L.A. Stefanski. Rates of convergence of some estimators in a class of deconvolution problems.
Statist. Probab. Lett., 9(3):229-235, 1990.

L.A. Stefanski and R.J. Carroll. Deconvoluting kernel density estimators. Statistics, 21(2):169-184,
1990.

M. Talagrand. New concentration inequalities in product spaces. Invent. Math., 126(3):505-563,
1996.

A.B. Tsybakov. Introduction to Nonparametric Estimation. Springer Series in Statistics. Springer,
2009.

STATISTICAL LABORATORY
DEPARTMENT OF PURE MATHEMATICS
AND MATHEMATICAL STATISTICS

UNIVERSITY OF CAMBRIDGE

CB3 OWB CAMBRIDGE, UK.

E-MAIL: k.lounici@statslab.cam.ac.uk
r.nickl@statslab.cam.ac.uk


mailto:k.lounici@statslab.cam.ac.uk
mailto:r.nickl@statslab.cam.ac.uk

	Introduction
	Main Results
	Minimax Lower Bounds over Besov Bodies
	Uniform Fluctuations of Wavelet Deconvolution Estimators
	The Linear Wavelet Deconvolution Estimator
	Uniform Moment and Exponential Bounds for the Fluctuations of fn-Efn
	Uniform Fluctuations of the Empirical Wavelet Coefficients

	Optimal Estimation over Hölder Classes
	Extensions and Applications
	Estimation of a Supersmooth Density
	Confidence Bands


	Proofs
	Proof of Theorem ??
	Proofs of VC-Properties
	Proof of Propositions ?? and ??
	Proof of Theorems ?? and ??
	Proof of Theorem ??
	Proofs for Section ??
	Proofs for Supersmooth Densities
	Proofs for Confidence Bands


	References
	Author's addresses

