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This letter (Bernoulli News, Vol. 24 (2), 2017) summarizes key ideas from the Ethel Newbold
prize lecture. We discuss recent results that provide theoretical support for nonparametric Bayes
solutions of statistical inverse problems arising in some partial differential equation model problems
of parabolic, elliptic and transport type.

§0. Introduction

Inverse problems form a vast and well-studied area
within applied mathematics, statistics and numeri-
cal analysis. Just as in other areas of data science,
it has become increasingly intractable to understand
the real world performance of algorithms designed to
solve these problems without considering the effects
of statistical noise. Often a method that works for
noiseless data needs to be substantially modified to
deal with the presence of random measurement error.
But even when algorithms such as Tikhonov regu-
larisers are shown to be robust to perturbations of
the signal via some convergence rate analysis, much
is to be gained from interpreting an inverse problem
in a genuinely statistical way: First, when applied
appropriately, the theory of statistical inference can
be used to provide recovery guarantees for commonly
used algorithms, which in turn permit uncertainty
quantification, a contemporary word for the statisti-
cal practise of reporting confidence regions and the
associated process of algorithm-based decision mak-
ing, such as rejection of scientific hypotheses at a
certain significance level. Second, as we shall explain
below, a notion of microscopic statistical fluctuations
of inverse problem solvers can be introduced, allow-
ing for refined comparisons of the infinitesimal be-
haviour of competing algorithms. From this a notion
of statistical optimality emerges which blends clas-
sical ‘efficiency ideas’ due to C.F. Gauß and R.A.
Fisher with analytic questions about the ‘informa-
tion operators’ underpinning every inverse problem.
In particular Bayesian methods as suggested by Stu-
art (2010) can be shown to provide optimal solutions
for inverse problems in this sense.

§1. Statistical Inverse Problems and PDEs

A large family of important inverse problems arise
in the area of partial differential equations (PDEs).
Typically some partial differential operator Lf act-
ing on functions u : O → R defined on some regular
bounded domain O ⊂ Rd is given, and the coeffi-
cient f is the unknown functional parameter of in-
terest. Data is given in the form of some solution u of
an operator equation F (Lf , u) = 0 subject to some

boundary conditions guaranteeing a solution. Proto-
typical examples are solutions u = uf of divergence
form elliptic PDEs

Lfu ≡ ∇ · (f1∇u)− f0u = 0 on O (1)

s.t. u = g on ∂O

where f1 models the coefficient of the partial differ-
ential operator and f0 is a potential term. We can
treat either f0 or f1 as the unknown function f here.
Under suitable conditions the map f 7→ uf is then
injective and we can ask the question of how to in-
fer the value of f given uf corrupted by additive
Gaussian white noise. Applications of such models
in engineering and physics are abundant.

We may further introduce some time evolution
dynamics on a time interval [0, T ], for instance by
considering solutions u(x, t) to the parabolic PDE

∂u(x, t)

∂t
− Lf,xu(x, t) = 0 ∀(x, t) ∈ O × [0, T ], (2)

subject to an initial condition u(·, 0) = g and some
boundary conditions. Typically here we will discard
the potential term in Lf (i.e., set f0 = 0) and, in-
stead of considering a divergence form operator, ex-
plicitly model the ‘drift’ f1 and ‘diffusion’ coefficient
f2 separately; in the scalar case d = 1 for instance

Lf (·) = f1
d

dx
+
f2

2

2

d2

(dx)2
.

Then uf is the solution to the heat equation de-
scribed by the semigroup dynamics with infinitesi-
mal generator Lf . Identifying the functional param-
eters f1, f2 from some observations in such a diffusion
model is of fundamental importance in many appli-
cations in modern science, e.g., in biology, physics
and economics.

Our third example is a first order PDE with
boundary data. Consider the transport equation

v ·∇xu(x, v) + a(x)u(x, v) = f(x), x ∈ O, v ∈ Sd−1,
(3)

subject to the boundary condition u(x, v) = 0 for
x ∈ ∂O, v · ν(x) ≥ 0, where ν(x) is the outer normal
at x. Here a is a known attenuation coefficient and
f an unknown source function. Along each straight
line the last PDE becomes an ordinary differential
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equation that is easily solved. The influx trace of
this solution u = uf,a(x, v), x ∈ ∂O, v · ν(x) ≤ 0,
is precisely the (attenuated) X-ray transform of the
source function f , and the inverse problem is to re-
construct f based on this boundary data. When O
is the unit disk and a = 0 this equals the standard
problem of reconstructing f from its Radon trans-
form R(f), the workhorse of modern ‘non-invasive’
computerised tomography methods. More generally
such X-ray transforms are the basis of many modern
scientific imaging methods such as PET and SPECT.

§2. Statistical noise and measurement models

It is natural to assume that physical measurements
in inverse problems arise in a statistical fashion. Ob-
servations are always discrete, and if we sample the
solution uf of our PDE at a number of ‘design points’
xi (such as different geodesics along which a Radon
transform is shot), we can model the measurement
errors as independent random variables gi. Each gi
being itself a superposition of many independent ran-
dom effects, a Gaussian model for the gi’s is approx-
imately correct in view of the central limit theorem.
Formally, for our data is then

Yi = uf (xi) + gi, i = 1, . . . , n; gi i.i.d. N(0, 1). (4)

By standard arguments from asymptotic statistics
(see Reiß (2008) or Chapter 1 in Giné and Nickl
(2016)) this discrete measurement model is asymp-
totically (as n → ∞) equivalent to observing the
continuous functional equation

Y = uf + εW in H, ε =
1√
n

(5)

where W is a Gaussian white noise process on the
Hilbert space H that is the natural range of uf .
While W can be defined by its action on this Hilbert
space, it does not define a proper random element in
it. For instance in the elliptic case (1), H = L2(O)
but W defines a random variable only in a negative
Sobolev space H−β , β > d/2. Thus even if uf is
a smooth function, our data Y will be ‘rough’, and
solving for f in the presence of noise with such ‘large
support’ is a non-obvious task.

When considering a time evolution PDE, the
additive noise model just described may be rele-
vant too. However, stochastic noise may propagate
through the entire system with time, and in this
case the theory of stochastic differential equations
(SDEs) can come to our aid to provide a consistent
measurement model. More precisely, a Markov pro-
cess (Yt : t ≥ 0) with transition semigroup operator
Pt = etLf , t ≥ 0, provides solutions to the SDE

dYt = f1(Yt)dt+ f2(Yt)dWt, t ≥ 0, (6)

with (Wt) a Brownian motion, effectively describing
the diffusion of a particle that, when positioned at x

at a certain time, has ‘infinitesimal’ drift f1(x) with
Gaussian noise of variance f2

2 (x). A realistic mea-
surement model for the parabolic PDE (2) then con-
sists of observing the entire trajectory of the Markov
process (Yt : 0 ≤ t ≤ T ) until time T , or of discrete
samples Y0, Y∆, . . . , Yn∆ thereof, paralleling the sit-
uations described in (5), (4) for i.i.d. noise.

§3. The Bayesian approach

All the above problems share the common structure
that we observe

data Y drawn from some distribution Puf

where uf is some forward operator and f the un-
known function. As suggested in Stuart (2010) (see
also Dashti and Stuart (2016)), it is tempting to take
the Bayesian approach and model f by some prior
probability distribution Π in function space. Even
though the models for f from the previous section
are typically infinite-dimensional, their near ‘Gaus-
sian’ character permits the use of basic tools from
probability theory to deduce ‘Bayes’ formula’

f ∼ Π, Y |f ∼ Puf ⇒ f |Y ∼
dPuf (Y )dΠ(f)∫
dPuf (Y )dΠ(f)

(7)

where dPuf is a density with respect to a suit-
able dominating measure. We can then extract
information on f from the posterior distribution
Π(·|Y ) of f |Y . For the infinite-dimensional, or ‘non-
parametric’, models relevant here, a large class of
priors have been developed in the area of ‘Bayesian
Nonparametrics’, we refer to the recent monograph
Ghosal and van der Vaart (2017). While the focus of
this letter is not Bayesian computation, we note here
that modern MCMC methodology can be used suc-
cessfully to sample from posterior distributions, and
to numerically evaluate point estimates of f , such as
the posterior mean or mode (see Dashti and Stuart
(2016)). The Bayesian approach thus gives concrete
algorithms that can be used in real world inverse
problems including all the PDE examples introduced
above. Moreover, this methodology is attractive for
statistical scientists because the spread of the poste-
rior distribution automatically delivers an estimate
of the uncertainty in the reconstruction, and hence
suggests ‘confidence’ intervals.

The performance of Bayesian algorithms of
course crucially depends on the choice of the prior Π,
which in our ‘nonparametric’ setting serves solely as
a regularisation tool and does not represent any sub-
jective beliefs. This can be nicely illustrated by the
fact that for linear inverse problems and Gaussian
priors Π with associated reproducing kernel Hilbert
spaceH, the posterior mean can be shown to coincide
with the usual Tikhonov regulariser which solves

min
f

[
n∑
i=1

(Yi − uf (xi))
2 + ‖f‖2H

]
, (8)
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so that the prior choice is somehow dual to the choice
of the penalty function in a standard optimisation
based estimator for f . For example Matérn or in-
tegrated Brownian motion priors will generate reg-
ularisers with commonly used penalties arising from
standard Sobolev norms.

In light of the previous observation it becomes
of crucial importance to study the performance of
Bayesian inversion in some ‘objective’ way that is in-
dependent of the prior choice, as otherwise posterior
inferences would only be reproducing prior guesses
that do not represent anything in particular about
the real world. This is not just a ‘philosophical’ de-
bate about Bayesian or non-Bayesian statistics, but a
question of plain common sense, just as the choice of
the penalty function ‖ · ‖H in (8) is not a philosoph-
ical question. Trying to understand the ‘frequen-
tist’ validity of Bayesian inference is a classical topic
in mathematical statistics that goes back to Laplace
(1812), and which has undergone vigorous develop-
ment in the last two decades. It can help to provide
objective foundations for prior based inference meth-
ods also in contemporary inverse problems.

§4. Posterior contraction rates to the true pa-
rameter.

The posterior distribution Π(·|Y ) arising from the
formalism (7) is a (through Y ) random probability
measure in function space. Henceforth we assume
that the data Y are generated from a fixed unknown
probability distribution Pf0 ≡ Puf0 , where f0 repre-
sents an arbitrary, hypothetically ‘true’, value. The
first question we can ask is about ‘consistency’ of the
posterior random measure in the sense that we want
it to concentrate most of its mass near f0, at least in
the ‘large sample’ or ‘small noise’ limit where n→∞
or ε → 0, respectively. Formally we want to find an
as fast as possible rate δn (or δε) such that in some
metric d on function space,

Π(f : d(f, f0) ≥ δn|Y )→ 0 (9)

as n → ∞ and in Puf0 -probability. Tools for
this have been developed in remarkable depth and
breadth in Bayesian Non-parametrics for direct prob-
lems, a key idea being ‘robust testing in Hellinger
distance’ – see Ghosal and van der Vaart (2017)
or Sections 7.1 and 7.3 in Giné and Nickl (2016).
These methods however do not obviously adapt to
the inverse problems setting, and new ideas are re-
quired. For linear inverse problems some tools exist,
see Knapik et al. (2011); Agapiou et al. (2013); Ray
(2013); Kekkonen et al. (2016); van Waaij and van
Zanten (2016), covering in particular the problem in-
volving the transport PDE (3) appearing with Radon
transforms and the SDE problem (6) with σ = 1 and
continuous data (Yt : 0 ≤ t ≤ T ). Bute none of these
proofs give a strategy to prove contraction rates for

general, non-linear, inverse problems. In Ray (2013)
an idea of Giné and Nickl (2011) is picked up to
construct tests for linear problems replacing ‘robust
testing’ by techniques from concentration of measure
theory and nonparametric statistics. This allows to
obtain contraction rates outside of the conjugate set-
ting, an approach that generalises to the non-linear
setting, as demonstrated in the recent papers Nickl
and Söhl (2017); Nickl (2017) where the parabolic
and elliptic problems from above were considered,
respectively. In both it was found that the posterior
contracts at optimal rates (in a minimax sense). For
instance in the elliptic case (1) with f1 = 1 known
but unknown potential f0 ∈ Cs(O) a positive s-times
continuously differentiable function on O, if the ob-
servations are given in model (5), the contraction
rates in L2(O)-distance for a uniform wavelet prior
are (up to log-factors)

δε ≈ ε
2s

(2s+4+d) as noise level ε→ 0.

In the parabolic case (2), when considering discrete
(low frequency) data Y∆, . . . , Yn∆ in the scalar diffu-
sion model (6) with a suitable hierarchical prior con-
struction, then if f1 ∈ Cs−1, f2 ∈ Cs, one obtains in
(9) the rates

δn = n−(s−1)/(2s+3) for the drift coefficient f1

δn = n−s/(2s+3) for the diffusion coefficient f2,

as sample size n increases, again up to log-factors,
and in L2-distance. The proof techniques employed
in (Nickl and Söhl (2017); Nickl (2017)) depend on a
few standard properties of the elliptic and parabolic
problems that feature also in general inverse prob-
lems: Main analytic ingredients are a stability esti-
mate for the forward problem that allows to con-
trol ‖f − g‖ in terms of ‖uf − ug‖′, in suitable
norms ‖ · ‖, ‖ · ‖′, and a dual form of the usual
regularity estimates for solutions of PDEs such as
‖uf − ug‖L2 . ‖f − g‖H−α where H−α is a neg-
ative Sobolev space with exponent α corresponding
to the ill-posedness of the problem. If such estimates
are available then tools from nonparametric statis-
tics can be applied to deduce contraction rates for
priors that generally do not require identification of
a SVD-type basis underlying the forward operator.

§5. Microscopic fluctuations of solutions of
inverse problems and the Fisher information
operator

Once it is known that the posterior concentrates near
the true value f0 in a certain distance, it is natu-
ral to consider the fluctuations of f |Y near f0 when
scaled by some inverse ‘contraction rate’. The previ-
ous results were obtained for the distance function d
induced by the L2-norm, and one may thus initially
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consider the statistical fluctuations of the random
variable

Zε = δ−1
ε (f̄ |Y − f0) in L2.

Here some subtle geometric obstructions occur, some
of which were already noted in the simplest infinite
sequence space model in Freedman (1999)’s Wald lec-
ture. Perhaps the easiest way to understand the is-
sue is to anticipate the results that will follow: after
centring Zε at its expectation, the marginal distribu-
tions of the process (ε−1〈Zε − EZε, ψ〉L2 : ψ ∈ C∞)
along smooth projection directions ψ will be seen
to converge weakly in probability to a fixed non-
degenerate Gaussian process (G(ψ) : ψ ∈ C∞). Note
that here we have re-scaled by the larger ε−1 instead
of δ−1

ε . Since all sub-sequential distributional limits
of random variables in function space are determined
by the limits of such marginal distributions, a func-
tional limit theorem in L2 would also have to hold
at rate δε = ε. But this would imply a contraction
theorem as in (9) at that rate, which is impossible
in light of lower bounds provided by statistical mini-
max theory for such estimation problems in Gaussian
white noise (Chapter 6 in Giné and Nickl (2016)).

The way to overcome, or rather side-step, these
obstructions, was set out in the papers Castillo and
Nickl (2013, 2014). The idea is to determine maxi-
mal families Ψ of functions ψ for which the Gaussian
asymptotics

(ε−1〈Zε − EZε, ψ〉L2 : ψ ∈ Ψ)→ (G(ψ) : ψ ∈ Ψ)
(10)

can be obtained – by analogy to the classical result
from parametric statistics these are often called ‘non-
parametric Bernstein - von Mises theorems’. Due to
the maximality requirement such results are some-
how ‘dual’ to obtaining contraction rates in L2 (by
using arguments from interpolation theory), but they
allow to go beyond a mere convergence rate analysis:
the Gaussian process G identifies the precise micro-
scopic fluctuations of the posterior near f0. While
the results in Castillo and Nickl (2013, 2014) are
confined to ‘direct’ problems in nonparametric re-
gression and probability density estimation, in the
recent articles Nickl (2017); Monard et al. (2017) the
first such nonparametric Bernstein-von Mises theo-
rems have been proved for PDE type inverse prob-
lems in the white noise model (5) (see also Nickl and
Söhl (2017) for a non-linear inverse problem with
jump processes).

To understand the nature of the microscopic fluc-
tuations, let us first consider the transport PDE
problem where the observations consist of the X-ray
transform ua,f ≡ Ia(f) of the unknown source func-
tion f . When O is the unit disk the forward operator
equals the standard Radon transform, but even in
the general setting the linear operator Ia, known as
the attenuated X-ray transform, is well studied in in-
tegral geometry. In Monard et al. (2017), using tech-
niques from micro-local analysis, it is proved that the

‘information’ operator I∗aIa, where I∗a is a natural
adjoint operator, has an inverse (I∗aIa)−1 that maps
C∞(O) isomorphically into {g/

√
dO : g ∈ C∞(O)},

where dO = d(·, ∂O) is the distance function to the
boundary ∂O of O. For natural Gaussian priors for f
and posterior draws f |Y ∼ Π(·|Y ), it is then proved
that, whenever ψ ∈ C∞(O), as ε→ 0,

ε−1〈f |Y − EΠ[f |Y ], ψ〉L2 →d N(0, ‖Ia(I∗aIa)−1ψ‖2)
(11)

in Pf0-probability, where the norm on the right hand
side is a natural L2-norm on ‘geodesic space’. The
limiting covariance can be shown to be minimal in
the sense that it attains the semi-parametric Cramér-
Rao lower bound (or ‘inverse Fisher information’)
for estimating 〈f, ψ〉L2 near f0. The Gaussian na-
ture of the posterior distribution combined with the
Paley-Zygmund inequality then also shows that the
Tikhonov regulariser f̂ minimising (8) in this prob-
lem with any Sobolev-norm penalty satisfies, for any
ψ ∈ C∞(O) and as ε→ 0,

ε−1〈f̂ − f0, ψ〉L2 →d N(0, ‖Ia(I∗aIa)−1ψ‖2),

a result that is of interest also outside of the Bayesian
context (although its proof is ‘Bayesian’).

The findings in the transport PDE case fore-
shadow the general principle: the microscopic fluctu-
ations of optimal inverse problem solvers will depend
on the inverse Fisher information operator (I∗aIa)−1,
and its existence combined with mapping properties
play a crucial role in proving Bernstein-von Mises
theorems. For non-linear inverse problems, the infor-
mation operator that has to be inverted is found after
linearisation. This is demonstrated in Nickl (2017)
for a prototypical elliptic PDE case (1) with f1 = 1
and unknown potential f = f0: basic perturbation
arguments for the Schrödinger equation imply that
in this case the role of Ia is replaced by Vf [·/uf ],
where Vf is the inverse of the Schrödinger operator
Sf (u) = ∆u − fu, derived via PDE techniques or
using semi-group theory for killed Brownian motion
(see Chung and Zhao (1995)). In this case by self-
adjointness of Vf the Cramer-Rao lower bound sim-
plifies and the Bernstein-von Mises theorem becomes

ε−1〈f |Y − EΠ[f |Y ], ψ〉L2 →d N(0, ‖Sf0 [ψ/uf0 ]‖2L2)
(12)

in Pf0-probability as ε→ 0, for every compactly sup-
ported ψ ∈ C∞(O), and for f |Y drawn from a poste-
rior distribution corresponding to a natural uniform
wavelet prior.

The limit theorems (11), (12) single out the Gaus-
sian limit process (G(ψ) : ψ ∈ Ψa) towards which
the centred posterior distribution will converge. We
can then return to the program laid out in (10) and
look for maximal classes Ψ of functionals ψ for which
this convergence occurs simultaneously. As shown
in Nickl (2017) maximal such classes can be charac-
terised in terms of the sample continuity properties
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of the limiting Gaussian process, and in the ellip-
tic PDE case equals a ball in the space Cαc (O) of
compactly supported α-Hölder functions with criti-
cal threshold α > 2 + d/2. It is then further shown
in the main theorem in Nickl (2017) that indeed the
posterior distribution converges weakly to the law
of G for the topology of uniform convergence on Ψ,
in Pf0-probability, giving the first optimality result
of its kind for the Bayesian solution of a PDE-type
non-linear inverse problem.

The Bernstein-von Mises theorems introduced
here have important applications to the frequentist
justification of Bayesian inference methods. Particu-
larly they imply that Bayesian ‘credible regions’ and
‘error bars’ amount to proper confidence sets accord-
ing to the usual ‘frequency’ interpretation of statis-
tical significance. In particular, Bayesian inferences
that have 95% posterior credibility will have approx-
imately 0.95 chance of returning the correct decision
in repeated trials. Once a Bernstein-von Mises theo-
rem is at hand these facts are not specific to inverse
problems and follow the general ideas developed in
Castillo and Nickl (2013, 2014).

To conclude, the ideas presented here allow to de-
rive precise microscopic fluctuations of inverse prob-
lem solvers from a careful study of the information
operator underlying a given inverse problem. They
provide a general template to prove similar results
in various other settings. The main attraction of
Bernstein-von Mises type results is perhaps that they
reveal finer properties of an inverse problem than
a mere convergence rate analysis does, via the co-
variance structure of the limiting Gaussian process.
They also raise the interesting open question whether
standard numerical inverse solvers attain the statis-
tical information bounds that emerge from our the-
ory, or whether they are potentially outperformed
by Bayesian methods when interpreted as statistical
algorithms.
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