ANALYSIS OF FUNCTIONS (D) 24 lectures, Lent Term Part II Linear Analysis and Part II Probability and Measure are essential. # Lebesgue integration theory Review of integration: simple functions, monotone and dominated convergence; existence of Lebesgue measure; definition of L^p spaces and their completeness. The Lebesgue differentiation theorem. Egorov's theorem, Lusin's theorem. Mollification by convolution, continuity of translation and separability of L^p when $p \neq \infty$. ## Banach and Hilbert space analysis Strong, weak and weak-* topologies; reflexive spaces. Review of the Riesz representation theorem for Hilbert spaces; the Radon-Nikodym theorem; the dual of L^p . Compactness: review of the Ascoli-Arzelà theorem; weak-* compactnesss of the unit ball for separable Banach spaces. The Riesz representation theorem for spaces of continuous functions. The Hahn-Banach theorem and its consequences: separation theorems; Mazur's theorem. #### Fourier analysis Definition of Fourier transform in L^1 ; the Riemann–Lebesgue lemma. Fourier inversion theorem. Extension to L^2 by density and Plancherel's isometry. Duality between regularity in real variable and decay in Fourier variable. # Generalized derivatives and function spaces Definition of generalized derivatives and of the basic spaces in the theory of distributions: \mathcal{D}/\mathcal{D}' and \mathcal{S}/\mathcal{S}' . The Fourier transform on \mathcal{S}' . Periodic distributions; Fourier series; the Poisson summation formula. Definition of the Sobolev spaces H^s in \mathbb{R}^d . Sobolev embedding. The Rellich-Kondrashov theorem. The trace theorem. ### Applications Construction and regularity of solutions for elliptic PDEs with constant coefficients on \mathbb{R}^n . Construction and regularity of solutions for the Dirichlet problem of Laplace's equation. The spectral theorem for the Laplacian on a bounded domain. *The direct method of the Calculus of Variations.* #### Appropriate books - H. Brézis Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer 2011 - A.N. Kolmogorov, S.V. Fomin *Elements of the Theory of Functions and Functional Analysis*. Dover Books on Mathematics 1999 - E.H. Lieb and M. Loss Analysis. Second edition, AMS 2001