ANALYSIS OF FUNCTIONS (D)

24 lectures, Lent Term

Part II Linear Analysis and Part II Probability and Measure are essential.

Lebesgue integration theory

Review of integration: simple functions, monotone and dominated convergence; existence of Lebesgue measure; definition of L^p spaces and their completeness. The Lebesgue differentiation theorem. Egorov's theorem, Lusin's theorem. Mollification by convolution, continuity of translation and separability of L^p when $p \neq \infty$.

Banach and Hilbert space analysis

Strong, weak and weak-* topologies; reflexive spaces. Review of the Riesz representation theorem for Hilbert spaces; the Radon-Nikodym theorem; the dual of L^p . Compactness: review of the Ascoli-Arzelà theorem; weak-* compactnesss of the unit ball for separable Banach spaces. The Riesz representation theorem for spaces of continuous functions. The Hahn-Banach theorem and its consequences: separation theorems; Mazur's theorem.

Fourier analysis

Definition of Fourier transform in L^1 ; the Riemann–Lebesgue lemma. Fourier inversion theorem. Extension to L^2 by density and Plancherel's isometry. Duality between regularity in real variable and decay in Fourier variable.

Generalized derivatives and function spaces

Definition of generalized derivatives and of the basic spaces in the theory of distributions: \mathcal{D}/\mathcal{D}' and \mathcal{S}/\mathcal{S}' . The Fourier transform on \mathcal{S}' . Periodic distributions; Fourier series; the Poisson summation formula. Definition of the Sobolev spaces H^s in \mathbb{R}^d . Sobolev embedding. The Rellich-Kondrashov theorem. The trace theorem.

Applications

Construction and regularity of solutions for elliptic PDEs with constant coefficients on \mathbb{R}^n . Construction and regularity of solutions for the Dirichlet problem of Laplace's equation. The spectral theorem for the Laplacian on a bounded domain. *The direct method of the Calculus of Variations.*

Appropriate books

- H. Brézis Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer 2011
- A.N. Kolmogorov, S.V. Fomin *Elements of the Theory of Functions and Functional Analysis*. Dover Books on Mathematics 1999
- E.H. Lieb and M. Loss Analysis. Second edition, AMS 2001