TOPICS IN STATISTICAL THEORY – EXAMPLES 2/2

Part III, Lent 2015, RN (email: r.nickl@statslab.cam.ac.uk)

Ex. 1 If $Z \sim N(0, \sigma^2)$, prove carefully that for every u > 0,

$$P(|Z| > u) \le e^{-u^2/2\sigma^2}$$

Ex. 2 (Hoeffding's inequality) Let X_1, \ldots, X_n be independent random variables such that

$$EX_i = 0, \ X_i \in [a_i, b_i], a_i < b_i, \ \forall \ i = 1, \dots, n.$$

Prove that, for every t > 0,

$$\Pr\left(\sum_{i=1}^{n} X_i > t\right) \le \exp\left\{-\frac{2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right\}$$

and that the same bound holds for the probability of the event $\{\sum_{i=1}^{n} X_i < -t\}$.

Ex. 3 Let Z be a random variable satisfying the bound

$$Ee^{\lambda Z} \le \exp\left(v(e^{\lambda} - 1 - \lambda)\right), \quad \lambda > 0$$

for some v > 0. If $h(x) = (1 + x) \log(1 + x) - x$, prove that for all t > 0,

$$P(Z \ge t) \le \exp(-vh(t/v)) \le \exp\left(-\frac{t^2}{2v+2t/3}\right).$$

Deduce Bernstein's inequality: If X_i are i.i.d. centred random variables such that $|X_i| \leq c$ almost surely, then for $\sigma^2 = EX_i^2$ and every u > 0,

$$P\left(\sum_{i=1}^{n} X_i \ge u\right) \le \exp\left(-\frac{u^2}{2n\sigma^2 + 2cu/3}\right).$$

Ex. 4 a) In the result from lectures about the hard thresholding wavelet estimator based on observations in Gaussian white noise, show that the universal choice $\tau = 5$ for the thresholding constant is admissible for the theorem to hold true.

b) Use the previous exercise to heuristically justify the construction of a hard thresholding density estimator in the problem of nonparametric density estimation on [0, 1].

Ex. 5 (Nonparametric tests for uniformity) Consider X_1, \ldots, X_n i.i.d. random variables from density f on [0, 1] contained in a Sobolev space $H^1([0, 1])$. Let $\mathbf{1} = \mathbf{1}_{[0,1]}$ be the density of the uniform distribution on [0, 1]. Consider testing the hypotheses

$$H_0: f = \mathbf{1} \ vs. \ H_1 = \{f: \|f\|_{H^1} \le B, \|f - \mathbf{1}\|_{L^2} \ge \rho_n\},\$$

where $\rho_n = C n^{-2/5}$ and B, C are constants. Given $\alpha > 0$, find a test Ψ such that

$$E_1\Psi + \sup_{f \in H_1} E_f(1 - \Psi_n) \le \alpha$$

for every $n \in \mathbb{N}$ and $C = C(\alpha)$ large enough.

Ex. 6 For a $p \times p$ symmetric matrix Φ , show that the maximal absolute eigenvalue $\phi_{\max} = \max_i |\phi_i|$ is equal to $\sup_{\|v\|_2=1} |v^T \Phi v|$. Show further that the minimal absolute eigenvalue corresponds to $\inf_{\|v\|_2=1} |v^T \Phi v|$.

Ex. 7 Let *B* be the unit ball in a *k*-dimensional Euclidean space. Let $N(\delta), \delta > 0$ be the minimal number of closed balls of radius δ with centers in *B* that are required to cover *B*. Show that for some constant A > 0 and every $0 < \delta < A$ we have

$$N(\delta) \le \left(\frac{A}{\delta}\right)^k.$$