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Part II, Michaelmas 2015, RN (email: r.nickl@statslab.cam.ac.uk)

1. Consider classifying an observation of a random vector X in RP into either a N(u;,X) or
a N(ua,X) population, where ¥ is a known nonsingular covariance matrix and where 1 # o
are two distinct known mean vectors.

a) For a prior 7 assigning probability ¢ to g1 and 1 — ¢ to pz, show that the Bayes classifier
is unique and assigns X to N(u1,X) whenever

1
U=D~—5(u+ p2) ST — o)

exceeds log((1 — q)/q), where D = X771 (y — p2) is the discriminant function.
b) Show that U ~ N(A?/2,A?) whenever X ~ N(u1,Y), and that U ~ N(—A?/2 A?)
whenever X ~ N (u2,Y), where A is the Mahalanobis distance between p; and pe given by

A? = (p1 — p2) 'S (1 — p2).
¢) Show that a minimax classifier is obtained from selecting N(u1, %) whenever U > 0.

2. Consider classification of an observation X into a population described by a probability
density equal to either fi or fo. Assume Py, (f1(X)/f2(X) =k) =0 for all k € [0,00],7 € {1,2}.
Show that any admissible classification rule is a Bayes classification rule for some prior 7.

3. Based on an i.i.d. sample Xy,..., X, consider an estimator T, = T(X1,...,X,) of a
parameter § € R. Suppose the bias function B, (0) = ET,, — 6 can be approximated as

B(0) = % L om

n2
for some real numbers a, b. Show that the jackknife bias corrected estimate T}, of 6 based on T,

satisfies
ET, —0=0(n"?).

4. For F : R — [0,1] a probability distribution function, define its generalised inverse
F~(u) =inf{z : F(z) > u}, z € [0,1]. If U is a uniform U[0, 1] random variable, show that the
random variable F'~ (U) has distribution function F.

5. Let f,g: R — [0,00) be bounded probability density functions such that f(z) < Mg(x)
for all x € R and some constant M > 0. Suppose you can simulate a random variable X of
density g and a random variable U from a uniform U|[0, 1] distribution. Consider the following
‘accept-reject’ algorithm:

Step 1. Draw X ~ g,U ~UJ0,1].

Step 2. Accept Y =X if U< f(X)/(Mg(X)), and return to Step 1 otherwise.

Show that Y has density f.

6. Let Uy, Uz be i.i.d. uniform U[0,1] and define

X1 = +v/—2log(U1) cos(2nU3), Xo = +/—2log(Uy) sin(27U>).

Show that X3, X5 are i.i.d. N(0,1).



7. Let X1,..., X, be drawn i.i.d. random variables from distribution P with unknown mean
p and variance o2. Write X,, = 2 3" | X; for the sample mean, and let X’ = (1/n) >I | X2, be
the mean of a bootstrap sample (Xsi ci=1,...,n) ~"*% P, generated from the X;’s. Choosing
roots R,, such that
. . R
P, (|X3Xn| < 7%) =1l-a

for some 0 < a < 1, let
- R
b .
CnZ{UER.an—U|§\/—%}
be the corresponding bootstrap confidence interval. Show that R, converges to a constant in
PN-probability and deduce further that C? is an exact asymptotic level 1 — a confidence set,

that is, show that, as n — oo,
PipuecCt) —-1-a.

8. Let X3,..., X, be drawn i.i.d. from a continuous distribution function F': R — [0, 1], and
let F,(t) = (1/n) 31" | 1(—s0,4)(X;) be the empirical distribution function. Use the Kolmogorov-
Smirnov theorem to construct a confidence band for the unknown function F' of the form

{Cpn(z) = [Fn(z) — Ry, F(z) + R, : x € R}

that satisfies PN(F(z) € Cp(z) Vo € R) — 1 — a as n — oo, and where R,, = R/\/n for some
fixed quantile constant R > 0.

9. Let Xi,...,X, be drawn i.i.d. from a differentiable probability density f : R — [0, 00),
and assume that sup,cg(|f(2)| + | f'(2)]) < 1. Define the density estimator

1 n
fa(@) = =5 do1{-1/2<n' @ - X;) <1/2}, z€R.
i=1
Show that, for every z € R and every n € N,
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