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1. Consider classifying an observation of a random vector X in R
p into either a N(µ1,Σ) or

a N(µ2,Σ) population, where Σ is a known nonsingular covariance matrix and where µ1 6= µ2

are two distinct known mean vectors.
a) For a prior π assigning probability q to µ1 and 1− q to µ2, show that the Bayes classifier

is unique and assigns X to N(µ1,Σ) whenever

U ≡ D − 1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2)

exceeds log((1 − q)/q), where D = XTΣ−1(µ1 − µ2) is the discriminant function.
b) Show that U ∼ N(∆2/2,∆2) whenever X ∼ N(µ1,Σ), and that U ∼ N(−∆2/2,∆2)

whenever X ∼ N(µ2,Σ), where ∆ is the Mahalanobis distance between µ1 and µ2 given by

∆2 = (µ1 − µ2)
TΣ−1(µ1 − µ2).

c) Show that a minimax classifier is obtained from selecting N(µ1,Σ) whenever U ≥ 0.

2. Consider classification of an observation X into a population described by a probability
density equal to either f1 or f2. Assume Pfi(f1(X)/f2(X) = k) = 0 for all k ∈ [0,∞], i ∈ {1, 2}.
Show that any admissible classification rule is a Bayes classification rule for some prior π.

3. Based on an i.i.d. sample X1, . . . , Xn, consider an estimator Tn = T (X1, . . . , Xn) of a
parameter θ ∈ R. Suppose the bias function Bn(θ) = ETn − θ can be approximated as

Bn(θ) =
a

n
+

b

n2
+O(n−3)

for some real numbers a, b. Show that the jackknife bias corrected estimate T̃n of θ based on Tn

satisfies
ET̃n − θ = O(n−2).

4. For F : R → [0, 1] a probability distribution function, define its generalised inverse
F−(u) = inf{x : F (x) ≥ u}, x ∈ [0, 1]. If U is a uniform U [0, 1] random variable, show that the
random variable F−(U) has distribution function F .

5. Let f, g : R → [0,∞) be bounded probability density functions such that f(x) ≤ Mg(x)
for all x ∈ R and some constant M > 0. Suppose you can simulate a random variable X of
density g and a random variable U from a uniform U [0, 1] distribution. Consider the following
‘accept-reject’ algorithm:

Step 1. Draw X ∼ g, U ∼ U [0, 1].
Step 2. Accept Y = X if U ≤ f(X)/(Mg(X)), and return to Step 1 otherwise.

Show that Y has density f .

6. Let U1, U2 be i.i.d. uniform U [0, 1] and define

X1 =
√

−2 log(U1) cos(2πU2), X2 =
√

−2 log(U1) sin(2πU2).

Show that X1, X2 are i.i.d. N(0, 1).
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7. Let X1, . . . , Xn be drawn i.i.d. random variables from distribution P with unknown mean
µ and variance σ2. Write X̄n = 1

n

∑n
i=1 Xi for the sample mean, and let X̄b

n = (1/n)
∑n

i=1 X
b
ni be

the mean of a bootstrap sample (Xb
ni : i = 1, . . . , n) ∼i.i.d.

Pn generated from the Xi’s. Choosing
roots Rn such that

Pn

(

|X̄b
n − X̄n| ≤

Rn√
n

)

= 1− α

for some 0 < α < 1, let

Cb
n =

{

v ∈ R : |X̄n − v| ≤ Rn√
n

}

be the corresponding bootstrap confidence interval. Show that Rn converges to a constant in
PN-probability and deduce further that Cb

n is an exact asymptotic level 1 − α confidence set,
that is, show that, as n → ∞,

PN(µ ∈ Cb
n) → 1− α.

8. Let X1, . . . , Xn be drawn i.i.d. from a continuous distribution function F : R → [0, 1], and
let Fn(t) = (1/n)

∑n
i=1 1(−∞,t](Xi) be the empirical distribution function. Use the Kolmogorov-

Smirnov theorem to construct a confidence band for the unknown function F of the form

{Cn(x) = [Fn(x)−Rn, Fn(x) +Rn] : x ∈ R}

that satisfies PN

F (F (x) ∈ Cn(x) ∀x ∈ R) → 1 − α as n → ∞, and where Rn = R/
√
n for some

fixed quantile constant R > 0.

9. Let X1, . . . , Xn be drawn i.i.d. from a differentiable probability density f : R → [0,∞),
and assume that supx∈R

(|f(x)|+ |f ′(x)|) ≤ 1. Define the density estimator

f̂n(x) =
1

n2/3

n
∑

i=1

1{−1/2 ≤ n1/3(x −Xi) ≤ 1/2}, x ∈ R.

Show that, for every x ∈ R and every n ∈ N,

E|f̂n(x)− f(x)| ≤ 2

n1/3
.
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