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1. Counsider classifying an observation of a random vector X in RP into either a N(u;, %) or
a N(p2,X) population, where ¥ is a known nonsingular covariance matrix and where p; # ps
are two distinct known mean vectors.

a) For a prior 7 assigning probability ¢ to g1 and 1 — ¢ to ug, show that the Bayes classifier
is unique and assigns X to N(u1,X) whenever

1
U=D-g(m+ p2) "8 (= o)

exceeds log((1 — q)/q), where D = X771 (u; — ug) is the discriminant function.
b) Show that U ~ N(A?/2,A?) whenever X ~ N(u1,Y), and that U ~ N(—AZ%/2, A?)
whenever X ~ N(ug,%), where A is the Mahalanobis distance between pup and po given by

A? = (p1 — p2) TS (1 — p2).
¢) Show that a minimax classifier is obtained from selecting N (u, %) whenever U > 0.

2. Consider classification of an observation X into a population described by a probability
density equal to either fi or fo. Assume Py, (f1(X)/f2(X) =k) =0 for all k € [0,00],7 € {1,2}.
Show that any admissible classification rule is a Bayes classification rule for some prior 7.

3. For F : R — [0,1] a probability distribution function, define its generalised inverse
F~(u) =inf{z: F(z) > u}, x € [0,1]. If U is a uniform U[0, 1] random variable, show that the
random variable F'~ (U) has distribution function F.

4. Let f,g: R — [0,00) be bounded probability density functions such that f(z) < Mg(x)
for all x € R and some constant M > 0. Suppose you can simulate a random variable X of
density g and a random variable U from a uniform U|[0, 1] distribution. Consider the following
‘accept-reject’” algorithm:

Step 1. Draw X ~ g, U ~ UJ0,1].

Step 2. Accept Y =X if U < f(X)/(Mg(X)), and return to Step 1 otherwise.

Show that Y has density f.

5. Let Uy, Uz be i.i.d. uniform UJ0, 1] and define

X1 =/ —2log(Uy) cos(2nUs), Xo = +/—2log(Uy)sin(27U3).

Show that X7, X5 are i.i.d. N(0,1).

6. Consider observations Xy, ..., X,, from a statistical model {f(-,0): 0 € ©},0 =RP p € N,
and denote by m(-|X1,...,X,) the posterior distribution arising from a N(0,I,) prior 7 on ©.
The Markov chain (¥, : m € N) is started at arbitrary Jy € R? and generated as follows:

Step 1. For m e NU{0},0 >0 and given ¥,,, generate { ~m = N(0,I,) and set

Sm = V1 — 260,, + V26¢.



Step 2. Define

9 ESY with probability p(dn,,Sm)
it D, with probability 1 — p(Jp, Sm),

where the acceptance probabilities are given by

p(Om, 8m) = min {"Cm = m) 11 0(0) = " log f (X5, 6).
=1

Step 3. Repeat the above with m—m+41.
Show that the posterior distribution 7 (:| X1, ..., X,,) is an invariant measure for (9,, : m € N).
7. Let X1,..., X, be drawn i.i.d. random variables from distribution P with unknown mean
1 and variance o2. Write X,, = % ", X; for the sample mean, and let X2 = (1/n) Y, X2, be

L ni
the mean of a bootstrap sample (X?, : i = 1,...,n) ~*4 P, generated from the X;’s. Choosing
roots R,, such that

for some 0 < v < 1, let

be the corresponding one-sided bootstrap confidence interval. Show that R,, converges to a con-
stant in PN-probability and deduce further that C? is an exact asymptotic level 1 — a confidence
set, that is, show that, as n — oo,

PYuect) —-1-a.

8. Let Xy,..., X, be drawn i.i.d. from a continuous distribution function F' : R — [0, 1], and
let Fio(t) = (1/n) 37" 1 1(—oo,(Xi) be the empirical distribution function. Use the Kolmogorov-
Smirnov theorem to construct a confidence band for the unknown function F' of the form

{Cn(x) = [Fp(z) — Rn, Frn(z) + Ry) : 2 € R}
that satisfies PY(F(z) € Cp(z) Vx € R) = 1 — a as n — oo, and where R,, = R/\/n for some
fixed quantile constant R > 0.

9. Given X1,...,X, from a regular statistical model {f(-,0) : § € ©},© = RP, with non-
singular Fisher information I(6), consider ‘local’ perturbations 6y + (h/y/n),h € RP, of the
log-likelihood ratios near a ‘true’ value 6y, more precisely, define

o Tizs /(X 00 + 1/ /)
Zn(h) = log 1, f()O(i,Go)

Next consider a normal shift experiment given by the probability density functions (py, : h € RP)
of normal distributions N (h, I(fg)~!), and denote the corresponding likelihood ratios by

) Xi Ni.i.dA f(700)

Z(h) = log z—’;(xxx ~ Po.

Show that for every fixed h € RP, the random variables Z,,(h) converges in distribution under
Py, to the law of Z(h), as n — oo. [This suggests that at least in 1//n-neighbourhoods of
8o, the likelihood ratio process of any regular statistical model behaves like the one of a simple
Gaussian shift experiment with mean h and covariance I(6p) "]



