
PRINCIPLES OF STATISTICS – EXAMPLES 2/4

Part II, Michaelmas 2015, RN (email: r.nickl@statslab.cam.ac.uk)

Throughout, the term ‘asymptotic’ refers to a large sample limit as n → ∞ under a sampling
distribution Pθ = PN

θ where, unless specified otherwise, θ is assumed to be a fixed element of the
parameter space Θ ⊂ R

p.

1. Let Θ ⊆ R have nonempty interior and let Sn be a sequence of random real-valued
continuous functions defined on Θ such that, as n → ∞, Sn(θ) →P S(θ) ∀θ ∈ Θ, where S : Θ → R

is nonrandom. Suppose for some θ0 in the interior of Θ and every ε > 0 small enough we have
S(θ0 ± ε) < 0 < S(θ0 ∓ ε), and that Sn has exactly one zero θ̂n for every n ∈ N. Deduce that

θ̂n →P θ0 as n → ∞.

2. Consider an i.i.d. sample X1, . . . , Xn arising from the model

{

f(x, θ) = θxθ−1 exp{−xθ}, x > 0, θ ∈ (0,∞)
}

of Weibull distributions. Show that the MLE exists with probability one and is consistent. [Hint:
Use the previous exercise. You may interchange differentiation d/dθ and dx-integration without
justification in your argument.]

3. Give an example of functions Qn, Q defined on Θ ⊂ R that have unique maximisers θ̂n, θ0,
respectively, such that Qn(θ) → Q(θ) for every θ ∈ Θ as n → ∞, but θ̂n 6→ θ0.

4. Consider the maximum likelihood estimator θ̂ from X1, . . . , Xn i.i.d. N(θ, 1) where θ ∈
Θ = [0,∞). Show that

√
n(θ̂ − θ) is asymptotically normal whenever θ > 0. What happens

when θ = 0? Comment on your findings in light of the general asymptotic theory for maximum
likelihood estimators.

5. Let X1, . . . , Xn be i.i.d. random variables from a uniform U [0, θ], θ ∈ Θ = (0,∞), distri-

bution. Find the maximum likelihood estimator θ̂ of θ and show that θ̃ = n+1
n

θ̂ is unbiased for

θ. Find the variance of θ̃, compare it to what the Cramèr-Rao inequality predicts, and discuss
your findings. Finally find the asymptotic distribution of n(θ − θ̂).

6. Suppose one is given a parametric model {f(·, θ) : θ ∈ Θ} with likelihood function L(θ)

and corresponding maximum likelihood estimator θ̂MLE , and consider a mapping Φ : Θ → F ,
where Θ, F are subsets of R.

a) Assuming that Φ is injective, show that a maximum likelihood estimator of φ in the model

{f(·, φ) : φ = Φ(θ) for some θ ∈ Θ} equals Φ(θ̂MLE).

b) Now consider a mapping Φ that is not necessarily injective. Define the induced likelihood

function L∗(φ) = supθ:Φ(θ)=φL(θ) and show that Φ(θ̂MLE) is a maximum likelihood estimator

of φ (that is, show that Φ(θ̂MLE) maximises L∗(φ)).

c) Based on n repeated observations of a random variable X from one of the following para-
metric models, find the maximum likelihood estimator of the parameter φ: i) φ = V ar(X) in a
Poisson(θ) model. ii) φ = V ar(X) in a Bernoulli(θ)-model, iii) φ = (EX)2 in a N(θ, 1) model.

7. Consider the parameter φ = EX4 equal to the fourth moment of a N(0, θ) distribution.

Find the MLE φ̂ of φ and derive the asymptotic distribution of
√
n(φ̂− φ) as n → ∞.

8. Let θ̂ be the maximum likelihood estimator in a model {f(·, θ) : Θ ⊂ R
p} arising from an

i.i.d. sample X1, . . . , Xn. Assuming the model satisfies the regularity conditions from lectures,
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ensuring in particular the asymptotic normality of
√
n(θ̂ − θ) under Pθ, derive the asymptotic

distribution of the random variable

Wn = n(θ̂ − θ)T in(θ̂ − θ)

under Pθ, where in equals either in(θ) or in(θ̂) and where in(θ) is the observed Fisher information
matrix at θ. Deduce from this limiting result i) a test for the hypothesis H0 : θ = θ0 vs. H1 =
Θ\{θ0} that has type-one-errors of asymptotic level at most α and ii) that the confidence ellipsoid

Cn = {θ ∈ R
p : (θ̂ − θ)T in(θ̂)(θ̂ − θ) ≤ zα/n}

has asymptotic coverage level 1− α for zα the 1− α-quantile constants of the limit distribution
derived above.

9. Consider the parametric models from Exercise 1 on Sheet 1 with corresponding parameter
space Θ. For all these models, derive explicit expressions for the likelihood ratio test statistic of
a simple hypothesis H0 : θ = θ0, θ0 ∈ Θ, vs. H1 = Θ \ {θ0}.

10. For σ2 a fixed positive constant, consider X1, . . . , Xn|θ ∼i.i.d N(θ, σ2) with prior dis-
tribution θ ∼ N(µ, v2), µ ∈ R, v2 > 0. Show that the posterior distribution of θ given the
observations is

θ|X1, . . . , Xn ∼ N

(

nX̄
σ2 + µ

v2

n
σ2 + 1

v2

,
1

n
σ2 + 1

v2

)

, where X̄ =
1

n

n
∑

i=1

Xi.

11. Consider X1, . . . , Xn|µ, σ2 i.i.d. N(µ, σ2) with improper prior density π(µ, σ) propor-
tional to σ−2 (constant in µ). Argue that the resulting ‘posterior distribution’ has a density
proportional to

σ−(n+2) exp

{

− 1

2σ2

n
∑

i=1

(Xi − µ)2

}

,

and that thus the distribution of µ|σ2, X1, . . . , Xn is N(X̄, σ2/n), where X̄ = (1/n)
∑n

i=1 Xi.
For 0 < α < 1 and assuming σ2 is known, construct a level 1 − α credible set for the posterior
distribution µ|σ2, X1, . . . , Xn that is also an exact level 1− α (frequentist) confidence set.
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