PRINCIPLES OF STATISTICS — EXAMPLES 1/4
Part II, Michaelmas 2015, RN (email: r.nickl@statslab.cam.ac.uk)

Throughout, the abbreviations ‘i.i.d.’, ‘pdf/pmf’ and ‘MLE’ stand for ‘independent and iden-
tically distributed’, ‘probability density /mass function’ and ‘maximum likelihood estimator’, re-
spectively. A normal distribution in R? with mean vector  and covariance matrix ¥ is denoted
by Ng(u,Y), and N(u,0?) corresponds to the univariate case d = 1.

1. Consider an i.i.d. sample Xi,...,X,, of random variables. For each of the following
parametric models of pmf/pdf’s, find the MLE of the unknown parameter, the score equation
and the Fisher information.

a) X; ~""% Bernoulli(9),0 € [0,1],

b) X; ~*d N(6,1),0 € R,

c) X; ~*4 N(0,0),0 € (0,0),

d) X; ~*4 N(u,02),0 = (u,0%)T € R x (0,00),

e) X; ~*& Poisson(), 6 € (0,00),

f) X; ~*%% from model {f(-,0) : 6 € (0,00)} with pdf f(x,0) = (1/0)e=*/? = > 0.
g) X; ~*%d- from model {f(-,0) : 0 € (0,00)} with pdf f(x,0) = 0e=%% > 0.

2. In which of the examples of the previous exercise is the MLE unbiased (i.e., does one have
Epl = 0 for all # € ©)?7 When unbiased, deduce whether the variance of the MLE attains the
Cramer-Rao lower bound or not.

3. Let Xj,..., X, be iid. Poisson random variables with parameter ¢ > 0, and let X, =
(/)3 X, 82 =(mn—-1)"'>" (X; — X,)% Show that Var(X,) < Var(S2).

4. Find the MLE for an i.i.d. sample X3, ..., X,, arising from the models a) N(,1) where
6 € ©=[0,00) and b) N(6,6) where § € © = (0, 0).

5. Counsider an i.i.d. sample Xy, ..., X, arising from the model
1
{f(.0):0€R}, f(z,0)=Ze " laeR,

of Laplace distributions. Assuming n to be odd for simplicity, show that the MLE is equal to the
sample median. Discuss what happens when n is even. Can you calculate the Fisher information?

6. Consider observing an n x 1 random vector Y ~ N(X#0,I) where X is a non-stochastic
n X p matrix of full column rank, where § € ©® = RP? for p < n, and where I is the n x n identity
matrix. Compute the MLE and find its distribution. Calculate the Fisher information for this
model and compare it to the variance of the MLE. Deduce, as a special case, the form of the
MLE and Fisher information in the case when p =mn and X = I.

7. Let (X, X,, : n € N) be random vectors in R*.

a) Prove that X,, =¥ X as n — oo if and only if each vector component Xnj,d=1,...,k,
of X,, converges in probability to the corresponding vector component X; of X as n — oo.
Formulate and prove an analogous result for random symmetric k£ x k-matrices.

b) Suppose E| X, — X|| — 0 as n — oo where || - || is the Euclidean norm on R*. Deduce
that X,, - X as n — oo.

c¢) Show that the converse in b) is false, that is, give an example of real random variables
X, = X asn — o but E|X,, — X| A 0.



8. Given X1,..., X, i.i.d. random variables such that EX; = 0, EX? € (0,00), the Student
t-statistic is given by

tn:@, X, = 1271:)(1-, S2 = L > (X = Xn)
=1

Shn n 4 n—lizl

Show that t,, —¢ N(0,1) as n — oo. Assuming now EX; = u € R, deduce an asymptotic level
1 — « confidence interval for £ X;.

9. For the examples from Exercise 1, derive directly (without using the general asymptotic
theory for MLEs) the asymptotic distribution of v/n(0y g — 6) as n — co.

10. Suppose one observes one random vector X = (X7, X2)T from a bivariate normal
distribution N2 (6,) where § = (01,602)7 and where X is an arbitrary but known 2 x 2 positive
definite covariance matrix.

i) Compute the Cramer-Rao lower bound for estimating the first coefficient 6y if a) 65 is
known and b) if #5 is unknown.

i) Show that the two bounds in i) coincide when ¥ is a diagonal matrix.

iii) Show that the bound in i)a) is always less than or equal to the bound in i)b), and give
an information-theoretic interpretation of this result.



