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On statistical Calderón problems

Kweku Abraham and Richard Nickl

Abstract. For D a bounded domain in Rd ; d � 2; with smooth boundary @D, the non-linear
inverse problem of recovering the unknown conductivity 
 determining solutions u D u
;f of
the partial differential equation

r �.
 r u/ D 0 inD;
u D f on @D;

from noisy observations Y of the Dirichlet-to-Neumann map

f 7! ƒ
 .f / D 

@u
;f

@�

ˇ̌̌
@D
;

with @=@� denoting the outward normal derivative, is considered. The data Y consists of ƒ

corrupted by additive Gaussian noise at noise level " > 0, and a statistical algorithm y
.Y / is
constructed which is shown to recover 
 in supremum-norm loss at a statistical convergence rate
of the order log.1="/�ı as "! 0. It is further shown that this convergence rate is optimal, up to
the precise value of the exponent ı > 0, in an information theoretic sense. The estimator y
.Y /
has a Bayesian interpretation in terms of the posterior mean of a suitable Gaussian process prior
and can be computed by MCMC methods.
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1. Introduction

Let D � Rd ; d � 2; be a bounded domain, which we understand here to be a
connected open set with smooth boundary @D. For 
 WD ! .0;1/ a conductivity
coefficient, consider solutions u to the Dirichlet problem

r �.
 r u/ D 0 inD;
u D f on @D;

(1)

where r denotes the usual gradient operator and where f W @D ! C prescribes some
boundary values. The parameter spaces considered in the sequel are of the form

�m;D0 D
˚

 2 C.D/ W inf

x2D

.x/ � m; 
 D 1 onD nD0

	
; (2)

�˛m;D0.M/ D
˚

 2 �m;D0 W k
kH˛.D/ �M

	
; M > 0; (3)

where m 2 .0; 1/ is a fixed constant, D0 is a domain compactly supported in D
(that is, its closure xD0 is contained in D), and ˛ � 0 measures the regularity
of 
 in the Sobolev scale. The Sobolev spaces H˛.D/;H˛.@D/ of complex-
valued functions (and variations thereof) are defined in detail in Appendix A;
the standard L2.D/; L2.@D/ Lebesgue spaces arise as the case ˛ D 0, with
inner products h� ; �iL2.D/; h� ; �iL2.@D/, respectively, and C.D/ denotes the space of
bounded continuous real-valued functions onD, equipped with the sup-norm k � k1.
Except where otherwise stated, all integrals are taken with respect to Lebesgue and
surface measures onD and @D respectively.

The elliptic partial differential equation (PDE) in (1) has, for 
 2 �m;D0 and
f 2 H sC1.@D/=C, s 2 R, a unique weak solution u
;f in the space

Hs WD
�
Hminf1;sC3=2g.D/ \H 1

loc.D/
�
=CI



On statistical Calderón problems 167

that is (for xv denoting the complex conjugate of v), the equationsZ
D


 r u � r xv D 0 8v 2 H 1
0 .D/;

u D f on @D;
(4)

hold simultaneously (for u 2 Hs) if and only if u D u
;f , where the boundary values
of u are defined in a trace sense. Here and below =C means that we identify functions
f; f C c which are equal up to a scalar c 2 C. See Lemma 19 in Appendix C and
its proof for details.

Given a solution u
;f to the Dirichlet problem, one can measure the Neumann
(boundary) data



@u
;f

@�

ˇ̌̌
@D
�
@u
;f

@�

ˇ̌̌
@D
; 
 2 �m;D0 ;

where @
@�

denotes the outward normal derivative on @D (again to be understood
in a trace sense). It can be shown (see Lemma 20) that for any s 2 R and any
f 2 H sC1.@D/=C, the Neumann data lies in the space

H s
˘.@D/ WD

˚
g 2 H s.@D/ W hg; 1iL2.@D/ D 0

	
: (5)

Thus, we may define the so-called Dirichlet-to-Neumann map,

ƒ
 WH
sC1.@D/=C ! H s

˘.@D/;

f 7! 

@u
;f

@�

ˇ̌̌
@D
;

(6)

which associates to each prescribed boundary value f the Neumann data of the
solution of the PDE (1). The choice to quotient the domain of ƒ
 by C is natural as
the Neumann data is invariant with respect to addition of scalars.

The Calderón problem [5] is a well studied inverse problem that addresses the
task of recovering interior conductivities 
 from knowledge of the boundary dataƒ
 .
Note that while ƒ
 itself is a linear operator between Hilbert spaces, the ‘forward
map’ 
 ! ƒ
 is non-linear. Landmark injectivity results by Sylvester and Uhlmann
(d � 3) and by Nachman (d D 2) show, however, that recovery is in principle
possible.
Theorem (Sylvester & Uhlmann [45]; Nachman [32]). Ifƒ
1 D ƒ
2 , then 
1 D 
2.

Nachman [31] and Novikov [38] studied elaborate inversion algorithms that
allow recovery of 
 if exact knowledge of the entire operator ƒ
 is available.
Moreover Alessandrini [2] (and later Novikov and Santacesaria [37] for d D 2)
gave ‘stability estimates’ providing quantitative continuity bounds for the inverse
map, and Mandache [28] gave an ‘instability estimate’ showing that these bounds are
nearly sharp.
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The Calderón problem has since been vigorously studied and an excellent survey
can be found inUhlmann [47] and also in the lecture notes by Salo [43]. Its importance
partly stems from its applications to electrical impedance tomography (EIT) —
described inmore detail in the next section—where discrete boundarymeasurements
of the operator ƒ
 are performed to infer the interior conductivity 
 . Any such data
comes with error, and arguably the most natural mathematical description of such
approximate measurements is by a statistical noise model. As the superposition of
many independent errors is well described by a normal distribution (via the central
limit theorem), it is further natural to postulate that this noise follows a Gaussian
law. In algorithmic practice this has already been widely acknowledged in the
general setting of inverse problems, where statistical, and in particular Bayesian,
inversion approaches have flourished in the last decade since the influential work of
Stuart [44]. In the context of EIT we refer to the articles [10, 12, 21, 22, 24, 42] and
the many references therein. Currently, little theory giving statistical guarantees for
the performance of such Bayesian de-noising methodology is available, particularly
for non-linear problems. Some recent progress has been made in non-linear settings
(see [17,30,33–36,49]) but no results are available at present for theCalderón problem
described above, and the purpose of the present paper is to at least partially fill this
gap.

We will introduce three natural noise models for such statistical Caldéron
problems, all asymptotically closely related, in the next section. We prove our
main theorems initially in one of these models, and show in Appendix D.2 that the
results are in fact valid in the othermodels too. The preferredmodel for the theoretical
development is (12), wherein one observes ƒ
 corrupted by a Gaussian white noise
in an appropriate space of Hilbert–Schmidt operators. The noise is described by the
scalar quantity " > 0 governing its magnitude and a parameter r 2 R determining
its ‘spectral heteroscedasticity’. If we denote by P 
" D P 
";r the resulting probability
law of the noisy observations Y of ƒ
 , then our main results can be summarised in
the following two theorems.
Theorem 1. Let ˛ > 3 C d be an integer, let m0 2 .0; 1/, M > 1 be given, and
letD0 be a domain in Rd such that xD0 is contained inD.

There exists a measurable function y
 D y
".Y / of the observations Y � P 
" such
that

sup

2�˛

m0;D0
.M/

P 
"
�
ky
 � 
k1 > C log.1="/�ı

�
! 0 as "! 0;

where ı > 0 depends only on d and ˛, and C depends only on ˛; M , m0, D, D0,
and r .

The estimator y
 in the previous theorem has a natural Bayesian interpretation
in terms of the posterior mean of a suitable Gaussian process based prior for 
 .
Such priors are most effective for recovery of sufficiently smooth 
 , and the precise
bound on ˛ is chosen here for convenience (see Remark 3 for further discussion).
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The derivation and implementation of y
 are described in Section 3, where we give
the more concrete Theorem 3, which implies Theorem 1. We note that y
 can be
calculated without knowledge of the boundM for k
kH˛.D/.

The slow (logarithmic) convergence rate is not surprising in view of the folklore
that the Calderón problem is a severely ill-posed inverse problem (cf. also [28]). The
following result makes this folklore information-theoretically precise – it shows that
the convergence rate obtained by the estimator y
 is optimal in the statistical minimax
sense, at least up to the precise value of the exponent ı, for the prototypical case
whereD0;D are nested balls in Rd . We denote by k � k the standard Euclidean norm
on Rd .

Theorem 2. Let D0 D fx 2 Rd W kxk < 1=2g � D D fx 2 Rd W kxk < 1g, let ˛
be an integer greater than or equal to 2, and let m0 2 .0; 1/ be arbitrary. For any
ı0>˛.2d � 1/=d and allM large enough there exists cDc.ı0; ˛; d;m0; r;M/ such
that

inf
z


sup

2�˛

m0;D0
.M/

P 
"
�
kz
 � 
k1 > c log.1="/�ı0

�
> 1=4

for all " small enough, where the infimum extends over all measurable functions
z
 D z
.Y / of the data Y � P 
" .

The particular value 1=4 in the lower bound is chosen for convenience.
Determining the exact exponent ı in the minimax convergence rate is a delicate PDE
question related directly to the stability estimates of [2, 37], and beyond the scope of
the present paper. For d � 3, one could use an explicit bound of Novikov [39] to show
that a choice of ı satisfying ı=˛ ! 1 as ˛ ! 1 is permitted in Theorem 1. This
scales proportionally (in the regularity index ˛) to the exponent ı0 D ˛.2d � 1/=d

from the lower bound Theorem 2.

This paper is structured as follows. In Section 2 we introduce the measurement
model we consider in our theorems, and discuss its relationship to physical
measurement models arising in medical imaging practice. In Section 3 we give
the construction of the Bayesian algorithm y
 that solves our noisy version of the
Calderón problem. Section 4 contains some concluding remarks concerning the
main theorems. All proofs and related background material are relegated to later
sections. For convenience, the notation used is informally gathered in Appendix E.

2. Noise model and electrical impedance tomography

We now introduce three scenarios for noisy observations of the operatorƒ
 from (6),
and discuss their relationship at the end of this section. Define

zƒ
 D ƒ
 �ƒ1;



170 K. Abraham and R. Nickl

where the fixed (deterministic and known) operator ƒ1 is the Dirichlet-to-Neumann
map for the standard Laplace equation, that is, eq. (1) with 
 D 1 identically on D.
We then equivalently consider measuring a noisy version of zƒ
 .

Real-world data involving the Calderón problem arises for example in medical
imaging, namely in electrical impedance tomography, see [10, 12, 21, 22, 24, 42]
and references therein. Electrodes are attached to a patient (or some other physical
medium), and are used both to apply voltages and to record the resulting currents. If
we assume the applied voltages are uniform across the surface of any given electrode,
and the electrodes measure the average current across their surface, we are led to the
observation model

Yp;q D hzƒ
 Œ p�;  qiL2.@D/ C "gp;q; p; q � P; gp;q
i id
� N.0; 1/; " > 0; (7)

where the  p are, up to scaling factors, indicator functions 1Ip of some disjoint
measurable subsets .Ip/p�P of @D representing the locations of the electrodes.
Throughout N.0; 1/ denotes the standard normal distribution. In principle the noise
level " > 0 could vary with p and q, but choosing scaling factors cp so that the
 p D cp1Ip are L2.@D/-orthonormal we expect to be able to realise the above
homoscedastic noise model. Also note that while the inner product h� ; �iL2.@D/ is
defined with respect to complex scalars, zƒ
 Œ p� takes real values since  p does (see
before Lemma 21), and hence it is natural to consider real-valued noise gp;q and
data Yp;q .

An alternative noisemodel considers spectral measurements. Denote by .�k D �
.0/

k
W

k 2 N [ f0g/ an orthonormal basis of L2.@D/ consisting of real-valued eigen-
functions of the Laplace–Beltrami operator on the compact manifold @D, described
in more detail in Appendix A. (If D is a disc in R2 these comprise the usual
trigonometric basis, while for D a ball in R3, they are the spherical harmonics.) By
discarding the constant function �0 we obtain a basis of the spaces L2.@D/=C and
L2˘.@D/ D H 0

˘.@D/. Moreover, appropriate rescaling of these basis functions also
provides orthonormal bases .�.r/

k
W k 2 N/ of all H r.@D/=C and H r

˘.@D/ spaces,
r 2 R. For some r 2 R, we then consider the noisy matrix measurement model

Yj;k D hzƒ
 Œ�
.r/
j �; �

.0/

k
iL2.@D/ C "gj;k; j � J; k � K; gj;k

i id
� N.0; 1/; " > 0;

(8)
where again it is natural to consider real-valued noise gj;k only. The parameter r
can in principle be chosen by the experimenter and reflects how the signal-to-noise
ratio varies with frequency: as r increases, the signal at high frequencies (i.e. at
larger values of j ) decreases compared to the signal at low frequencies. Likely the
most realistic choices are r D 0 (which will allow for comparison of the models (7)
and (8)), and r D 1, in which case the signal-to-noise ratio is the same across all
frequencies: since ƒ
 maps H 1.@D/=C to L2.@D/ isomorphically (Lemma 20),
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the signal magnitude kƒ
 Œ�.1/j �kL2.@D/ is of order 1 for all j . A similar reasoning
(k�.0/

k
kL2.@D/ D 1 for all k) underpins the choice of theL2.@D/-inner product in (8).

If we formally take the limit J;K ! 1 in (8), we obtain a model of Gaussian
white noise on a space of Hilbert–Schmidt operators as follows. For j; k 2 N,
let b.r/

jk
WH r.@D/! L2.@D/ denote the tensor product operator

b
.r/

jk
.f / D �

.r/
j ˝ �

.0/

k
.f / WD hf; �

.r/
j iHr .@D/�

.0/

k
; f 2 H r.@D/; (9)

and define the space of linear operators

Hr WD

�
T WH r.@D/! L2.@D/; T D

1X
j;kD1

tjkb
.r/

jk
W tjk 2 R;

1X
j;kD1

t2jk <1

�
:

(10)
The elements of Hr are the ‘Hilbert–Schmidt’ operators between (the real-valued
subsets of) the Hilbert spacesH r.@D/ and L2.@D/, see [4, Chapter 12]. Moreover,
Hr is itself a (real) Hilbert space for the inner product

hS; T iHr D

1X
j;kD1

sjktjk �

1X
j;kD1

hS�
.r/
j ; �

.0/

k
iL2.@D/hT�

.r/
j ; �

.0/

k
iL2.@D/:

We then consider observing a realisation of the Gaussian process�
Y.T / D hzƒ
 ; T iHr C "W .T / W T 2 Hr

�
; " > 0; (11)

where

W .T / � hW ; T iHr WD

1X
j;kD1

gjkhT�
.r/
j ; �

.0/

k
iL2.@D/; for gjk

i id
� N.0; 1/:

This makes sense rigorously only if zƒ
 2 Hr , and it is proved in Appendix C,
Lemma 21, that this is indeed the case for any 
 2 �m;D0 and any r 2 R.

The process W so defined is a Gaussian white noise (isonormal process; see
e.g. [16, p. 19]) indexed by the (real) Hilbert space Hr . A closed form description of
the data in (11) is therefore

Y D zƒ
 C "W ; " > 0: (12)

We write P 
";r for the law of Y in this last model. We often suppress the parameter r ,
and write P 
" for the probability law and E
" for the corresponding expectation
operator.

The continuous model (12) is more convenient for the application of PDE techniques
and facilitates a clearer exposition in the proofs to follow. We prove our main
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results Theorems 1 and 2 in that model initially. We will show that the models (12)
and (7) are asymptotically closely related to each other in a rigorous ‘LeCam’
sense, and that as a consequence, Theorem 1 and 2 also hold in the ‘electrode
model’ (7): see Theorem 27 for a precise statement. The intuitive idea can be
summarised as follows: Model (12) with r D 0 contains all the information available
inmodel (7) simply by evaluating Y.T /with T D  p˝ q for eachp; q � P in (11);
conversely, as P ! 1, one can approximate Laplace–Beltrami eigenfunctions
via linear combinations of indicator functions (under appropriate conditions on the
sets Ip; p � P ), and in doing so, given data frommodel (7) we approximately recover
data from model (8) and ultimately then also from (12). We refer to Appendix D for
rigorous details, where also the (simpler) equivalence of the models (8) and (12) is
established.

3. The Bayesian approach to the noisy Calderón problem

We now construct the estimator y
 featuring in Theorem 1. Following the Bayesian
approach to inverse problems advocated byA. Stuart [44], wewill construct y
 in terms
of the posterior mean arising from a certain Gaussian process prior. In the context
of the EIT inverse problem a Bayesian approach was proposed already in [22], and
conceptually related work appears in fact much earlier in Diaconis [9] who further
traces some of the key ideas back to H. Poincaré; see [40, Chapter XV, §216] for
what is possibly the first proposal of an infinite-dimensional Gaussian series prior in
a numerical analysis context.

To this end we need to first establish the existence of a posterior distribution in our
measurement setting. In the Gaussian white noise model (12), the log-likelihood
function can be derived from the Cameron–Martin theorem in a suitable Hilbert
space: precisely, the law P



" of Y is dominated by the law P 1" of "W , with log-

likelihood function

`.
/ � logp
" .Y / WD log
dP



"

dP 1"
.Y / D

1

"2
hY; zƒ
 iHr �

1

2"2
kzƒ
k

2
Hr ; 
 2 �m;D0 :

(13)
See [33, Section 7.4] for a detailed derivation, which requires Borel-measurability
(ensured by Lemma 6 below) of the map 
 7! zƒ
 from the (Polish) space �m;D0
equipped with the k � k1-topology into the Hilbert space Hr .

Then for any prior (Borel) probability measure … on �m;D0 , the posterior
distribution given observations Y is given by

….B j Y / D

R
B
p


" .Y / d….
/R

�m;D0
p


" .Y / d….
/

; B � �m;D0 Borel-measurable; (14)
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see again [33, Section 7.4] (and also [14, eq. (1.1)]). We denote by E…Œ�� the
expectation operator according to the prior, and by E…Œ � j Y � the expectation
according to the posterior.

What precedes is stated for a prior defined on the conductivities 
 . The priors
introduced below will be of the form 
 D ˆ ı � for a suitable link function ˆ,
where � takes values in a linear space, so that a Gaussian process prior can be
assigned to � . Composition with the map ˆ described in Section 3.1 gives rise to a
measurable bijection between the parameter spaces for � and for 
 , and the comments
above therefore equivalently yield the existence of the posterior distribution for � .

3.1. Prior construction. We define the prior on � in terms of a base prior…0. For
the base prior we assume the following— we refer, e.g., to [16, Sections 2.1 and 2.6]
for the basic definitions of Gaussian measures and processes and their reproducing
kernel Hilbert spaces (RKHS).

Assumption 1. Let …0 be a centred Gaussian Borel probability measure on the
Banach space Cu.D/ of uniformly continuous real-valued functions on D, and let
˛; ˇ be integers satisfying ˛ > ˇ > 2Cd=2. Assume…0.Hˇ .D// D 1 and that the
RKHS .H ; k � kH / of…0 is continuously embedded into the Sobolev spaceH˛.D/.

Natural candidates for such priors are restrictions to D of Gaussian processes
whose covariances are given by Whittle–Matérn kernels, see [14, pp. 313, 575] —
in these cases one can satisfy the assumption for any 2 C d=2 < ˇ < ˛ � d=2 by
taking H to coincide with the Sobolev space H˛.D/. The restriction to integer-
valued ˛; ˇ is convenient to simplify some proofs.

In the proofs that follow we will require that the true 
0 is in the ‘interior’ of the
support of the induced prior on 
 , so recalling that Theorem 1 is stated uniformly
over �˛m0;D0.M/, we choose 0 < m1 < m0 < 1 and a domain D1 such that
xD0 � D1; xD1 � D. Then let �WD ! Œ0; 1� be a smooth cutoff function, identically
one onD0 and compactly supported inD1. For a link function ˆWR! .m1;1/ to
be specified, we define the prior… D …" as the (Borel) law in Cu.D/ of the random
function


 D ˆ ı �; �.x/ D �".x/ D "
d=.˛Cd/�.x/� 0.x/; x 2 D; � 0 � …0; (15)

where, in a slight abuse of notation, we use the notation… for the prior laws both of �
and of the induced conductivity 
 D ˆı� . The link functionˆwill be required to be
regular in the sense of [36], that is to say, ˆ is a smooth bijective function satisfying
ˆ.0/ D 1, ˆ0 > 0 on R, and kˆ.j /k1 < 1 for all integers j � 1, with inverse
function denoted by ˆ�1W .m1;1/ ! R. We refer to [36, Example 8], where a
regular link function is exhibited, and to [36, Lemma 29] for basic properties of such
functions. In particularwe note that there are constantsC D C.ˆ/, c D c.ˆ;m0; m/,
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C 0 D C 0.ˆ; ˛/, and c0 D c0.ˆ; ˛;m0; m/ such that for any bounded functions �; �0,
any integer ˛ � d=2 and any 
0; 
 2 �m;D1 ; m 2 .m1; m0/,

kˆ ı � �ˆ ı �0k1 � Ck� � �0k1; (16)
kˆ�1 ı 
 �ˆ�1 ı 
0k1 � ck
 � 
0k1; (17)

kˆ ı �kH˛.D/ � C
0
�
1C k�k˛H˛.D/

�
; (18)

kˆ�1 ı 
0kH˛.D/ � c
0
�
1C k
0k

˛
H˛.D/

�
: (19)

The first inequality is an immediate consequence of the mean value theorem and the
third is given in [36, Lemma 29]. The second and fourth inequalites follow from the
same arguments, applied to the function ˆ�1 (this can be seen to be regular on the
domain Œm;1/ for m > m1 by considering explicit formulas for its derivatives).

3.2. Posterior contraction result. For the following result we define

�";ı D log.1="/�ı ; "; ı > 0: (20)

Theorem 3. For some m0 2 .0; 1/, D0 compactly contained in D, and M > 0,
suppose that the true conductivity 
0 belongs to the set

�m0;D0 \
˚
ˆ ı � W � 2 H ; k�kH �M

	
; (21)

and define �0 D ˆ�1 ı 
0. For …0 satisfying Assumption 1 let … be the
prior arising from (15), and denote by …. � j Y / the posterior distribution for �
arising from observations Y in the model (12). Then there exist constants
C D C.M;m0; m1;D;D0;D1; ˆ; �; r; ˛; ˇ/ > 0 and ı D ı.d; ˇ/ > 0 such that

…
�
k� � �0k1 > C�";ı j Y

�
!
P

0
" 0 as "! 0: (22)

Moreover, if E…Œ� j Y � denotes the (Bochner) mean of …. � j Y /, then for any
K > C ,

sup

0

P 
0"
�
kE…Œ� j Y � � �0k1 > K�";ı

�
! 0 as "! 0; (23)

where the supremum extends over all 
0 in the set (21).
Theorem 3, whose proof is given in Section 5.4, immediately implies Theorem 1:

Indeed, given an integer ˛ > 3C d , let… be a prior from (15) whose base prior…0
satisfies Assumption 1 with RKHS H D H˛.D/. (For instance, take a Whittle–
Matérn prior, noting that a choice of integer ˇ > 2C d=2 is then admissible.) Let
y� D E…Œ� j Y � be the associated posterior mean and define y
 D ˆ ı y� . Then (16)
and (23) will imply Theorem 1, so it suffices to show that the conditions of Theorem 1
imply those of Theorem 3, in particular that for any 
0 2 �˛m0;D0.M/, there exists
an M 0 D M 0.˛;M;m0;D;D0/ such that k�0kH˛.D/ � M 0: But this is immediate
from (19).
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4. Concluding remarks

Remark 1 (Computational aspects). The posteriormeanE…Œ� j Y � can be calculated
via MCMC or expectation-propagation methods (naturally in the discretisations (7)
or (8) of our continuous model (12)). This allows one to bypass potential difficulties
encountered by optimisation based methods in non-linear settings such as the present
one. For instance, the MAP estimates studied in [21, 36] may not provably recover
global optima in the EIT setting, since the non-linearity of the map � 7!ƒˆ.�/�ƒ

implies that the associated least squares criterion is not necessarily convex.
Variational methods such as those proposed in [20] for EIT also typically require a
convex relaxation to be efficiently computable, see [23].

The pCN algorithm [8] allows one to sample from posterior distributions in
general inverse problems as long as the forward map � 7! ƒˆ.�/ can be evaluated,
which in our setting has the basic cost of (numerically) solving the standard elliptic
PDE (1). Even in the absence of log-concavity of the posterior measure one can
give sampling guarantees for this algorithm, see [18], so that the approximate
computation ofE…Œ� j Y � by the sample average .1=M/

P
m �m of the pCNMarkov

chain is provably possible at any given noise level ". Related work on MCMC-
based approaches in the setting of electrical impedance tomography can be found
in [10,22,42], wherein also many further references can be found. Instead of MCMC
methods one can also resort to variational Bayesmethods; see for example [12], where
computation of the posterior mean is addressed specifically for the EIT problem
relevant in the present paper.

Remark 2 (Estimation of 
 at the boundary). In Theorem 1 we assume that the true
conductivity 
0 equals 1 on the complement of some known set D0 � D. In the
proofs we work mostly with the differencesƒ
 �ƒ
0 and the results can be expected
to extend to 
0 being known (and positive) onD nD0. Estimation of the value of 
0
at @D is an ‘easier’ (less ill-posed) problem and is addressed, in a statistical setting,
in [6].

Remark 3 (Smoothness of 
 ). In Theorem 1 we assume ˛ > 3 C d , and hence
that the true conductivity is sufficiently smooth in a Sobolev sense. In terms of the
proofs, this requirement primarily arises from the stability estimates employed ([2]
requires a minimal Sobolev smoothness of 
 of degree ˇ > 2 C d=2), and further
from analytical support properties of Gaussian process priors (for a Whittle–Matérn
process with RKHS H˛.D/ to be supported in Hˇ .D/, one needs ˛ > ˇ C d=2),
necessitating ˛ > 2 C d . To avoid technicalities with non-integer Sobolev spaces,
we strengthen our hypothesis to ˛ > 3C d .

An interesting direction for further research would seek to replace the smoothness
assumption on 
0 with different structural assumptions. For example, if we consider
a class of functions that are piecewise constant on a known finite collection of
subsets of D, better than logarithmic stability results are available in [3], and faster
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convergence rates may then be obtained. Note that this would require different
methods, e.g. priormeasures that canmodel discontinuous functions, which is beyond
the scope of the present paper.

5. Proofs

The proof of Theorem3 follows the template devised in [30] for a very different inverse
problem. We first show that the posterior distribution induced on the operators ƒ

contracts around ƒ
0 (see Theorem 13), by combining tools from Bayesian
nonparametric statistics [14, 48] with analytical properties of the ‘regression’
operators ƒ
 (specifically of their low-rank approximations). Dealing with the
unboundedness of Gaussian priors for � and with the non-linearity of the composite
forward map � 7! ƒˆ.�/ poses a main challenge in the proof. As in [30] this
challenge is overcome using the rescaling in (15) of the base prior …0. For such
priors the posterior distribution concentrates on sufficiently regular conductivities 

that the stability estimates of [2,37]—whichwe show to hold also for the information-
theoretically relevant norms here — can be applied, resulting in contraction of the
posterior distributions of 
 and � about 
0 and �0 respectively. Finally, to deduce
consistency of the posterior mean, we adapt a quantitative uniform integrability
argument from [30] to the present situation. The proof of Theorem 2 follows from
the ‘instability’ estimate in [28] and common information-theoretic lower bound
techniques for statistical estimators as in [16, 46].

Remark. The model (12) naturally considers ƒ
 as an element of the real
Hilbert space Hr consisting of Hilbert–Schmidt operators between the sets of real-
valued functions of H r.@D/=C and L2˘.@D/, respectively. Various results in the
literature — such as the stability and instability results of [2] and [28] to be used
below — regard ƒ
 as an element of the space Hr;C of Hilbert–Schmidt operators
between complex-valued function spaces H r.@D/=C; L2˘.@D/. This difference is
inconsequential since Hr embeds into Hr;C via the unique extension

TC.f C ig/ D T .f /C iT .g/

for T 2 Hr , and the Hilbert–Schmidt norm of this larger space, when restricted
to Hr , coincides with the Hr norm. In fact, since we regard b.r/

jk
2 Hr in (9) as

a map from H r.@D/ to L2˘.@D/, strictly speaking we have already embedded Hr

into Hr;C in this way.

5.1. Low rank approximation of zƒ
 . A key idea used in various proofs that follow
is that we can project the operator zƒ
 onto a finite-dimensional subspace and incur
only a small error. We recall from (9) the orthonormal basis .b.r/

jk
/j;k2N of Hr
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consisting of tensor product operators

b
.r/

jk
.f / D �

.r/
j ˝ �

.0/

k
.f / WD hf; �

.r/
j iHr .@D/�

.0/

k
; f 2 H r.@D/=C; j; k 2 N;

where the Laplace–Beltrami eigenfunctions .�.r/j /j2N were introduced before (8).
An operator U 2 Hr has coefficients

hU; b
.r/

jk
iHr D hU�

.r/
j ; �

.0/

k
iL2.@D/

with respect to this basis, and we define the projection map �JK by

�JKU D
X
j�J

X
k�K

hU�
.r/
j ; �

.0/

k
iL2.@D/b

.r/

jk
: (24)

Lemma 4. For constants m 2 .0; 1/;M > 1 and some domain D0 compactly
contained in D, let 
 2 �m;D0 be bounded by M on D. For any � > 0 there is a
constant C D C.�;D;D0; r/ > 0 such that

kzƒ
 � �JK zƒ
kHr � C
M
m

min.J;K/�� :

Proof. Apply Lemma 18 from Appendix B with s D 0, p D r � �.d � 1/, and
q D �.d � 1/, and note

kzƒ
kHp�.d�1/.D/!Hq.D/ � C
M
m

for such a constant C by Lemma 20.

The proofs of the stability results for the Calderón problem in the next section
involve theH 1=2.@D/=C ! H�1=2.@D/ operator norm, which we denote by k � k�.
To connect this norm to the information-theoretically relevantHr -norm, the following
consequence of Lemma 4 will be useful.
Lemma 5. For m 2 .0; 1/, M0;M1 > 1 and D0 a domain compactly contained
inD, let 
0; 
 2 �m;D0 be bounded onD byM0 andM1 respectively. Then there are
constants C1 and C2 depending only on r ,D andD0 such that if kƒ
 �ƒ
0k� � 1
then

kƒ
 �ƒ
0kHr � C1
�
M1CM0

m
kƒ
 �ƒ
0k�

�1=2
; (25)

and if kƒ
 �ƒ
0kHr � 1 then

kƒ
 �ƒ
0k� � C2
�
M1CM0

m
kƒ
 �ƒ
0kHr

�1=2
: (26)

Proof. For J > 0 and � > 0 to be chosen, by Lemma 4 we have

kzƒ
 � �JJ zƒ
kHr � C
M1
m
J�� ;
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for a constant C D C.�;D;D0; r/, and a corresponding bound holds for

kzƒ
0 � �JJ
zƒ
0kHr :

An application of Lemma 17 with s D 0, p D d � 1=2; and q D �1=2, also
yields (with xC D max.x; 0/, and L2.H

d�1=2;H�1=2/ a space of Hilbert–Schmidt
operators as defined in Appendix B)

k�JJ zƒ
 � �JJ zƒ
0kHr

� C 0
�
1C J 1=.d�1/

�1=2C.d�1=2�r/C
k�JJ .zƒ
 � zƒ
0/kL2.Hd�1=2;H�1=2/

� C 0
�
1C J 1=.d�1/

�.dCjrj/
kzƒ
 � zƒ
0kL2.Hd�1=2;H�1=2/

� c0
�
1C J 1=.d�1/

�.dCjrj/
kzƒ
 � zƒ
0k�;

for constants C 0; c0 depending on D; r , where we use Lemma 18 to obtain the final
inequality. Since ƒ
 �ƒ
0 D zƒ
 � zƒ
0 , we deduce, for a constant C 00 that

kƒ
 �ƒ
0kHr

� kzƒ
 � �JJ zƒ
kHr C k
zƒ
0 � �JJ

zƒ
0kHr C k�JJ
zƒ
 � �JJ zƒ
0kHr

� C 00
��
M1CM0

m

�
J�� C J .dCjrj/=.d�1/kzƒ
 � zƒ
0k�

�
:

Since kzƒ
 � zƒ
0k� � 1, we can choose an integer J to balance the two terms up to
a constant (take J D b

�
m

M0CM1
kzƒ
 � zƒ
0k�

��.d�1/=.�.d�1/CdCjrj/
c). This yields,

for a constant c00,

kƒ
 �ƒ
0kHr � c
00
�
M1CM0

m

���
M1CM0

m

��1
kƒ
 �ƒ
0k�

��.d�1/=.�.d�1/CdCjrj/
:

Choosing � D .d C jr j/=.d � 1/ yields (25).
For (26), given that

kƒ
 �ƒ
0k� � kƒ
 �ƒ
0kL2.H1=2.@D/=C;H�1=2.@D//

(using the general fact that theHilbert–Schmidt norm upper bounds the operator norm
of a linear operator between separable Hilbert spaces), and the observation that the
proof of Lemma 4 can be adapted to apply with the L2.H

1=2.@D/=C;H�1=2.@D//
norm in place of the Hr norm, an almost identical argument to the above yields

kƒ
 �ƒ
0k� � C
��

M1CM0
m

�
J�� C J .r�1=2/C=.d�1/kƒ
 �ƒ
0kHr

�
:

Choosing J to balance the terms yields

kƒ
�ƒ
0k� � C
0
�
M1CM0

m

���
M1CM0

m

��1
kƒ
�ƒ
0kHr

��.d�1/=.�.d�1/C.r�1=2/C/
;

and the result follows from noting that the exponent is at least 1=2 for

� > .r � 1=2/C=.d � 1/:
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5.2. Forward and inverse continuity results. We now prove the following estim-
ates for the maps 
 7! ƒ
 ; ƒ
 ! 
 .
Lemma 6. For m 2 .0; 1/; M0;M1 > 1 and D0 a domain compactly contained
in D, let 
; 
0 2 �m;D0 be bounded on D by M1 and M0 respectively. Then there
exist constants C D C.r;D;D0/, � D �.D/ such that

kƒ
 �ƒ
0kHr � C
M0M1
m2
k
 � 
0k

1=2
1 ;

whenever k
 � 
0k1 � � m2

M0M1
.

Lemma 7. For some ˇ > 2C d=2, some m 2 .0; 1/; M > 0 and some domain D0
compactly contained inD, suppose


; 
0 2 �
ˇ
m;D0.M/ D

˚

 2 �m;D0 W k
kHˇ.D/ �M

	
:

Then there exist constants C and � depending only onM , D, D0, m, ˇ and r such
that, for a constant ı D ı.d; ˇ/ > 0,

k
 � 
0k1 � C jlogkƒ
 �ƒ
0kHr j
�ı ;

whenever kƒ
 �ƒ
0kHr � � .
The explicit form of the dependence of the constant in Lemma 6 onM1 andM0

will be convenient in the proof of Lemma 11.

Proof of Lemma 6. We initially show, for some C D C.D/, that

kƒ
 �ƒ
0k� � CM0
mCM1
m2
k
 � 
0k1: (27)

The result then follows from Lemma 5, noting that

.M0 CM1/M0.mCM1/=m
3
� 4M 2

0M
2
1 =m

4:

For 
; 
0 as given, let f 2 H 1=2.@D/=C, and recall we write u
;f for the unique
solution in H�1=2 � H

1.D/=C to the Dirichlet problem on D with conductivity 

and boundary data f , whose existence is guaranteed by Lemma 19, and similarly
for u
0;f . The equivalence class of functions u
;f � u
0;f has a representative
w 2 H 1

0 .D/, which is easily seen to (weakly) solve the PDE

r �.
 r w/ D r �
�
.
0 � 
/r u
0;f

�
inD;

w D 0 on @D:
(28)

We have the dual representation (see Remark ii. in Appendix A)


@w
@�





H�1=2.@D/

D sup
nˇ̌̌D@w
@�
; v
E
L2.@D/

ˇ̌̌
W v 2 H 1=2.@D/; kvkH1=2.@D/ D 1

o
:
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For v 2 H 1=2.@D/, by a standard trace theorem (e.g. [27, Chapter I, Theorem 9.4])
there exists V 2 H 1.D/ such that

V j@D D v and kV kH1.D/ � CkvkH1=2.@D/

for a constant C D C.D/. Repeatedly applying the divergence theorem (recalling
that 
 D 
0 D 1 on @D) and the Cauchy–Schwarz inequality, and using (28), we
deduceˇ̌̌Z

@D

xv
@w

@�

ˇ̌̌
D

ˇ̌̌Z
D

xV r �.
 r w/C

Z
D


 r xV � r w
ˇ̌̌

�

ˇ̌̌Z
D

xV r �
�
.
0 � 
/r u
0;f

�ˇ̌̌
C k
k1kV kH1.D/kr wkL2.D/

�

ˇ̌̌Z
D

.
0 � 
/r xV � r u
0;f

ˇ̌̌
C Ck
k1kvkH1=2.@D/kr wkL2.D/

� CkvkH1=2.@D/
�
k
0 � 
k1kr u
0;f kL2.D/ CM1kr wkL2.D/

�
;

hence


@w
@�





H�1=2.@D/

� C
�
k
0 � 
k1kr u
0;f kL2.D/ CM1kr wkL2.D/

�
: (29)

A weak solution w to (28) by definition satisfies, for any v 2 H 1
0 .D/,Z

D


 r w � r xv D

Z
D

.
0 � 
/r u
0;f � r xv:

In particular this applies with v D w, hence, since 
 � m on D, we apply the
Cauchy–Schwarz inequality to deduce

mkr wk2L2.D/ � k
0 � 
k1kr u
0;f kL2.D/kr wkL2.D/;

which, returning to (29), shows that


@w
@�





H�1=2.@D/

� Ckr u
0;f kL2.D/k
0 � 
k1
�
1C M1

m

�
:

Applying the trace result [27, Theorem 9.4, Chapter I] now to each representative of
the equivalence class f 2 H 1=2.D/=C and optimising, there exists F 2 H 1.D/=C
such that

F j@D D f and kF kH1.D/=C � Ckf kH1=2.@D/=C

for a constant C D C.D/. By definition of a weak solution to (1) we haveZ
D


0 r u
0;f � r .u
0;f � F / D 0;
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and again applying the Cauchy–Schwarz inequality we deduce

kr u
0;f kL2.D/ � C
M0
m
kf kH1=2.@D/=C: (30)

Overall we have shown

.ƒ
 �ƒ
0/f 

H�1=2.@D/ � 


@w@� 


H�1=2.@D/
� C

�
1C M1

m

�
M0
m
k
 � 
0k1kf kH1=2.@D/=C:

Taking the supremumover allf withH 1=2.@D/=C norm equal to 1, (27) follows.

Proof of Lemma 7. When d � 3, Theorem 1 inAlessandrini [2] states that there exist
constants ı D ı.d; ˇ/ and C D C.M;m;D;D0; ˇ/ such that there is a (monotone)
function ! satisfying

k
 � 
0k1 � C!
�
kƒ
 �ƒ
0k�

�
; !.t/ � log.1=t/�ı for t < e�1: (31)

Likewise, when d D 2, we can use Theorem 1.1 in Novikov & Santacesaria [37]
in conjunction with the usual reduction of the Calderón problem to a suitable
Schrödinger equation (e.g. see Lemma 4.8 and the proof of Theorem 4.1 in [43])
to show that (31) still holds in this case. (In [37], an a priori bound for k
kC2
is assumed, which is derived here from the bound M on k
kHˇ using a Sobolev
embedding.)

To proceed, we appeal to Lemma 5, noting thatM upper bounds k
k1 and k
0k1
(up to a multiplicative constant) by a Sobolev embedding. Thus, for a constant C 0
depending onM; m,D; D0, ˇ and r we have

!
�
kƒ
 �ƒ
0k�

�
� !

�
C 0kƒ
 �ƒ
0k

1=2
Hr

�
�
�
1
4
log
�
kƒ
 �ƒ
0k

�1
Hr

���ı
;

provided kƒ
 �ƒ
0kHr < min.e�2.C 0/�2; .C 0/�4; 1/: The result follows.

5.3. Tests and prior support properties. In this section we prove two main auxil-
iary results. First, we prove the existence of certain statistical test functions required
in the contraction theorem given in Section 5.4. Instead of using robust ‘Hellinger-
distance’-based testing as in [30, 48], it is more convenient in the present setting (in
part to deal with necessary boundedness restrictions on 
 ) to deduce the existence
of tests from the existence of certain estimators with sufficiently good concentration
properties (following ideas in [15]).

Recall �m1;D1 is a superset of �m0;D0 on which the prior on 
 D ˆ ı �

concentrates its mass.
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Lemma 8. Let 
0 2 �m0;D0 be bounded byM0 onD. Let �" > 0 satisfy

�""
�.1�a/

!1 as "! 0

for some 0 < a < 1. For any � > 0 and M1 > 1, there exists a constant
C D C.�;m1;D;D1;M1;M0/ and tests (i.e. f0; 1g-valued measurable functions of
the data)  D  ".Y / with Y � P 
" from (12) such that for all " small enough

max
�
E
0"  ; sup

˚
E
" Œ1� � W 
 2 �m1;D1 ; k
k1 �M1; kƒ
 �ƒ
0kHr � C�"

	�
� e��.�"="/

2

:

Proof. We prove the existence of an estimator yƒ satisfying that for any � > 0; there
exists a constant C 0 D C 0.�;m1;D1;M0;M1;D/ such that for all " small enough,

sup
˚
P 
"
�
kyƒ � zƒ
kHr > C

0�"
�
W 
 2 �m1;D1 ; k
k1 � max.M0;M1/

	
� e��.�"="/

2

: (32)

Then, setting C D 2C 0 and  ".Y / D 1fkyƒ � zƒ
0kHr >
1
2
C�"g; the result follows

from an application of the triangle inequality (see, e.g., the proof of Proposition 6.2.2
in [16]).

Define an estimator yƒ by yƒ D
P
j;k�J

yƒjkb
.r/

jk
, where J D J" D b�"="c and

yƒjk D hY; b
.r/

jk
iHr D h

zƒ
�
.r/
j ; �

.0/

k
iL2.@D/ C "gjk; Y � P



" ; (33)

where we note gjk D hW ; b
.r/

jk
iHr

i id
� N.0; 1/. Then we have the bias-variance

decomposition

P 
"
�
kyƒ � zƒ
kHr > C

0�"
�
� 1

˚
kzƒ
 � �JJ zƒ
kHr >

1
2
C 0�"

	
C P 
"

�
kyƒ � �JJ zƒ
kHr >

1
2
C 0�"

�
: (34)

Recall, byLemma4, for any � > 0 there is a constantC1DC1.�; r;M0;M1; m1;D1;D/

such that
kzƒ
 � �JJ zƒ
kHr � C1J

�� ; (35)

hence the indicator in (34) is bounded by 1fC1J�� >
1
2
C 0�"g. Choosing � >

.1� a/=a, one finds that the assumption �""�.1�a/ !1 ensures this term vanishes
for " small enough.

For the variance term in (34), observe that by Parseval’s identity

kyƒ � �JJ zƒ
k
2
Hr D

X
j;k�J

�
yƒjk � hzƒ
�

.r/
j ; �

.0/

k
iL2.@D/

�2
D "2

X
j;k�J

g2jk :
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One now applies a standard tail inequality (e.g. [16, Theorem 3.1.9]) to the effect that

Pr
� X
j;k�J

g2jk � J
2
C 2J

p
x C 2x

�
� e�x : (36)

For a constant � > 0, taking x D �.�"="/
2, and for our choice J D b�"="c, we see

that for C 0 large enough depending only on � we have

P 
"

�
kyƒ � �JJ zƒ
k

2
Hr >

1

2
C 0�2"

�
� e��.�"="/

2

;

hence the result.

To proceed define K.p; q/ D EX�p log pq .X/ to be the Kullback–Leibler
divergence between distributions with densities p and q, and recall the definition
of the probability densities p
" from (13). Also denote by Var
 the variance operator
associated to the probability measure P 
" . The following is then a standard result for
a white noise model on a Hilbert space.
Lemma 9. Let 
0; 
1 2 �m1;D1 . Then

K.p
0" ; p

1
" / D

1

2
"�2kƒ
0 �ƒ
1k

2
Hr ;

and

Var
0
�
log

p

0
"

p

1
"

�
D "�2kƒ
0 �ƒ
1k

2
Hr :

Proof. Using the explicit formula (13) for the log-likelihoods, we see that under 
0,

`.
0/ � `.
1/ D "
�2
hY; zƒ
0 �

zƒ
1iHr �
1
2
"�2kzƒ
0k

2
Hr C

1
2
"�2kzƒ
1k

2
Hr

D
1
2
"�2kzƒ
0 �

zƒ
1k
2
Hr C "

�1
hW ; zƒ
0 �

zƒ
1iHr ;

which is normally distributed with mean 1
2
"�2kzƒ
0 �

zƒ
1k
2
Hr and variance

"�2kzƒ
0�
zƒ
1k

2
Hr . Noting that zƒ
0� zƒ
1 D ƒ
0�ƒ
1 , we deduce the result.

We define ‘balls’ B"KL.�/ around the true parameter �0 D ˆ�1 ı 
0 by

B"KL.�/ D
˚
� 2 Cu.D/ W K.p


0
" ; p

ˆı�
" / � .�="/2;

Var
0
�
log.p
0" =p

ˆı�
" /

�
� .�="/2

	
: (37)

Then the following is an immediate consequence of Lemma 9.
Corollary 10. For any � > 0,˚

� 2 Cu.D/ W kƒˆı� �ƒ
0kHr � �
	
� B"KL.�/:
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With the preceding preparations, we can now prove the following support result
for the prior… from Theorem 3, using a result of Li & Linde [26].
Lemma 11. Let �" D "˛=.˛Cd/. Under the conditions of Theorem 3, there exists a
constant ! D !.˛;m1;M;D;D1; ˆ; r/ > 0 such that ….B"KL.�"// � e

�!.�"="/
2

for all " small enough, uniformly in 
0 in the set (21).

Proof. By (16) and a Sobolev embedding, there is a constant M0 depending only
on ˆ, ˛ and M such that k
0k1 � M0. By Lemma 6, we deduce, for a constant
C D C.r;D;D1/,

kƒ
 �ƒ
0kHr � C
M0k
k1

m21
k
 � 
0k

1=2
1

provided k
�
0k1 is small enough. It follows from this calculation andCorollary 10
that for �" small enough and some constant C 0 > 0 we have˚

� W kˆ ı � � 
0k1 � C
0�2"
	
�
˚
kƒˆı� �ƒ
0kHr � �"

	
� B"KL.�"/:

Appealing again to (16), we further deduce that˚
� 2 Cu.D/ W k� � �0k1 � A�

2
"

	
� B"KL.�"/;

for a constant A D A.˛;M;m1;D;D1; r; ˆ/, so that it remains to lower bound
….k� � �0k1 � A�2"/. Note (recalling Assumption 1 and the definition of the
prior (15)) that… has RKHS H" D f��

0 W � 0 2 Hg, with norm k � kH" satisfying the
bound

k�kH" � "
�d=.˛Cd/

k� 0kH D .�"="/k�
0
kH ;

for any � 0 such that �� 0 D � . Because �0 D ˆ�1 ı 
0 for some 
0 2 �m0;D0 , we see
from the definitions of ˆ and � that �0 D ��0, hence we deduce that

k�0kH" � .�"="/k�0kH �M�"=":

By Corollary 2.6.18 in [16], we then have

…
�
k� � �0k1 � A�

2
"

�
� e
�
1
2
k�0k

2
H"…

�
k�k1 � A�

2
"

�
� e�

1
2M

2.�"="/
2

…0
�
k� 0k1 � A

�3"
"

�
:

Next, since H embeds continuously intoH˛.Id / for some large enough cube Id
(by a standard extension argument for Sobolev spaces), the unit ball BH of H has
covering numbers with respect to the supremumnormN D N.BH ; k � k1; ı/ (i.e. the
smallest number of k � k1 balls of radius ı needed to cover BH ) satisfying

logN
�
BH ; k � k1; ı

�
� Kı�d=˛ (38)
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for some constant K D K.˛;D/ (cf. after Corollary 4.3.38 in [16]). We can thus
apply [26], Theorem 1.2, to see

…0
�
k� 0k1 � A

�3"
"

�
� e�A

0.
�3"
" /
�s

;

for some constant A0 D A0.A;K/, where s is such that d
˛
D

2s
2Cs

, i.e. s D 2d
2˛�d

.
Overall, we have shown

….B"KL.�"// � e
� 12M

2.�"="/
2

e�A
0.�3"="/

�2d=.2˛�d/

;

where the constantA0 depends only onD, ˛,M ,m1,D1, r andˆ. For �" D "˛=.˛Cd/
we find

.�3"="/
�2d=.2˛�d/

D .�"="/
2;

and the result follows.

5.4. Posterior asymptotics.

5.4.1. Posterior regularity and contraction about ƒ
0
. The following two results

follow ideas from Bayesian nonparametric statistics [14, 48] combined with the
lemmas from the previous section. Together with the stability estimate Lemma 7,
these two estimates allow us to proceed as in [30] to prove Theorem 3.
Lemma 12. Let �"; ! be as in Lemma 11. Under the assumptions of Theorem 3
there existsM 0 > 0 such that

sup

02�m0;D0\fˆı� W�2H ;k�kH�M g

P 
0"
�
…
�
k
kHˇ.D/ > M

0
j Y
�
> e�.!C4/.�"="/

2�
! 0; (39)

as " ! 0. The bound (39) also holds with the supremum norm k � k1 in place of
theHˇ .D/ norm.
Theorem 13. Let �"; ! be as in Lemma 11. Under the conditions of Theorem 3,
there exists C > 0 such that

sup

02�m0;D0\fˆı� W�2H ;k�kH�M g

P 
0"
�
…
�
kƒ
�ƒ
0kHr > C�" j Y

�
> 2e�.!C4/.�="/

2�
! 0; (40)

as "! 0.
To prove the preceding results, we note that the posterior from (14) can be written

as

….B j Y / D

R
B
p


" .Y /=p


0
" .Y / d….
/R

�m1;D1
p


" .Y /=p


0
" .Y / d….
/

; B � �m1;D1 measurable: (41)

The following lemma controls the size of the denominator in the last expression.
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Lemma 14. Let �"; ! be as in Lemma 11. Introduce the event

L D L!;
0 D
nZ
�m1;D1

p


"

p

0
"

.Y / d….
/ � e�.!C2/.�"="/2
o
:

Then, under the assumptions of Theorem 3, we have

sup

02�m0;D0\fˆı� W�2H ;k�kH�M g

P 
0" .L
c/! 0; as "! 0: (42)

Proof. Given Lemma 11, the proof is a standard argument based on Chebyshev’s
inequality, Jensen’s inequality and Fubini’s theorem (see e.g. [16, Lemma 7.3.4] for
a proof in the setting of white noise on L2.Œ0; 1�/ which adapts straightforwardly
to the current Hilbert space setting, with probability measure � there equal to the
renormalised restriction of d….
/ to B"KL.�"/).

Proof of Lemma 12. DefineL as in Lemma 14. By (41), using Fubini’s theorem and
the fact that E
0" p



"

p

0
"

.Y / D 1, we see that for every Borel set B

E
0"
�
1L….B j Y /

�
� e.!C2/.�"="/

2

E
0"

Z
B

p


"

p

0
"

.Y / d….
/ D e.!C2/.�"="/2….B/:

Then, setting B D fk
kHˇ.D/ > M 0g, an application of Markov’s inequality yields

P 
0"
�
…
�
k
kHˇ.D/ > M

0
j Y
�
> e�.!C4/.�"="/

2�
� P 
0" .L

c/C e.2!C6/.�"="/
2

…
�
k
kHˇ.D/ > M

0
�
:

The first term on the right vanishes asymptotically, uniformly across 
0 in the given
set, by Lemma 14. For the second, we recall (18) and the definition (15) of the prior.
In conjunction with the facts that "�d=.˛Cd/ D �"=" for our choice of �" and that

k�� 0kHˇ.D/ � Ck�kHˇ.D/k�
0
kHˇ.D/

for some constant C (since ˇ > d=2), these allow us to deduce that

…
�
k
kHˇ.D/ > M

0
�
� …0

�
k� 0kHˇ.D/ >

�"
"
.Ck�kHˇ.D//

�1.M 0=C 0 � 1/1=ˇ
�
:

Since �"="!1 and since…0.Hˇ .D// D 1 by hypothesis, we can apply a version of
Fernique’s theorem, more specifically Theorem 2.1.20 in [16] (see also Example 2.1.6
therein) to deduce that for any c > 0 there exists aM 0 DM 0.ˇ; c; C 0; �/ such that the
last probability does not exceed e�c.�"="/2 . Taking c > 2! C 6 concludes the proof
for the Hˇ .D/ norm, and the result for the supremum norm follows by a Sobolev
embedding and adjusting the constantM 0.
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Proof of Theorem 13. We decompose in a standard way: writing

S D
˚

 2 �m1;D1 W kƒ
 �ƒ
0kHr > C�"; k
k1 �M

0
	
;

forM 0 the constant of Lemma 12 andC a large enough constant (to be chosen below),
we have, for  the test given by Lemma 8 and L as in Lemma 14,

…
�
kƒ
 �ƒ
0kHr > C�" j Y

�
� …

�
S j Y

�
C…

�
k
k1 > M 0 j Y

�
;

….S j Y / � 1Lc C  C….S j Y /1LŒ1 �  �:
(43)

Hence, denoting by C the event f….kƒ
 �ƒ
0kHr > C�" j Y / > 2e
�.!C4/.�"="/

2
g,

we have

P 
0" .C/ � P

0
"

�
…
�
k
k1 > M 0 j Y

�
> e�.!C4/.�"="/

2�
C P 
0"

�
….S j Y / > e�.!C4/.�"="/

2�
;

P 
0"
�
….S j Y / > e�.!C4/.�"="/

2�
� P 
0" .L

c/CE
0"  

C P 
0"
�
….S j Y /1LŒ1 �  � > e

�.!C4/.�"="/
2�
:

In view of Lemmas 8, 12, and 14, it suffices to show that there exists a constant C
such that

P 
0"
�
….S j Y /1LŒ1 �  � > e

�.!C4/.�"="/
2�
! 0;

uniformly across 
0 in the given set, and we note that k
0k1 is uniformly bounded
in the set by a Sobolev embedding. Appealing to (41), Fubini’s theorem and again
Lemma 8 we have for every � > 0 and for C large enough (depending on �),

E
0"
�
….S j Y /1L.1 �  /

�
� e.!C2/.�"="/

2

E
0"

Z
S

p


"

p

0
"

.Y /.1 �  /.Y / d….
/

� e.!C2/.�"="/
2

Z
S

E
"
�
.1 �  /.Y /

�
d….
/

� e.!C2��/.�"="/
2

;

hence byMarkov’s inequality, the probability in question is bounded by e.2!C6��/.�"="/2 .
This tends to zero, uniformly in 
0, if C is large enough to permit � > 2! C 6.

5.4.2. Proof of Theorem 3. Recall Lemma 7 to the effect that

k
 � 
0k1 � C
0
jlogkƒ
 �ƒ
0kHr j

�ı ;

at least for kƒ
 �ƒ
0kHr small enough, for some ı D ı.d; ˇ/ > 0 and a constantC 0
depending only onM ,D,D1, ˛, ˇ, r , and an upper bound for k
kHˇ.D/, where we
have also used k
0kHˇ.D/ � k
0kH˛.D/, eq. (18) and the hypothesis on 
0. Thus,
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for M 0 > 0 the constant of Lemma 12 and C1 > 0 large enough that Theorem 13
applies with constant C1, we have�
k
kHˇ.D/ �M

0
�
^
�
kƒ
 �ƒ
0kHr � C1�"

�
H) k
 � 
0k1 � C

0�";ı :

In view of (17), for " small enough (noting that since C 0�";ı ! 0 it is eventually
smaller than m0 �m1), we further deduce for a constant C that

…
�
k� � �0k1 > C�";ı j Y

�
� …

�
kƒ
 �ƒ
0kHr > C1�" j Y

�
C…

�
k
kHˇ.D/ > M

0
j Y
�
: (44)

Then Theorem 13 and Lemma 12 imply the contraction rate (22).
To prove consistency of the posterior mean EŒ� j Y �, introduce, for !;L as in

Lemma 14, the event

A D L \
˚
…
�
k� � �0k1 > C�";ı j Y

�
� 3e�.!C4/.�"="/

2	
;

and note that

P 
0"
�
kE…Œ� j Y � � �0k1 > K�";ı

�
� P 
0" .A

c/C P 
0"
�
kE…Œ� � �0 j Y �k11A > K�";ı

�
: (45)

In view of (44), observe that Ac is contained in

Lc [
˚
…
�
kƒ
 �ƒ
0kHr > C1�" j Y

�
> 2e�.!C4/.�"="/

2	
[
˚
…
�
k
kHˇ.D/ > M

0
j Y
�
> e�.!C4/.�"="/

2	
; (46)

hence, by Lemmas 12 and 14, and Theorem 13, P 
0" .Ac/! 0 as "! 0, uniformly
in 
0. Now for the second term in (45), by Jensen’s inequality and the Cauchy–
Schwarz inequality, we have

kE…Œ� � �0 j Y �k11A

� C�";ı CE
…
�
k� � �0k11

˚
k� � �0k1 > C�";ı

	 ˇ̌
Y
�
1A

� C�";ı C
�
E…

�
k� � �0k

2
1 j Y

��1=2
…
�
k� � �0k1 > C�";ı j Y

�1=2
1A;

and by Markov’s inequality, it follows for K > C that

P 
0"
�
kE…Œ� � �0 j Y �k11A > K�";ı

�
�

1
.K�C/�";ı

E
0"

h�
E…

�
k���0k

2
1 j Y

��1=2�
…
˚
k���0k1 > C�";ı j Y

	�1=2
1A

i
:

(47)
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Again applying the Cauchy–Schwarz inequality the last expected value is bounded
by

E
0"
�
E…

�
k� � �0k

2
1 j Y

�
1A

�1=2
E
0"

�
…
�
k� � �0k1 > C�";ı j Y

�
1A

�1=2
:

From the definition of the event A it is immediate that

E
0"
�
…
�
k� � �0k1 > C�";ı j Y

�
1A

�
� 3e�.!C4/.�"="/

2

;

while, applying (41) and Fubini’s theorem and since E
0"
pˆı�"

p

0
"

.Y / D 1, we have

E
0"
�
E…

�
k� � �0k

2
1 j Y

�
1A

�
� e.!C2/.�"="/

2

E
0"

�Z
Cu.D/

k� � �0k
2
1

pˆı�"

p

0
"

.Y / d….�/
�

� e.!C2/.�"="/
2

E…k� � �0k
2
1:

Plugging this back into (47), we see

P 
0"
�
kE…Œ� � �0 j Y �k11A > K�";ı

�
�

p
3

.K�C/�";ı

�
e.!C2/.�"="/

2

E…k� � �0k
2
1e
�.!C4/.�"="/

2�1=2
:

Note that, since E…k� � �0k21 � 2.k�0k
2
1 C E

…k�k21/ and E…
0

k� 0k21 is finite
([16, Exercise 2.1.2 and Theorem 2.1.20a]), a Sobolev embedding combined with
the prior definition (15) implies that E…k� � �0k21 is bounded uniformly across the
specified �0’s. Since e�.�"="/2=�";ı ! 0, we see, returning to (45), that the result
follows.

5.5. Proof of the lower bound Theorem 2. Recall the shorthand (20) and also the
definition ofK.p; q/ from before Lemma 9. It is enough to find 
0; 
1 2 �˛m0;D0.M/

(both allowed to depend on ") such that, for some � small enough (to be chosen),
i. k
1 � 
0k1 � �";ı0 � log.1="/�ı0 ,
ii. K.p
1" ; p
0" / � �.
Indeed, the standard proof of this reduction (for example as in [16, Theorem 6.3.2]
or [46, Chapter 2]) is as follows. Under condition (i), noting that

 D 1
˚
kz
 � 
1k1 < kz
 � 
0k1

	
yields a test ofH0W 
 D 
0 againstH1W 
 D 
1, we see

inf
z


sup

2�˛

m0;D0
.M/

P 
"
�
kz
 � 
k1 �

1
2
�";ı0

�
� inf

 
max

�
P 
0" . 6D 0/; P


1
" . 6D 1/

�
;
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where the latter infimum is over all tests . Introducing the eventA D
n
p

0
"

p

1
"

� 1=2
o
,

we see

P 
0" . 6D 0/ � E

1
"

h
p

0
"

p

1
"

1A 
i
�

1
2

�
P 
1" . D 1/ � P


1
" .A

c/
�
:

Thus, writing p1 D P 
1" . D 1/, we see

max
�
P 
0" . 6D 0/; P


1
" . 6D 1/

�
� max

�
1
2
.p1 � P


1
" .A

c//; 1 � p1
�

� inf
p2Œ0;1�

max
�
1
2
.p � P 
1" .A

c//; 1 � p
�
:

The infimum is attained when 1
2
.p�P


1
" .A

c// D 1�p and takes the value 1
3
P

1
" .A/

so that
inf
z


sup

2�˛

m0;D0
.M/

P 
"
�
kz
 � 
k1 �

1
2
�";ı0

�
�

1
3
P 
1" .A/: (48)

Next observe

P 
1" .A/ D P

1
"

h
p

1
"

p

0
"

� 2
i

D 1 � P 
1"

h
log
�
p

1
"

p

0
"

�
> log 2

i
� 1 � P 
1"

hˇ̌
log

�
p

1
"

p

0
"

�ˇ̌
> log 2

i
� 1 � .log 2/�1E
1"

ˇ̌
log
�
p

1
"

p

0
"

�ˇ̌
;

where we have used Markov’s inequality to attain the final expression. By the second
Pinsker inequality ([16, Proposition 6.1.7b]), using condition (ii) we can continue the
chain of inequalities to see

P 
1" .A/ � 1�.log 2/
�1
�
K.p
1" ; p


0
" /C

q
2K.p


1
" ; p


0
" /
�
� 1�.log 2/�1.�C

p
2�/:

Choosing � small enough, we can thus lower bound (48) by

1

3

�
1 �

�C
p
2�

log 2

�
>
1

4
;

so that Theorem 2 will follow.
Now we prove the existence of 
0; 
1 2 �˛m0;D0.M/ satisfying conditions (i)

and (ii). We appeal to Corollary 1 in [28], which says that for any integer k � 2,
any q � 0, some B > 0 and any � 2 .0; 1/ there exist 
0; 
1 such that

supp.
j � 1/ � D0; 
j � 1 onD for j D 0; 1;
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and

a. k
1 � 
0k1 � � ,

b. kƒ
1 �ƒ
0kH�q.@D/=C!Hq˘ .@D/ � exp
�
���

d
.2d�1/k

�
,

c. max
�
k
1kCk.D/; k
0kCk.D/

�
� B ,

where the norm in (b) is the operator norm and where k � kCk.D/ denotes the usual
normon the spaceC k.D/ of functionswith bounded continuous partial derivatives up
to order k. (Note that [28] states this with full spaceH�q.@D/ in place of the quotient
space, but since ƒ
j maps constant functions to 0 for j D 0; 1, the two operator
norms coincide.) For M sufficiently large, we may take k D ˛ to deduce (noting
that C ˛.D/ continuously embeds intoH˛.D/) that there exist 
0; 
1 2 �˛m0;D0.M/

satisfying (a) and (b). Taking � D �";ı0 we note that (i) holds by definition.
For (ii), applying Lemma 18 with

s D 0; p D min.d � 1; r/;
and q D .d � 1 � r/C � max.d � 1 � r; 0/ D d � 1 � p;

we see that, for a constant C D C.d; r/,

kƒ
1 �ƒ
0kHr � Ckƒ
1 �ƒ
0kH�q.@D/=C!Hq˘ .@D/:

Thus, appealing to Lemma 9, we can bound the KL-divergences K.p
1" ; p
0" / by

"�2kƒ
1 �ƒ
0k
2
Hr � C

2"�2kƒ
1 �ƒ
0k
2
H�q!Hq

� C 2 exp
�
2 log.1="/ � .log.1="//�

ı0d
.2d�1/˛

�
:

Since ı0 > ˛.2d � 1/=d by assumption, the final expression tends to zero as "! 0

and in particular is less than the � of condition (ii) for " small enough.

A. Laplace–Beltrami eigenfunctions and Sobolev spaces

In this appendix, we define the Sobolev spaces H r.D/; H r.@D/ for a bounded
domainD � Rd , with smooth boundary @D.

Definition (H r.D/). We follow [27] to define these Sobolev spaces: see Chapter I,
Sections 1.1, 9.1, and 12.1 (pp. 1, 40, and 70, respectively) for details. For r 2 N[f0g
we set

H r.D/ D
n
f 2 L2.D/ W kf k2Hr .D/ D

X
j˛j�r

kD˛f k2L2.D/ <1
o
;
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where for a multi-index ˛ D .˛1; : : : ; ˛d /; ˛j 2 N [ f0g for j � d , of order
j˛j D

P
j�d ˛j ,

D˛
D

@j˛j

@x
˛1
1 : : : @x

˛d
d

;

with partial derivatives defined in a weak sense. L2.D/ is defined with respect to the
Lebesgue measure onD. NoteH r.D/ is a Hilbert space, with inner product

hf; giHr .D/ D
X
j˛j�r

Z
D˛f �D˛g:

For r 2 R, r � 0 we then defineH r.D/ via interpolation. Finally, defining

H r
0 .D/ D

˚
f 2 H r.D/ W @

jf

@�j

ˇ̌
@D
D 0; 0 � j < r � 1=2

	
;

with the normal boundary derivatives defined in a trace sense, we define H r.D/,
r < 0, as the topological dual space .H jrj0 .D//�, equipped with the dual norm.
(cf. Chapter I, Sections 11.1, 11.4, and 12.1 on pp. 55, 62, and 70 of [27].)

For C1c .D/ the space of smooth functions compactly supported in D, H 1
loc.D/

is defined as

H 1
loc.D/ D

˚
f locally integrable W f � 2 H 1.D/ for all � 2 C1c .D/

	
(see [27, Chapter II, Section 3.2 on p. 125]), or, equivalently,

H 1
loc.D/ D ff locally integrable W

f jU 2 H
1.U / for all domains U satisfying xU � Dg:

To define the Sobolev space H r.@D/ for the compact boundary manifold @D, let
.�k D �

.0/

k
W k 2 N [ f0g/ be an orthonormal basis of L2.@D/ consisting of real-

valued eigenfunctions of the Laplace–Beltrami operator �@D . The basic properties
of such a basis are gathered, for example, in Chavel [7], Chapter I. Let �k � 0 be the
corresponding eigenvalues:

��@D�k D �k�k :

(By convention these are assumed to have been sorted in increasing order.)
Definition (H r.@D/). For r � 0, we define

H r.@D/ D

�
f 2 L2.@D/ s.t.

1X
kD0

.1C�k/
r
jhf; �kiL2.@D/j

2
DW kf k2Hr .@D/ <1

�
;

where the space L2.@D/ is defined relative to the surface element on @D. For r < 0,
we defineH r.@D/ as the completion ofL2.@D/with respect to the norm k � kHr .@D/
(defined as in the above display).
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Remarks. i. It is immediate that f�k W k 2 N [ f0gg is an orthogonal spanning set
of H r.@D/, and that setting �.r/

k
D .1 C �k/

�r=2�k yields an orthonormal basis
ofH r.@D/.

ii. This definition ofH r.@D/ coincides with other possible definitions. For example,
for r D 1 the calculationZ

@D

r �k � r �l D �

Z
@D

�k�@D�l D �l

Z
@D

�k�l D �lıkl ;

derived via the divergence theorem on a closed manifold (e.g. see [7, eq. (35)];
note that the manifold @D is compact) implies that our definition of k � kH1.@D/ is
equivalent to the standard definition

kf k2H1.@D/ D kf k
2
L2.@D/ C kr f k

2
L2.@D/;

and inductively the same is true forH r.@D/, r 2 N.
For the equivalence of this definition with some other definitions of negative

or non-integer Sobolev spaces, see [27, Chapter I, Section 7.3 on pp. 34–37]. In
particular note thatH�s.@D/ is the topological dual space ofH s.@D/ for any s 2 R.

iii. Note that �0 is a constant function, hence theH r.@D/=C norm, defined by

kŒf �kHr .@D/=C D inf
z2C
kf � zk

for Œf � the equivalence class over C of a function f 2 H r.@D/, can also be
characterised as

kŒf �k2Hr .@D/=C D

1X
kD1

.1C �k/
r
jhf; �kiL2.@D/j

2: (49)

Recall also
H s
˘.@D/ D

˚
g 2 H s.@D/ W hg; 1iL2.@D/ D 0

	
(see (5)). Note that each Œf � 2 H s.@D/=C has a representative g 2 H s

˘.@D/, and

kŒf �kH s.@D/=C D kgkH s.@D/:

We thus use the norm (49) on spaces H s.@D/=C and on H s
˘.@D/ without further

mention. We also typically write f for the equivalence class Œf � and only comment
further on this where necessary.

This ‘spectral’ definition of H r.@D/ is useful particularly because Weyl’s law
explicitly specifies the scaling of �k as k !1.
Lemma 15 (Weyl’s law on a compact closed manifold, e.g. [7, eq. (49)]). SupposeM
is a closed compact manifold of dimension d . Then

N.�/ D .2�/�d�d=2!d Vol.M/C o.�d=2/;
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whereN.�/ is the number of eigenvalues (counted with multiplicity) no bigger than �
and !d is the volume of a unit disc in Rd .
Corollary 16. The eigenvalues of the Laplace–Beltrami operator �@D satisfy

C1k
2=.d�1/

� �k � C2k
2=.d�1/

for constants C1; C2 depending only onD. Hence, the eigenfunctions satisfy

C3
�
1C k

1
d�1

�s�r
� k�

.r/

k
kH s.@D/ � C4

�
1C k

1
d�1

�s�r
; s; r 2 R; (50)

for constants C3 and C4 depending only on @D and on the difference s � r .
For k > 0 the same expression holds with the quotient norm k�.r/

k
kH s.@D/=C in

place of k�.r/
k
kH s.@D/.

Proof. We applyWeyl’s law on themanifold @D, which has dimension d�1. Writing
N.��/ for limx"�N.x/ and N.�C/ for limx#�N.x/, we thus have

N.��k / � k � N.�
C

k
/:

It follows that

C�
.d�1/=2

k
C o

�
�
.d�1/=2

k

�
� k � C�

.d�1/=2

k
C o

�
�
.d�1/=2

k

�
for the constant C D C.D/ D .2�/�.d�1/!d�1Area.@D/ and hence we deduce the
scaling of the eigenvalues. Then (50) follows from the definition ofH r.@D/ and the
remarks thereafter.

B. Comparison results for Hilbert–Schmidt operators

For separable Hilbert spaces A and B , we use the notation L.A;B/ for the space
of bounded linear maps A ! B equipped with the operator norm k � kA!B ,
andL2.A;B/ for the space ofHilbert–Schmidt operatorsA! B equippedwith inner
product h� ; �iL2.A;B/ (e.g. see [4, Chapter 12]). Define the orthonormal basis .b.p;q/

jk
/

of L2.H
p;H q/ by

b
.p;q/

jk
.f / D �

.p/
j ˝ �

.q/

k
.f / D hf; �

.p/
j iHp�

.q/

k
; j; k 2 N;

(in this appendix we omit explicit reference to the domain, writing Hp for either
Hp.@D/=C or Hp

˘ .@D/; as in remark (iii) in Appendix A, both spaces can be
identified with spanf�.p/

k
W k � 1g, hence the omission should not cause confusion).

The compatibility between our bases of H˛.@D/ for different ˛ 2 R means
that the subspaces spanned by .b.p;q/

jk
/j�J;k�K coincide for all p and q, and the

L2.H
p;H q/-orthogonal projections onto this subspace coincide with �JK (as
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defined in (24)). Corollary 16 implies the following lemmas controlling Hilbert–
Schmidt norms for different domains and codomains in terms of each other, and in
terms of operator norms.

Lemma 17. Let p; q; r; s 2 R and let T 2 spanfb.p;q/
jk

W 1 � j � J; 1 � k � Kg.
Then there is a constant C depending only onD and on the differences r � p; s � q
such that

kT kL2.Hr ;H s/ � C
�
1C J 1=.d�1/

�.p�r/C�1CK1=.d�1/�.s�q/CkT kL2.Hp ;Hq/;
where xC D max.x; 0/ for x 2 R.

Proof. The coefficients a.r;s/
jk

of T with respect to the basis .b.r;s/
jk

/ are given by

a
.r;s/

jk
D hT; b

.r;s/

jk
iL2.Hr ;H s/

�

X
p

hT�.r/p ; b
.r;s/

jk
.�.r/p /iH s D hT�

.r/
j ; �

.s/

k
iH s

and we see from Corollary 16 that

ja
.r;s/

jk
j � C

�
1C j 1=.d�1/

�p�r�
1C k1=.d�1/

�s�q
ja
.p;q/

jk
j (51)

for a constant C depending only onD and the differences r � p; s � q.
Upper bounding�

1C j 1=.d�1/
�.p�r/

�
�
1C J 1=.d�1/

�.p�r/C
for j � J , and similarly for k, we find that

kT k2L2.Hr ;H s/ D
X

j�J;k�K

ja
.r;s/

jk
j
2

� C
�
1C J 1=.d�1/

�2.p�r/C�1CK1=.d�1/�2.s�q/CkT k2L2.Hp ;Hq/;
hence the result.

Lemma 18. For p; q; r; s2R satisfying p�r and q�s, let T 2L.Hp�.d�1/;H q/.
Then we have T 2 L2.H

r ;H s/ with, for constant C depending only on D and the
differences r � p, q � s,

kT kL2.Hr ;H s/ � CkT kHp�.d�1/!Hq ;

and moreover

kT � �JKT kL2.Hr ;H s/

� CkT kHp�.d�1/!Hq max
�
.1C J 1=.d�1//p�r ; .1CK1=.d�1//s�q

�
:
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Proof. Firstly, as a consequence of Corollary 16, we have, for a constant C D C.D/,

kT�
.p/
j k

2
Hq � kT k

2
Hp�.d�1/!Hq

k�
.p/
j k

2
Hp�.d�1/

� CkT k2
Hp�.d�1/!Hq

�
1C j 1=.d�1/

��2.d�1/
; (52)

which is summable over j , hence by definition of the space of Hilbert–Schmidt
operators,

T 2 L2.H
p;H q/ and kT kL2.Hp ;Hq/ � C

0
kT kHp�.d�1/!Hq :

That T lies in L2.H
r ;H s/ and satisfies the the specified bound follows by

monotonicity ofH˛ norms.
Since the L2.H

r ;H s/-orthogonal projection maps coincide for all r and s, next
defining a.r;s/

jk
as in the previous proof, we have from (51) that for a constant C ,

kT � �JKT k
2
L2.Hr ;H s/

D

X
j > J or k > K

ja
.r;s/

jk
j
2

� C
X

j > J or k > K

�
1C j 1=.d�1/

�2.p�r/�
1C k1=.d�1/

�2.s�q/
ja
.p;q/

jk
j
2:

Since p � r and q � s, we see thatX
j>J

X
k

�
1C j 1=.d�1/

�2.p�r/�
1C k1=.d�1/

�2.s�q/
ja
.p;q/

jk
j
2

�
�
1C J 1=.d�1/

�2.p�r/X
j>J

X
k

ja
.p;q/

jk
j
2

�
�
1C J 1=.d�1/

�2.p�r/
kT k2L2.Hp ;Hq/:

Arguing similarly for the sum over all j and over k > K, we deduce that

kT � �JKT k
2
L2.Hr ;H s/

� 2CkT k2L2.Hp ;Hq/max
��
1C J 1=.d�1/

�2.p�r/
;
�
1CK1=.d�1/

�2.s�q/�
:

The result follows.

C. Mapping properties of ƒ
 and zƒ


In this appendix we prove the following mapping properties of ƒ
 and zƒ
 which
were used throughout the main body of the paper. The proofs rely on basic theory for
elliptic PDEs, which can be found in the many books on the subject (we shall refer
mostly to [27]).
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Lemma 19. Let s 2 R, let m 2 .0; 1/ and let D0 be a domain compactly contained
inD. For 
 2 �m;D0 and f 2 H sC1.@D/=C, there is a unique weak solution

u
;f 2 Hs D
�
Hminf1;sC3=2g.D/ \H 1

loc.D/
�
=C

to the Dirichlet problem (1). Moreover, if u1;f is the unique solution when 
 D 1,
then for any other 
 2 �m;D0 bounded by M on D, u
;f � u1;f lies in H 1

0 .D/=C
and satisfies the estimate

ku
;f � u1;f kH1.D/=C � C
M
m
kf kH sC1.@D/=C; (53)

for some constant C D C.D;D0; s/.
Lemma 19 is neither novel nor necessarily sharp, but we require explicit bounds

controlling how the constants depend on 
 for our proofs, which is why the result is
given here.
Lemma 20. For some m 2 .0; 1/ and some domain D0 compactly contained in D,
let 
 2 �m;D0 . For each s 2 R, ƒ
 is a continuous linear map from H sC1.@D/=C
toH s

˘.@D/, and it is continuously invertible. For each s; t 2 R, the shifted operator
zƒ
 D ƒ
 �ƒ1 is a continuous map fromH s.@D/=C toH t

˘.@D/.
Moreover, if 
 also satisfies the bound k
k1 � M , then we have the explicit

bounds

kƒ
kH sC1.@D/=C!H s.@D/ � C1
M

m
; (54)

kzƒ
kH s.@D/=C!H t .@D/ � C2
M

m
; (55)

for constants C1 D C.D;D0; s/ and C2 D C2.D;D0; s; t/.
Given Lemma 20, the following is an immediate consequence of Lemma 18

(recall Hr is defined in (10), and note that the proofs of the previous lemmas imply
that zƒ
 maps real-valued functions to real-valued functions).
Lemma 21. For any r 2 R and any 
 2 �m;D0 , zƒ
 2 Hr .

A key to proving Lemmas 19 and 20 is the following basic fact about harmonic
functions. For convenience of the reader, we include a proof (following Lemma A.1
in [19]). Recall that a function h is harmonic on some domain � if �h D 0

on �, where � denotes the Laplacian. Note that as we have assumed 
 D 1 on a
neighbourhood D nD0 of @D, our solutions u
;f (and in particular, the differences
u
;f � u
0;f between solutions) are harmonic on this neighbourhood.
Lemma 22 (Interior smoothness of harmonic functions). Let U0; U be bounded do-
mains such that xU �U0. Then for any s; t 2R, there is a constant C DC.s; t; U; U0/
such that for any harmonic function v 2 H s.U /,

kvkH s.U /=C � CkvkH t .U0/=C:



198 K. Abraham and R. Nickl

Proof. By monotonicity of H t norms it suffices to prove the result for s D t C k

for k 2 N. Let v 2 H t .U0/ represent the equivalence class and choose a domain U1
such that

xU � U1 � xU1 � U0:

Let � be a smooth cutoff function, identically one on U1 and compactly supported
in U0. For z 2 C we observe that zv WD .v � z/� satisfies

�zv D F in U0;
zv D 0 on @U0;

where F D 2r � � r v C .v � z/��. Then

kvkH tC1.U1/=C � kv � zkH tC1.U1/ � kzvkH tC1.U0/ � CkF kH t�1.U0/;

by standard elliptic boundary value regularity results (e.g. [27, Chapter II, Remark 7.2
on p. 188] with N D f0g there as we are considering the standard Laplace equation;
in the case t < 1 Remark 7.2 gives the result with a different norm in place of
the H t�1.U0/ norm on the right, but the two norms are equivalent when restricted
to functions of compact support in U0). Note

kF kH t�1.U0/ � C.�/
�
kvkH t .U0/=C C kv � zkH t�1.U0/

�
;

and optimising across z 2 C yields

kvkH tC1.U1/=C � CkvkH t .U0/=C: (56)

Finally, we choose a finite sequence of domains .Uj /1�j�k such that Uk D U and,
for 1 � j � k, xUj � Uj�1; applying (56) successively on each pair .Uj ; Uj�1/, we
deduce the result.

Proof of Lemma 19. We adapt the proof of Theorem A.2 from Hanke et al. [19] to
the Dirichlet setting here. From standard theory for the Laplacian, for 
 D 1 and
f 2 H sC1.@D/=C there exists a solution u1;f 2 H sC3=2.D/=C to the Dirichlet
problem (1), and this solution satisfies

ku1;f kH sC3=2.D/=C � Ckf kH sC1.@D/=C (57)

for a constant C D C.D; s/ (e.g. see [27, Chapter II, Remark 7.2 on p. 188] with
N D f0g). Also note that, as a harmonic function, u1;f 2 H 1

loc.D/=C by Lemma 22.
Define the sesquilinear operator B
 and the conjugate linear operator A,

B
 .w; v/ D

Z
D


 r w � r xv; and A.v/ D �

Z
D


 r u1;f � r xv;

and consider the equation

B
 .w; v/ D A.v/ 8v 2 H
1
0 .D/: (58)
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Observe that if w 2 H 1
0 .D/ solves (58), then u
;f D w C u1;f solves the weak

Dirichlet problem (4); note that u
;f so defined lies inHs . We will use Lax–Milgram
theory to show the existence and uniqueness of such a w.

By definition any 
 2 �m;D0 is bounded; consistently with the second half of
the lemma let M be an upper bound for k
k1. Let v;w 2 H 1

0 .D/. By the
Cauchy–Schwarz inequality,

jB
 .w; v/j �MkwkH1.D/kvkH1.D/;

and we also note

B
 .v; v/ � mkr vk
2
L2.D/ � cmkvk

2
H1.D/;

where the latter inequality, with constant c D c.D/, is the Poincaré inequality
(e.g. [1, Corollary 6.31] applied to v 2 H 1

0 .D/). In other words, B
 is bounded
and coercive. Next, since 
 D 1 on D nD0, for v 2 H 1

0 .D/, an application of the
divergence theorem yields

�

Z
DnD0


 r u1;f � r xv D �

Z
D

r u1;f � r xv C

Z
D0
r u1;f � r xv

D

Z
D

xv�u1;f �

Z
@D

xv
@u1;f

@�
C

Z
D0
r u1;f � r xv

D

Z
D0
r u1;f � r xv:

It follows, since k1 � 
k1 � k
k1 �M , that

jA.v/j D
ˇ̌̌Z
D0
�
 r u1;f � r xv �

Z
DnD0


 r u1;f � r xv
ˇ̌̌

D

ˇ̌̌Z
D0
.1 � 
/r u1;f � r xv

ˇ̌̌
�MkvkH1.D/kr u1;f kL2.D0/:

By Lemma 22 and recalling (57), there are constants C and C 0 depending only
onD;D0 and s such that

kr u1;f kL2.D0/ � ku1;f kH1.D0/=C

� C 0ku1;f kH sC3=2.D/=C � Ckf kH sC1.@D/=C:

Thus,
jA.v/j � CMkf kH sC1.@D/kvkH1.D/:

We deduce from the Lax–Milgram theorem (e.g. [11, Theorem 1 in Section 6.2.1];
note while the theorem there is stated for real scalars and bilinear maps, the same
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proofworks for complex scalars and sesquilinearmaps) that (58) has a unique solution
w 2 H 1

0 .D/. Moreover, the equation B
 .w;w/ D A.w/ shows that kwkH1.D/ is
upper bounded the operator norm of A divided by the coercivity constant of B
 ,
yielding (53).

It remains to show that the (equivalence class of) function(s) u
;f so constructed
is the unique solution inHs to (4). Since we have shown uniqueness ofw, it is enough
to show that the difference h between two Hs solutions lies inH 1

0 .D/, as then it must
be the zero function. (We are considering h as a function, rather than an equivalence
class of functions, which we can do by for example choosing a representative with
average zero.) This is clear for s � �1=2 as then Hs D H 1.D/=C, and can be
shown also for s < �1=2 as in [19], Theorem A.2.

Proof of Lemma 20. We first remark, for 
 2 �m;D0 , that by the divergence theorem,˝
@u
@�
; 1
˛
L2.@D/

D

Z
@D


 @u
@�
D

Z
D

r �.
 r u/ D 0

for a solution u to the Dirichlet problem (1), so that it suffices to prove (54), (55), and
the continuity of ƒ�1
 WH s

˘.@D/! H sC1.@D/=C.
We first prove (55), by adapting the proof of Theorem A.3 from [19] and tracking

the constants. Given f 2 H s.@D/ let u
;f 2 Hs�1 be the unique solution to
the Dirichlet problem (1) and let w 2 H 1

0 be a representative of the function class
u
;f � u1;f . Choose a domain � with smooth boundary @�, satisfying

xD0 � � � x� � D:

Choose also domains U;U0 with smooth boundaries such that

@� � U � xU � U0 � xU0 � D nD
0:

We can apply an appropriate trace theorem ([27] Chapter I, Theorem 9.4 for t > 0,
Chapter II, Theorem 6.5 (and Remark 6.4) for t � �3=2, or Chapter II, Theorem 7.3
for�3=2 < t < 1=2; note in the latter two cases we use thatw is harmonic onD n x�)
to w � z and optimise across z 2 C to see

k@w=@�kH t .@D/ � CkwkH tC3=2.Dnx�/=C: (59)

Applying [27, Chapter II, Remark 7.2 on p. 188] with N D f0g we see

kwkH tC3=2.Dnx�/=C � C
�
ktrwkH tC1.@D/=C C ktrwkH tC1.@�/=C

�
D CktrwkH tC1.@�/=C:

Again applying an appropriate trace theorem, this time on a subset of U bounded on
one side by @�, and applying Lemma 22, we see

ktrwkH tC1.@�/=C � CkwkH tC3=2.U /=C � C 0kwkH1.U0/=C:
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The constants in the above depend on D and (via �; U and U0) on D0, but are
otherwise independent of 
 . Recalling (53), which, because the smoothness of f
here is s, tells us

kwkH1.U0/=C � C
�M
m

�
kf kH s.D/=C;

we overall have

k@w=@�kH t .@D/ � C
�M
m

�
kf kH s.@D/=C;

so that we have proved (55).
Now we prove (54); given (55), it suffices to show

kƒ1kH sC1.@D/=C!H s.@D/ � C
M
m

for an appropriate constant C . Since u1;f is harmonic on D, applying the trace
theorems from [27] as for (59) yields

k@u1;f =@�kH s.@D/ � Cku1;f kH sC3=2.D/=C

for a constant C D C.D; s/. Then [27, Chapter II, Remark 7.2] withN D f0g yields

ku1;f kH sC3=2.D/=C � C
0
kf kH sC1.@D/=C

for a constant C 0 D C 0.D; s/, and (54) follows.
Finally we remark that the same arguments (see [19, TheoremA.3]) applied to the

inverse of ƒ
 , which is the Neumann-to-Dirichlet map, show that this is continuous
fromH s

˘.@D/ toH sC1.@D/=C as claimed.

D. Asymptotic comparison of noise models

In this appendix we formulate and prove the asymptotic comparison results discussed
informally in Section 2.

D.1. A brief overview of the LeCam distance. We first define the LeCam def-
iciency and the LeCam distance, providing the sense in which the models will be
shown to be asymptotically related to each other. The concepts throughout this
appendix are drawn from LeCam’s 1986 monograph [25]. We refer to the expository
paper of Mariucci [29] for a gentler introduction to the area.

Definitions. Statistical experiment. A statistical experiment, or just experiment,
is the triple .X;F ; fP�g�2‚/, where for each � in the parameter space ‚, P� is a
probability measure on the measurable space .X;F /.
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Markov Kernel. For measurable spaces .Xi ;Fi /, i D 1; 2, a Markov kernel with
source .X1;F1/ and target .X2;F2/ is a map T WX1 �F2 ! Œ0; 1� such that T .x; �/
is a probability measure for each x 2 X1, and T .� ; A/ is measurable for eachA 2 F2.

Given a (deterministic) measurable function F WX1 ! X2 we will denote by TF
the Markov kernel

TF .x; A/ D 1fF.x/ 2 Ag: (60)

LeCam deficiency. The LeCam deficiency between experiments E1 and E2, where
Ei D .Xi ;Fi ; fPi;�g�2‚/ for i D 1; 2, for a common parameter space ‚, is

ı.E1;E2/ D inf
T

sup
�2‚

kTP1;� � P2;�kTV;

where the infimum is over all Markov kernels with source .X1;F1/ and target
.X2;F2/. The measure TP1;� is defined as

TP1;� .A/ D

Z
X1

T .x;A/ dP1;� .x/;

and k � kTV denotes the total variation norm on signed measures,

k�kTV D sup
A

j�.A/j:

The LeCam deficiency satisfies the triangle inequality, but is not symmetric.

LeCam distance. The LeCam distance between experiments E1 and E2 on a
common parameter space ‚ is

�.E1;E2/ D max.ı.E1;E2/; ı.E2;E1//:

If we identify experiments whose LeCam distance is zero, this defines a proper
metric.
Remark. Given any action set A, any loss function LW‚ � A ! Œ0; 1�, and any
decision rule �2WX2 ! A, there exists a (possibly randomised) decision rule
�1WX1 ! A such that, denoting the risk functions by

Rj .�j ; �/ D EX�Pj;�L.�; �j .X//; j D 1; 2;

we have (see [29, Theorem 2.7])

R1.�1; �/ � R2.�2; �/C ı.E1;E2/; 8� 2 ‚: (61)

We may further take the supremum over � and then the infimum over �2 (note that
the infimum over decision rules �1 associated as above to decision rules �2 upper
bounds the infimum over all decision rules �1) to see that the minimax risks

Rj;minimax D inf
�j

sup
�

Rj .�j ; �/; j D 1; 2
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satisfy
R1;minimax � R2;minimax C ı.E1;E2/: (62)

These equations capture the intuitive definition that the LeCam deficiency is the
worst-case error we incur when reconstructing a decision rule in E2 using data
from E1 (see also Theorem 27 where this intuition is made concrete for the models
considered here).

We gather the key tools wewill use to control LeCam deficiencies in the following
lemma. Recall that K.p; q/ denotes the Kullback–Leibler divergence between
distributions with densities p and q; in an abuse of notation we will in this section
also write K.P;Q/ for the Kullback–Leibler divergence between distributions P
andQ.
Lemma 23. Let E1 and E2 be experiments with a common parameter set ‚: write
Ej D .Xj ;Fj ; fPj;�g�2‚/.
a. Suppose further that the experiments are defined on a common probability space,

i.e. that X1 D X2 and F1 D F2. Then

�.E1;E2/ � sup
�2‚

kP1;� � P2;�kTV � sup
�2‚

q
K.P1;� ; P2;� /=2: (63)

b. Let F WX1 ! X2 be any (deterministic) measurable map. Then

ı.E1;E2/ � sup
�2‚

kP1;� ı F
�1
� P2;�kTV: (64)

c. Let F WX1 ! X2 be a measurable map. Suppose that P1;� ı F �1 D P2;�
for each � 2 ‚ and suppose that F.X/ is a sufficient statistic for X � P1;� .
Then �.E1;E2/ D 0.

Proof. a. The first inequality is immediate from the definition, since the Markov
kernel TId corresponding to the identity map IdWX1 ! X2 D X1 satisfies TIdP D P
for all probability measures P on .X1;F1/. The second inequality is Pinsker’s
inequality (e.g. [16, Proposition 6.1.7a]).

b. Observe that TFP1;� .A/ D P1;� .F.X/ 2 A/ D P1;� ı F
�1.A/: The result

follows.

c. See [29, Property 3.12].

D.2. LeCam deficiency bounds for noisy Calderón problems. First we recall
the noise models under consideration. The following displays are labelled with the
notation we will use for experiments with the specified data, in each case taking the
parameter space to be

f
 2 �m;D0 W k
k1 �M g
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for some constants m 2 .0; 1/;M > 1 and some domain D0 compactly contained
inD.

For noise level " > 0 and some P 2 N, in the ‘electrode’ model (7) we are given
data

E0WYp;q D hzƒ
 Œ p�;  qiL2.@D/ C "gp;q; p; q � P; gp;q
i id
� N.0; 1/;

where  p D cp1Ip for some disjoint (measurable) sets Ip D Ip;P � @D, with
constants cp chosen such that the  p are L2.@D/ orthonormal. For some " > 0,
r 2 R; and J;K 2 N, in the ‘discrete spectral’ model (8) we are given data

E
.r/
1 WYj;k D h

zƒ
 Œ�
.r/
j �; �

.0/

k
iL2.@D/ C "gj;k; j � J; k � K; gj;k

i id
� N.0; 1/;

for a (real-valued) Laplace–Beltrami basis .�.r/
k
W k 2 N/ ofH r.@D/=C. For " > 0

and r 2 R, in the ‘continuous’ model (12) (see also the equivalent (11)) we are given
data

E
.r/
2 WY D

zƒ
 C "W ; W a Gaussian white noise indexed by Hr .

We start with the following result which shows how to approximate the discrete
spectral model using the electrode model.
Theorem 24. Suppose [p�P Ip D @D and diam.Ip/ � .A=P /1=.d�1/ for a
constantA independent ofP , where diamS D supx;y2S jx�yj denotes the Euclidean
diameter of a subset S � Rd . Then the one-way LeCam deficiency ı.E0;E.0/1 /

satisfies

ı.E0;E
.0/
1 / � C

�
max.J;K/.5d�2/=.2d�2/ C "�1max.J;K/3d=.2d�2/

�
P�1=.d�1/;

for some constant C D C.A;D0;D;M;m/, and hence vanishes asymptotically if P
is large enough compared to "�1; J and K.
Remarks. i. The conditions on .Ip/p�P are only used to prove that we can
approximate any Laplace–Beltrami eigenfunction using a linear combination of
the . p/p�P with L2.@D/-norm approximation error proportional to P�1=.d�1/
(Lemma 25). If . p/p�P are such that we can approximate Laplace–Beltrami
eigenfunctions at a rate f .P / then we achieve the result with f .P / in place
of P�1=.d�1/ .

ii. The given conditions are naturally satisfied by ‘evenly spaced’ sets .Ip/p�P
partitioning the boundary @D, with a constant A depending only on the domain D.
This can be seen by considering the covering numbers N.@D; d@D; ı/ (the smallest
number of d@D balls of radius ı needed to cover @D) for d@D the geodesic distance.
Theorem 4.5 in Geller & Pensenson [13] applied to the current setting yields

N.@D; d@D; ı/ � Aı
�.d�1/
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for a constant A D A.D/, for any ı > 0. Taking ı D 2.A=P /1=.d�1/ we deduce
that there exist P balls of (d@D)-radius ı=2 covering D. To construct P disjoint
subsets of diameter at most ı, we simply assign each x 2 @D to exactly one of the
balls containing it (note the Euclidean diameter is upper bounded by the geodesic
diameter, because any geodesic path on the surface @D is also a path in Euclidean
space).

Proof. Let .Yp;q/ be the data from experiment E0. Let �Pj denote theL2-orthogonal
projection of �.0/j onto spanf p W p � P g, and write

ajp D h�
.0/
j ;  piL2.@D/ 2 R;

so that �Pj D
PP
pD1 ajp p . Define F WRP�P ! RJ�K via

F..upq/p;q�P /jk D
X
p;q�P

ajpakqupq:

For parameter set f
 2 �m;D0 W k
k1 �M g, let E 00 denote the experiment with data

E 00WY
0
j;k D F..Yp;q/p;q�P /jk D h

zƒ
�
P
j ; �

P
k iL2.@D/ C "g

0
j;k; (65)

where we define g0
j;k
D
P
p;q ajpakqgp;q; and let E 01 denote the experiment with

data (65) but for i.i.d. Gaussian noise. By Lemma 23b. we see that ı.E0;E 00/ D 0,
so by the triangle inequality we deduce

ı.E0;E
.0/
1 / � ı.E0;E

0
0/C ı.E

0
0;E
0
1/C ı.E

0
1;E

.0/
1 / � �.E 00;E

0
1/C�.E

0
1;E

.0/
1 /:

We control the terms on the right.

�.E 0
0
; E 0
1
/. The covariance of .g0

j;k
/ is given by

Cov.g0j;k; g
0
l;m/ D h�

P
j ; �

P
l iL2.@D/h�

P
k ; �

P
m iL2.@D/:

Writing

h�Pj ; �
P
l iL2.@D/ D h�

.0/
j ; �

.0/

l
iL2.@D/ C h�

.0/
j ; �Pl � �

.0/

l
iL2.@D/

C h�Pj � �
.0/
j ; �Pl iL2.@D/;

and applying theCauchy–Schwarz inequality (note also that k�P
l
kL2.@D/�k�

.0/

l
kL2.@D/

D 1) we see that

jh�Pj ; �
P
l iL2.@D/ � ıjl j � k�

P
j � �

.0/
j kL2.@D/ C k�

P
l � �

.0/

l
kL2.@D/:
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A similar decomposition further yields

jh�Pj ; �
P
l iL2.@D/h�

P
k ; �

P
m i � ıjlıkmj � 4 max

i�max.J;K/
k�Pi � �

.0/
i kL2.@D/:

Lemma 25 controls this L2 approximation error, yielding that for a constant C D
C.A;D/,

jCov.g0j;k; g
0
l;m/ � ıjlıkmj � C max.J;K/.1Cd=2/=.d�1/P�1=.d�1/:

Thus, controlling the LeCam distance between Gaussian experiments with equal
means by

p
2 times the Frobenius distance between the covariance matrices (e.g. as

in the proof of Theorem 3.1 in [41]) yields, for constants C 0; c0,

�.E 00;E
0
1/ �

p
2
� X
j;l�J;

X
k;m�K

�
Cov.g0j;k; g

0
l;m/ � ıjlıkm

�2�1=2
� c0JK max.J;K/.1Cd=2/=.d�1/P�1=.d�1/

� C 0max.J;K/.5d�2/=.2d�2/P�1=.d�1/:

�.E 0
1
; E

.0/

1
/. Explicitly calculating the Kullback–Leibler divergence between multi-

variate normals with the same covariance matrix (cf. the similar calculation in
Lemma 9) and using Lemma 23a. yields

�.E 01;E
.0/
1 / � 1

2
"�1

� sup

2�m;D0 Wk
k1�M



�h zƒ
�.0/j ; �
.0/

k
iL2.@D/�h

zƒ
�
P
j ; �

P
k iL2.@D/

�
j�J;k�K




RJ�K

;

where the norm on the right is the usual Frobenius or Hilbert–Schmidt norm
on the space of J � K matrices. By Lemma 20, kzƒ
kL2.@D/!L2.@D/ is
bounded by a constant C D C.D;D0;M;m/, hence applying also Lemma 25 (as
well as the Cauchy–Schwarz inequality) we have for a different constant C 0 D
C 0.A;D;D0;M;m/,�
h zƒ
�

.0/
j ; �

.0/

k
iL2.@D/ � h

zƒ
�
P
j ; �

P
k iL2.@D/

�2
D
�
h zƒ
 .�

.0/
j � �

P
j /; �

.0/

k
iL2.@D/ C h

zƒ
�
P
j ; �

.0/

k
� �Pk iL2.@D/

�2
� C 2

�
k�

.0/
j � �

P
j kL2.@D/ C k�

.0/

k
� �Pk kL2.@D/

�2
� C 0max.J;K/.2Cd/=.d�1/P�2=.d�1/:

Summing over j and k we deduce

�.E 01;E
.0/
1 / � C 0"�1max.J;K/3d=.2d�2/P�1=.d�1/;

concluding the proof.
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Lemma 25. Under the hypotheses of Theorem 24, let �Pj denote the L2-orthogonal
projection of �.0/j onto spanf p W p � P g. Then there is a constant C depending
only on the constant A of Theorem 24 and onD such that, for j � max.J;K/,

k�
.0/
j � �

P
j k

2
L2.@D/ � C max.J;K/.2Cd/=.d�1/P�2=.d�1/: (66)

Proof. Since �Pj as the L2-orthogonal projection minimises the L2 distance to �.0/j
of any function in spanf p W p � P g, for any points xp 2 Ip we see

k�
.0/
j � �

P
j k

2
L2.@D/ � k�

.0/
j �

PX
pD1

�
.0/
j .xp/1Ipk

2
L2.@D/

� max
p�P

.diam.Ip/2/
PX
pD1

Z
Ip

j�
.0/
j .x/ � �

.0/
j .xp/j

2

jx � xpj
2

dx

� .A=P /2=.d�1/k�
.0/
j k

2
Lip Area.@D/:

Using a Sobolev embedding for the compact manifold @D, we may estimating the
Lipschitz constant of�.0/j by a constant times k�.0/j kH�.@D/ for any � > 1C.d�1/=2.
In particular, taking � D 1C d=2, we see that the final expression is bounded by

C max.J;K/.2Cd/=.d�1/P�2=.d�1/

for some C D C.A;D/ by Corollary 16.

The following theorem shows that the ‘discrete spectral’ and the continuous
measurement models are very close to each other.
Theorem 26. For any r 2 R and any � > 0 there is a constant C D

C.�; r;D;D0;M;m/ such that the LeCam distance �.E.r/1 ;E
.r/
2 / satisfies

�.E
.r/
1 ;E

.r/
2 / � C"�1min.J;K/�� :

Proof. We introduce the experiments E
.r/
i , i D 3; 4 with parameter space

f
 2 �m;D0 W k
k1 �M g

corresponding to observations

E
.r/
3 W

�
�JK zƒ
 C "W

�
.U /U2Hr

D

�
h�JK zƒ
 ; U iHr C "

X
j;k

gjkhU�
.r/
j ; �

.0/

k
iL2.@D/

�
U2Hr

;

E
.r/
4 W

�
�JK zƒ
 C "W

�
.�JKU/U2Hr

D

�
h�JK zƒ
 ; �JKU iHr C "

X
j�J; k�K

gjkhU�
.r/
j ; �

.0/

k
iL2.@D/

�
U2Hr

;
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where we recall the projection �JK was defined in (24), and

gjk DW .b
.r/

jk
/
i id
� N.0; 1/:

By the triangle inequality, we decompose

�.E
.r/
1 ;E

.r/
2 / � �.E

.r/
2 ;E

.r/
3 /C�.E

.r/
3 ;E

.r/
4 /C�.E

.r/
4 ;E

.r/
1 /:

We control each of the terms on the right.

�.E
.r/

2
; E

.r/

3
/. Lemmas 23a. and 4, and the proof of Lemma 9 yield

�.E
.r/
2 ;E

.r/
3 / � 1

2
"�1 � sup


2�m;D0 Wk
k1�M

kzƒ
 � �JK zƒ
kHr

� C"�1min.J;K/�� ;

for a constant C D C.�; r;D;D0;M;m/.

�.E
.r/

3
; E

.r/

4
/. We note that .�JK zƒ
 C "W /.�JKU/U2Hr is a sufficient statistic

for .�JK zƒ
 C "W /.U /U2Hr by independence of .gjk/j�J;k�K from (gjk W j > J
or k > K), so that �.E.r/3 ;E

.r/
4 / D 0 by Lemma 23c.

�.E
.r/

4
; E

.r/

1
/. Using Lemma 23b. as in the proof of Theorem 24, it is clear that the

experiment E
.r/
1 is equivalent to observing�P

j�J;k�K

�
h zƒ
�

.r/
j ; �

.0/

k
iL2.@D/ujk C "gj;kujk

��
u2`2

;

where `2 denotes the space of square-summable real sequences. Since

.gjk/ WD
�
W .b

.r/

jk
/
� d
D .gj;k/

(the latter being the noise in E
.r/
1 ) and, for U D

P
j;k ujkb

.r/

jk
,P

j�J;k�Kh
zƒ
�

.r/
j ; �

.0/

k
iL2.@D/ujk D h�JK

zƒ
 ; �JKU iHr ;

we deduce �.E.r/4 ;E
.r/
1 / D 0.

Complementing the two previous theorems, let us remark that in fact

ı
�
E
.r/
2 ;E

.r/
1

�
D 0

and similarly
ı
�
E
.0/
2 ;E0

�
D 0;

as is shown in the proof of the lower bound in the following theorem.
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In our final result we prove that the rates obtained in Theorems 1 and 2 hold with P 
"
replaced by the law P 
";P of the data Y D .Yp;q/p;q�P in the electrode model (7), for
an appropriate number of electrodes P and for appropriate sets .Ip/p�P . The same
conclusion holds as well in the ‘discrete spectral’ model (8) — the proof of this fact
is similar (in fact simpler) and omitted.

Theorem 27. Let P 
";P denote the law of the data Y D .Yp;q/p;q�P in the electrode
model (7). Recall the parameter set �˛m0;D0.M/ defined in (3).

A. Suppose m0;D0; ˛;M satisfy the conditions of Theorem 1. Suppose that the
sets .Ip/p�P satisfy the conditions of Theorem 24 and that P � "��.d�1/ for
some � > 1. Then there exists a measurable function y
 0 of the data Y � P 
";P
such that, for C; ı the same constants as in Theorem 1,

sup

2�˛

m0;D0
.M/

P


";P

�
ky
 0 � 
k1 > C log.1="/�ı

�
! 0; as "! 0: (67)

B. SupposeD0;D;m0; ˛;M; c; ı0 are as in Theorem 2. LetP 2 N be arbitrary, and
let .Ip/p�P be arbitrary disjoint measurable sets. Then for all " small enough,

inf
z
 0

sup

2�˛

m0;D0
.M/

P


";P

�
kz
 0 � 
k1 > c log.1="/�ı0

�
> 1=4; (68)

where the infimum extends over all measurable functions z
 0 D z
 0.Y / of the
data Y � P 
";P .

Proof. We consider statistical experiments denoted E0, E
.r/
1 , E

.r/
2 defined as at the

start of Section D.2, but here for the smaller parameter space �˛m0;D0.M/. The
definition of the LeCam deficiency ensures that it cannot increase upon considering
a smaller parameter space, so that Theorems 24 and 26 continue to hold for these
experiments.

A. Consider the loss function

L.
; �/ D 1
˚
k
 � �k1 > C log.1="/�ı

	
:

The associated risk R of the decision rule y
 in the continuous model (12) is

P 
"
�
ky
 � 
k1 > C log.1="/�ı

�
;

so that sup
 R! 0 as "! 0, for any r 2 R, by Theorem 1.
In view of (61), there exists a measurable function y
 0 of the data in model (7)

whose riskR0 satisfiesR0 � RCı.E0;E.0/2 /: (In fact, as the proof shows, all Markov
kernels involved in bounding ı.E0;E.0/2 / arise from deterministic maps, and hence y
 0
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can be taken to be non-randomised.) The limit (67) (which is sup
 R0 ! 0) will
follow from showing that ı.E0;E.0/2 /! 0. The triangle inequality gives that

ı.E0;E
.0/
2 / � ı.E0;E

.0/
1 /C ı.E

.0/
1 ;E

.0/
2 /;

where we may freely choose the parameters J;K of the intermediate model. For
some positive constant

�0 < min
˚
.2d � 2/.� � 1/=.3d/; .2d � 2/�=.5d � 2/

	
;

take � > 1=�0 and choose J D K of order "��0 . Then, by Theorems 24 and 26, and
the triangle inequality, we have for a constant C

ı
�
E0;E

.0/
2

�
� C

�
"��1J 3d=.2d�2/ C J .5d�2/=.2d�2/"� C "�1J��

�
! 0;

as required.

B. Consider the loss function
zL.
; �/ D 1

˚
k
 � �k1 > c log.1="/�ı0

	
:

In view of Theorem 2, the associated minimax risk in the continuous model,
zRminimax D inf

�
sup


P 
"
�
k
 � �k1 > c log.1="/�ı0

�
is greater than 1=4, at least for " small enough. Then (62) implies that the minimax
risk zR0minimax in model (7) satisfies

zR0minimax > 1=4 � ı
�
E
.r/
2 ;E0

�
:

The lower bound (68) will follow from showing that ı.E.0/2 ;E0/ D 0. By
Lemma 23b., it suffices to show that the data in model (7) has law matching that
of some subset of the data observed in model (12) with r D 0. Such a subset,
recalling the concrete interpretation (11) of model (12), is given by .Y.Tpq//p;q�P ,
where

Tpq D  p ˝  q D h�;  piL2.@D/ q:

To see this, observe that

hTpq.�
.0/
j /; �

.0/

k
iL2.@D/ D h�

.0/
j ;  piL2.@D/h q; �

.0/

k
iL2.@D/;

hence

h zƒ
 ; TpqiH0 D
X
j;k

h zƒ
�
.0/
j ; �

.0/

k
iL2.@D/h�

.0/
j ;  piL2.@D/h q; �

.0/

k
iL2.@D/

D hzƒ
 p;  qiL2.@D/;

W .Tpq/ D
X
j;k

gjkh�
.0/
j ;  piL2.@D/h q; �

.0/

k
iL2.@D/:
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The noise variables g0p;q WD hW ; TpqiH0 are jointly normally distributed with
mean zero and covariances

Cov
�
g0p;q; g

0
l;m

�
D

X
j;k

h�
.0/
j ;  piL2.@D/h�

.0/
j ;  liL2.@D/

h q; �
.0/

k
i
L2.@D/

h m; �
.0/

k
iL2.@D/

D h p;  liL2.@D/h q;  miL2.@D/ D ıplıqm;

so that indeed .Y.Tpq//p;q�P
d
D .Yp;q/p;q�P as claimed.
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E. Notation index

D � Rd , d � 2. A bounded domain, which is taken to mean a connected open set with smooth
boundary @D.

�m;D0 D f
 2 C.D/ W infx2D 
.x/ � m; 
 D 1 onD nD0g, some m 2 .0; 1/ and some
domain D0 compactly contained in D (i.e. the closure xD0 is a subset of D). C.D/
denotes the real-valued bounded continuous functions fromD to R. Cu.D/ denotes the
real-valued uniformly continuous functions onD.

�˛
m;D0

.M/ D f
 2 �m;D0 W k
kH˛.D/ �M g.


 2 �m;D0 . A conductivity function, 
0 its ‘true’ value for some statistical theorems.

�0 D ˆ
�1 ı 
0 for ˆ described in Section 3.1. � 2 Cu.D/ a function of the formˆ�1 ı 
 for

 2 �m;D0 (usually denoting a generic draw from the prior… of (15)).

m0;D0. A lower bound and support set for the ‘true’ 
0; m1;D1 a lower bound and support
set for any draw 
 D ˆ ı � from the prior… of Section 3.1.

k � k1. The usual supremum norm on C.D/ or C.R/.

xv. The usual complex conjugate of a number or function .xv.x/ WD v.x//.

u
;f . The (weak) solution to the Dirichlet problem (1) (r �.
 r u/ D 0 inD, u D f on @D).

H s . An L2-Sobolev space of complex-valued functions (carefully defined in Appendix A);
H1
0
.D/ the traceless subset of H1.D/. Inner products here are linear in the first

argument and conjugate-linear in the second.
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Hs D .H
minf1;sC3=2g.D/ \H1loc.D//=C. H1loc is defined in Appendix A, and =C means we

identify functions f; f C c which are equal up to a scalar c 2 C.
H s˘.@D/ D fg 2 H

s.@D/ W hg; 1iL2.@D/ D 0g, L2˘.@D/ D H0˘.@D/.

.�
.r/

k
/k2N[f0g. An orthonormal basis ofH r .@D/ consisting of real-valued eigenfunctions of
the Laplace–Beltrami operator on @D, with corresponding eigenvalues (sorted so they
increase with k) �k � 0. More details in Appendix A.

 p D cp1Ip . Indicator functions of some disjoint measurable subsets .Ip/p�P of @D, scaled
to be orthonormal.

@
@�

. The outward normal derivative at the boundary of a domain (i.e. usually on @D) defined in
a trace sense. tr denotes the usual trace map, taking V WD ! C to its ‘boundary values’
trV D V j@D W @D ! C.

ƒ
 WH
sC1.@D/=C ! H s˘.@D/. The Dirichlet-to-Neumann map, taking f to 
 @u
;f

@�
j@D :

zƒ
 D ƒ
 �ƒ1.
k � k� D k � kH1=2.@D/=C!H�1=2.@D/, where k � kA!B denotes the operator norm between

Banach spaces A and B .
L.A;B/ D fT W A! B linear s.t. kT kA!B <1g.

L2.A;B/ D fT 2 L.A;B/ W kT k2L2.A;B/
WD
P
kkTe

.A/

k
k
2
B <1g. The space of Hilbert–

Schmidt operators from A to B for separable Hilbert spaces A and B , with .e.A/
k
/k2N

an orthonormal basis of A.
b
.r/

jk
.f / � .�

.r/

j
/˝ �

.0/

k
.f / D hf; �

.r/

j
iHr .@D/�

.0/

k
, j; k 2 N. These form an orthonormal

basis of Hr (considering real linear combinations) and of L2.H
r .@D/=C; L2˘.@D//

(considering complex linear combinations).
Hr D fT WH r .@D/! L2.@D/; T D

P1
j;kD1 tjkb

.r/

jk
W tjk 2 R;

P1
j;kD1 t

2
jk
<1g.

A (real) Hilbert space for the inner product

hS; T iHr
D

1X
j;kD1

sjk tjk D

1X
j;kD1

hS�
.r/

j
; �
.0/

k
iL2.@D/hT�

.r/

j
; �
.0/

k
iL2.@D/:

We can also view Hr as the subset (closed under vector addition and real scalar
multiplication) of L2.H

r .@D/=C; L2˘.@D// comprising those operators which map
real-valued functions to real-valued functions.

Y D zƒ
 C "W . The observed data in model (12), where W is a Gaussian white noise indexed
by the Hilbert space Hr , and " is a noise level which tends to zero for our asymptotic
results. Concrete interpretation of this model given in (11).

P


" D P



";r . The law ofY . E
" the corresponding expectation operator, Var
 the corresponding
variance operator.

p


" .Y / D exp. 1

"2
hY; zƒ
 iHr

�
1

2"2
kzƒ
k

2
Hr
/. The probability density of the law of Y w.r.t. the

law of "W .
`.
/ D logp
" . The log-likelihood function.
�";ı D .log."�1//�ı for "; ı > 0.
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…. A prior for � 2 Cu.D/ described in Section 3.1. … also denotes the induced prior on

 D ˆ ı � 2 �m1;D1 and the induced prior on ƒ
 .

…. � j Y /. The corresponding posterior. E…Œ � j Y � the posterior expectation.
.H ; k � kH / � .H˛.D/; k � kH˛.D//. The RKHS of a base prior …0 from which … is

constructed.
ˆ. A ‘regular link function’ used in the prior construction (see Section 3.1).
�WD ! Œ0; 1�. A smooth cutoff function used in the prior construction.
�JK . The Hr -orthogonal projection map onto spanfb.r/

jk
W j � J; k � Kg (see (24)).

K.P;Q/ D K.p; q/ D EX�p log..p=q/.X//, for distributions P;Q with densities p; q (the
Kullback–Leibler, or just KL, divergence)

B"
KL

.�/ D f� 2 Cu.D/ W K.p
�0
" ; p

ˆı�
" / � .�="/2;Var
0.log.p

�0
" =p

ˆı�
" // � .�="/2g.

N.S; �; ı/. The covering numbers of the set S for metric �, i.e. the smallest number of �-balls
of radius ı needed to cover S .
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