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Part III, Lent 2017, RN (email: r.nickl@statslab.cam.ac.uk)

1. Let T be any non-empty set and let Φ be a covariance mapping defined on it, that is,
Φ : T × T 7→ R is such that for all n ∈ N, t1, . . . , tn ∈ T , the matrix (Φ(ti, tj))

n
i,j=1 is symmetric

and and non-negative definite. Use Kolmogorov’s consistency theorem to show that there exists
a centred Gaussian process (X(t) : t ∈ T ) such that E[X(s)X(t)] = Φ(s, t).

2. Use the previous exercise to show the existence of Gaussian processes with the following
index sets and covariances, and find their intrinsic covariance metrics dX .

i) T = [0, 1], Φ(s, t) = min(s, t) (the Wiener or Brownian motion process)
ii) T = [0, 1] and Φ(s, t) = min(s, t)− st (the Brownian bridge process).
iii) T = [0, 1] and Φ(s, t) = s2H + t2H −|s− t|2H for some H ∈ (0, 1) (the fractional Brownian

motion process with Hurst index H)
iv) T = [0, 1]n and Φ(s, t) = min(s1, t1)× · · · ×min(sn, tn) (the Brownian sheet process).

3.* Let (B, ‖ · ‖B) be a separable Banach space with topological dual space B∗ = {f : B →
R linear and continuous} normed by ‖f‖B∗ = sup‖x‖B≤1 |f(x)|. Use the Hahn-Banach theorem
from functional analysis to show that there exists a countable subset D of the unit ball of B∗ such
that ‖x‖B = supf∈D |f(x)|. Show further that any Gaussian random variable X taking values

in B defines a Gaussian process (X̃(f) : f ∈ B∗) through the map f 7→ X̃(f) ≡ f(X), f ∈ B∗
and deduce that ‖X‖B = supf∈D |X̃(f)|.

4. Let K : Rn → R be a function and consider a mapping Φ(s, t) = K(s− t), s, t ∈ Rn. Show
that if K(x) =

∫
Rn e

iuxf(u)du for some non-negative, symmetric and integrable function f , then
Φ defines a covariance on T = Rn, and deduce the existence of a Gaussian process that has Φ as
a covariance.

5. Let X and Y be independent identically distributed centred normal random vectors in
Rn. For θ ∈ [0, 2π], define X(θ) = X sin θ + Y cos θ and let X ′(θ) = (d/dθ)X(θ). Show that the
random vectors (X,Y ) and (X(θ), X ′(θ)) have the same distribution in Rn × Rn

6. Let (Xn : n = 1, 2, . . . ) be an infinite sequence of jointly normal random variables such
that EXn = 0, EX2

n = 1 for all n. Show that for some α > 0,

E exp

α
[

sup
n

(
|Xn|√

log(1 + n)

)]2 <∞.

7. Let (X(t) : t ∈ T ) be a separable centred Gaussian process and denote its norm by
‖X‖T = supt∈T |X(t)|. Assume Pr(‖X‖T <∞) > 0. Show that for all p ≥ 1 there exists a finite
positive constant Kp that depends only on p such that

(E‖X‖pT )1/p ≤ KpE‖X‖T .

8. Prove the any finite Borel measure µ on a complete separable metric space S is tight (or
Radon), that is, for every ε > 0 there exists a compact set Kε such that µ(S \Kε) < ε.

9. Prove that fractional Brownian motion with Hurst index H > 0 is almost surely sample-
continuous on [0, 1] for the usual distance d(s, t) = |s − t|, and deduce that it defines a tight
Gaussian random variable on the Banach space C([0, 1]).

1



10. Prove the sample-continuity of the Brownian sheet in dimension n for its intrinsic co-
variance metric on [0, 1]n.

11. Let ε be a standard normal vector in Rp, p ≥ 2. Let

B0(k) = {θ ∈ Rp : θj 6= 0 for at most k vector components}, k ≤ p,

be the set of k-sparse vectors in Rp. Show that for any 1 ≤ k ≤ p,

E sup
θ∈B0(k),‖θ‖≤1

|εT θ| ≤ 2
√
k log p.

12. [Dudley’s metric entropy bound extends to sub-Gaussian and Rademacher processes.]
Say that a stochastic process (Y (t) : t ∈ T ) is sub-Gaussian for a metric d on T if

Eeλ(Y (s)−Y (t)) ≤ eλ
2d2(s,t)/2 ∀λ > 0,∀s, t ∈ T.

a) Let ε1, . . . , εn be i.i.d. Rademacher random variables such that Pr(ε = ±1) = 1/2, and let
T be a bounded subset of Rn. Show that the Rademacher process

Y (t) =
n∑
i=1

εiti, t = (t1, . . . , tn) ∈ Rn

is sub-Gaussian for the distance d(s, t) = ‖s− t‖ where ‖ · ‖ is the usual Euclidean norm on Rn.
b) Show that the ‘chaining lemma’ for Gaussian processes from lectures remains true for

‘sub-Gaussian’ processes.
c) Deduce that if there exists t0 ∈ T such that Y (t0) = 0, and T is countable, then for some

numerical constant C > 0,

E sup
t∈T
|Y (t)| ≤ C

∫ D

0

√
H(T, d, ε)dε,

where D is the d-diameter of T and H(T, d, ε) is the d-metric entropy of T .
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