
Introduction to Probability Michael Tehranchi
Lecture notes - Michaelmas 2006

These notes are a list of all of the definitions and results presented in the course. Since
they are free from any motivating exposition or examples, and since no proofs are given
for any of the theorems, these notes should be used only as a reference to supplement the
recommended texts. In what follows, phrases enclosed in brackets [ . . . ] are digressive or
slightly outside of the syllabus of the course, but are included for completeness. A table of
notation is in the appendix.

1. Basic tools

1.1. Probability spaces.

Definition 1.1. Let Ω be a set. A sigma-field on Ω is a non-empty set F of subsets of Ω
such that

(1) if A ∈ F then Ac ∈ F ,
(2) if A1, A2, . . . ∈ F then

⋃∞
i=1 Ai ∈ F .

[The terms sigma-field and sigma-algebra are interchangeable.]

Definition 1.2. Let Ω be a set and let F be a sigma-field on Ω. A probablity measure on
F is a function P : F → [0, 1] such that

(1) if A1, A2, . . . ∈ F are disjoint then P(
⋃∞

i=1 Ai) =
∑∞

i=1 P(Ai),
(2) P(Ω) = 1.

[The terms disjoint and mutually exclusive are interchangeable and refer to events A and B
such that A ∩B = ∅.]

Definition 1.3. Let Ω be a set, F a sigma-field on Ω, and P a probability measure on F .
The triple (Ω,F , P) is called a probability space.

The set Ω is called the sample space, and an element of Ω is called an outcome. A subset
of Ω which is an element of F is called an event.

Let A ∈ F be an event. If P(A) = 1 then A is called an almost sure event, and if P(A) = 0
then A is called a null event. [The phrase “almost surely” is often abbreviated a.s.]

1.2. Random variables and distribution functions.

Definition 1.4. Let (Ω,F , P) be a probability space. A random variable is a function
X : Ω → R such that the set {ω ∈ Ω : X(ω) ≤ t} is an element of F for all t ∈ R.

Let A be a subset of R, and let X be a random variable. We use the notation {X ∈ A} to
denote the set {ω ∈ Ω : X(ω) ∈ A}. A random variable X is said to take values in a subset
S ⊆ R if X ∈ S almost surely.

The distribution function of X is the function FX : R → [0, 1] defined by

FX(t) = P(X ≤ t)

for all t ∈ R.
[A distribution function is called defective if either limt↑∞ FX(t) < 1 or limt↓−∞ FX(t) > 0.

Unless otherwise indicated, all random variables considered here are assumed to have non-
defective distribution functions.]
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The law of X is the probability measure ν such that

ν([a, b]) = P(a ≤ X ≤ b)

for all a ≤ b. The statement “the random variable X has law ν” is written X ∼ ν. [The
measure ν is defined on theBorel sigma-field B, which is defined as the smallest sigma-field
on R containing the intervals [a, b] for all a ≤ b.]

Definition 1.5. Let A be an event in Ω. The indicator function of the event A is the random
variable 1A : Ω → {0, 1} defined by

1A(ω) =

{
1 if ω ∈ A
0 if ω ∈ Ac

for all ω ∈ Ω.

Definition 1.6. A random variable X is called discrete if X takes values in a countable set.
If X is discrete, the function pX : R → [0, 1] defined by pX(t) = P(X = t) is called the

mass function of X.

Definition 1.7. Let X is a discrete random variable taking values in N with mass function
pX .

The random variable X is called

• Bernoulli with parameter p if

pX(0) = 1− p and pX(1) = p.

where 0 ≤ p ≤ 1.
• binomial with parameters n and p, written X ∼ bin(n, p), if

pX(k) =

(
n

k

)
pk(1− p)n−k for all k = 0, 1, . . . , n

where n ∈ N and 0 ≤ p ≤ 1.
• Poisson with parameter λ if

pX(k) =
λk

k!
e−λ for all k = 0, 1, 2, . . .

where λ ≥ 0.
• geometric with parameter p if

pX(k) = p(1− p)k−1 for all k = 1, 2, 3, . . .

where 0 ≤ p ≤ 1.

[In the above formulae, the convention 00 = 1 is used. If X is geometric with parameter
p = 0, then X = ∞ almost surely.]

Definition 1.8. Let FX be the distribution of a random variable X. The random variable
X is continuous if and only if FX is a continuous function.

The random variable X is absolutely continuous if and only if there exists a positive
function fX : R → [0,∞) such that

FX(t) =

∫ t

−∞
fX(s)ds

for all t ∈ R, in which case the function fX is called the density function of X.
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Definition 1.9. Let X is a continuous random variable with density function fX .
The random variable X is called

• uniform on the interval (a, b), written X ∼ unif(a, b), if

fX(t) =
1

b− a
for all a < t < b

for some a < b.
• normal with mean µ and variance σ2, written X ∼ N(µ, σ2), if

fX(t) =
1√
2πσ

exp
(
− (x− µ)2

2σ2

)
for all t ∈ R

for some µ ∈ R and σ2 > 0.
• exponential with rate λ, written X ∼ exp(λ), if

fX(t) = λe−λt for all t ≥ 0

for some λ > 0.
• Cauchy if

fX(t) =
1

π(1 + t2)
for all t ∈ R.

1.3. Expectations and variances.

Definition 1.10. Let X be a random variable on (Ω,F , P). The expected value of X is
denoted by E(X) and is given by the integral

E(X) =

∫
Ω

X(ω)P(dω).

The above integral is defined in the following cases:

• if X ≥ 0 almost surely.
• if either E(X+) or E(X−) is finite, in which case E(X) = E(X+)− E(X−).

A random variable X is integrable if E|X| < ∞ and is square-integrable if E(X2) < ∞. The
terms expected value, expectation, and mean are interchangeable.

The variance of an integrable random variable X, written Var(X), is

Var(X) = E(X2)− E(X)2.

The covariance of square-integrable random variable X and Y , written Cov(X, Y ), is

Cov(X, Y ) = E(XY )− E(X)E(Y ).

If neither X or Y is almost surely constant, then their correlation, written ρ(X, Y ), is

ρ(X, Y ) =
Cov(X, Y )

Var(X)1/2Var(Y )1/2
.

Random variables X and Y are called uncorrelated if Cov(X, Y ) = 0.

Theorem 1.11. Let the function g : R → R be such that g(X) is integrable.
If X is a discrete random variable with probability mass function pX taking values in a

countable set S then
E(g(X)) =

∑
t∈S

g(t) pX(t).
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If X is an absolutely continuous integrable random variable with density function fX then

E(g(X)) =

∫ ∞

−∞
g(t) fX(t) dt.

Theorem 1.12 (Cauchy–Schwarz inequality). Let X and Y square-integrable random vari-
ables. Then

E(XY )2 ≤ E(X2)E(Y 2)

with equality if and only if aX = bY almost surely, for some constants a, b ∈ R.

1.4. Conditional probability and expectation, independence.

Definition 1.13. Let B be an event with P(B) > 0. The conditional probability of an event
A given B, written P(A|B), is

P(A|B) =
P(A ∩B)

P(B)
.

The conditional expectation of X given B, written E(X|B), is

E(X|B) =
E(X1B)

P(B)
.

Theorem 1.14 (The law of total probability). Let B1, B2, . . . be disjoint, non-null events
such that

⋃∞
i=1 Bi = Ω. Then

P(A) =
∞∑
i=1

P(A|Bi)P(Bi)

for all events A.

Definition 1.15. Let X and Y be random variables. The function FX,Y : R2 → [0, 1] defined
by

FX,Y (s, t) = P(X ≤ s, Y ≤ t)

is called their joint distribution function.
If both X and Y are discrete random variables, then the function pX,Y : R2 → [0, 1] defined

by
pX,Y (s, t) = P(X = s, Y = t)

is called their joint mass function. The conditional mass function of X given Y = t, where
pY (t) > 0, is defined as

pX|Y (s|t) = P(X = s|Y = t) =
pX,Y (s, t)

pY (t)
.

If there exists a function fX,Y : R2 → [0,∞) such that

FX,Y (s, t) =

∫ s

u=−∞

∫ t

v=−∞
fX,Y (u, v) du dv

then X and Y are said to be jointly absolutely continuous and fX,Y is called their joint
density function. The conditional density function of X given Y = t, where fY (t) > 0, is
defined as

fX|Y (s|t) = lim
δ↓0,ε↓0

1

δ
P(|X − s| < δ

∣∣ |Y − t| < ε) =
fX,Y (s, t)

fY (t)
.
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Theorem 1.16. Let the function g : R2 → R be such that g(X,Y ) is integrable.
If X and Y are discrete and taking values in a countable set S then

E(g(X, Y )) =
∑
s,t∈S

g(s, t) pX,Y (s, t).

If X and Y are jointly absolutely continuous then

E(g(X, Y )) =

∫ ∞

−∞

∫ ∞

−∞
g(s, t) fX,Y (s, t) ds dt.

Definition 1.17. Random variables X and Y are jointly normal with means µX and µY ,
variances σ2

X and σ2
Y , and correlation ρ, written(

X

Y

)
∼ N

((
µX

µY

)
,

(
σ2

X σXσY ρ
σXσY ρ σ2

Y

))
if the joint density function is

fX,Y (s, t) =
1

2πσXσY

√
1− ρ2

exp(−1

2
Q(s, t))

where

Q(s, t) =
1

1− ρ2

((s− µX

σX

)2 − 2ρ
(s− µX

σX

)(t− µY

σY

)
+

(t− µY

σY

)2
)

Definition 1.18. The conditional expectation of X given Y = t, written E(X|Y = t), is
defined by either Definition 1.13, if P(Y = t) > 0, or by the formula

E(X|Y = t) = lim
ε↓0

E(X1{|Y−t|<ε})

P(|Y − t| < ε)

if P(Y = t) = 0.
For fixed random variable X and Y , let h : R → R be the function defined by h(t) =

E(X|Y = t). The conditional expectation of X given Y , written E(X|Y ), is

E(X|Y ) = h(Y ).

Theorem 1.19. Let the function g : R → R be such that g(X) is integrable.
If X and Y are discrete taking values in S and pY (t) > 0, then

E(g(X)|Y = t) =
∑
s∈S

g(s) pX|Y (s, t).

If X and Y are jointly absolutely continuous and if fY (t) > 0 then

E(g(X)|Y = t) =

∫ ∞

−∞
g(s) fX|Y (s, t) ds.

Theorem 1.20 (The law of iterated expectation). Let X and Y be random variables and
suppose X is integrable. Then

E(X) = E(E(X|Y )).
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Definition 1.21. Let A1, A2, . . . be events. If

P(
⋂
i∈I

Ai) =
∏
i∈I

P(Ai)

for every finite subset I ⊂ N then the events are said to be independent.
Random variables X1, X2, . . . are called independent if the events {X1 ≤ t1}, {X2 ≤ t2}, . . .

are independent. [The phrase “independent and identically distributed” is often abbreviated
i.i.d.]

Theorem 1.22. If X and Y are discrete and independent random variables then

pX,Y (s, t) = pX(s)pY (t).

If X and Y are jointly absolutely continuous and independent random variables then

fX,Y (s, t) = fX(s)fY (t).

If X and Y are independent and integrable, then

E(XY ) = E(X)E(Y ).

1.5. Probability inequalities.

Theorem 1.23 (Markov’s inequality). Let X be a positive random variable. Then

P(X ≥ ε) ≤ E(X)

ε
for all ε > 0.

Corollary 1.24 (Chebychev’s inequality). Let X be a random variable with E(X) = µ and
Var(X) = σ2. Then

P(|X − µ| ≥ ε) ≤ σ2

ε2

for all ε > 0.

1.6. Generating and characteristic functions.

Definition 1.25. Let X be a random variable on (Ω,F , P) taking values in {0, 1, 2, . . .}.
The probability generating function of X is the function GX : [0, 1] → [0, 1] defined by

GX(t) = E(tX)

for all t ∈ (0, 1] and GX(0) = P(X = 0).

Theorem 1.26. Let GX be the probability generating function of X. Then

P(X = n) =
1

n!
G

(n)
X (0)

for all n ∈ N, where G
(n)
X (0) denotes the n-th derivative of GX evalutated at 0.

Definition 1.27. Let X be a random variable on (Ω,F , P). The moment generating function
of X is the function MX : R → R ∪ {∞} defined by

MX(t) = E(etX)

for all t ∈ R.
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Theorem 1.28. Let MX be the moment-generating function of a random variable X, and
suppose there exists an ε > 0 such that MX(t) < ∞ for all −ε < t < ε. Then

E(Xn) = M
(n)
X (0)

for all n ∈ N, where M
(n)
X (0) denotes the n-th derivative of MX evalutated at 0. (The number

µn = E(Xn) is called the n-th moment of X.)

Definition 1.29. The characteristic function of a real-valued random variable X is the
function φX : R → C defined by

φX(t) = E(eitX)

for all t ∈ R, where i =
√
−1.

Theorem 1.30 (Uniqueness of generating and characteristic functions). Let X and Y be
real-valued random variables with distribution functions FX and FY .

• Let φX and φY be the characteristic functions of X and Y . Then

φX(t) = φY (t) for all t ∈ R
if and only if

FX(t) = FY (t) for all t ∈ R.

• Let X and Y be valued in N with probability generating functions GX and GY . Then

GX(t) = GY (t) for all t ∈ [0, 1]

if and only if
FX(t) = FY (t) for all t ∈ R.

• Let MX and MY be the moment generating functions of X and Y . If there exists an
ε > 0 such that

MX(t) = MY (t) < ∞ for all t ∈ (−ε, ε)

then
FX(t) = FY (t) for all t ∈ R.

2. Fundamental probability results

Definition 2.1. Let x1, x2, . . . be a sequence of real numbers. The limit superior is defined
by

lim sup
n↑∞

xn = inf
N∈N

sup
n≥N

xn

and limit inferior by
lim inf

n↑∞
xn = sup

N∈N
inf
n≥N

xn.

Equivalently, if x ∈ R then

x = lim sup
n↑∞

xn ⇔ for all ε > 0

{
{n ∈ N : xn > x + ε} is finite
{n ∈ N : xn > x− ε} is infinite

and

x = lim inf
n↑∞

xn ⇔ for all ε > 0

{
{n ∈ N : xn < x + ε} is infinite
{n ∈ N : xn < x− ε} is finite

If lim supn↑∞ xn = lim infn↑∞ xn = x then the sequence x1, x2, . . . is convergent and with
limit x = limn↑∞ xn.
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Definition 2.2 (Modes of convergence). Let X1, X2, . . . and X be random variables.

• Xn → X almost surely if P(Xn → X) = 1
• Xn → X in Lp, for p ≥ 1, if E|X|p < ∞ and E|Xn −X|p → 0
• Xn → X in probability if P(|Xn −X| > ε) → 0 for all ε > 0
• Xn → X in distribution if FXn(t) → FX(t) for all points t ∈ R of continuity of FX

Theorem 2.3. The following implications hold:

Xn → X almost surely
or

Xn → X in Lp, p ≥ 1

 ⇒ Xn → X in probability ⇒ Xn → X in distribution

Furthermore, if r ≥ p ≥ 1 then Xn → X in Lr ⇒ Xn → X in Lp.

Definition 2.4. Let A1, A2, . . . be events. The term eventually is defined by

{An eventually} =
⋃

N∈N

⋂
n≥N

An

and infinitely often by

{An infinitely often} =
⋂

N∈N

⋃
n≥N

An.

[The phrase “infinitely often” is often abbreviated i.o.]

Theorem 2.5 (The first Borel-Cantelli lemma). Let A1, A2, . . . be a sequence of events. If
∞∑

n=1

P(An) < ∞

then P(An infinitely often) = 0.

Theorem 2.6 (The second Borel-Cantelli lemma). Let A1, A2, . . . be a sequence of indepen-
dent events. If

∞∑
n=1

P(An) = ∞

then P(An infinitely often) = 1.

Theorem 2.7 (A sufficient condition for almost sure convergence). Let X1, X2, . . . and X
be random variables. If

∞∑
n=1

P(|Xn −X| > ε) < ∞

for all ε > 0 then Xn → X almost surely.

Theorem 2.8 (Monotone convergence theorem). Let X1, X2, . . . be positive random variables
with Xn ≤ Xn+1 almost surely for all n ≥ 1, and let X = supn∈N Xn. Then Xn → X almost
surely and

E(Xn) → E(X).

Theorem 2.9 (Fatou’s lemma). Let X1, X2, . . . be positive random variables. Then

E(lim inf
n↑∞

Xn) ≤ lim inf
n↑∞

E(Xn).
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Theorem 2.10 (Dominated convergence theorem). Let X1, X2, . . . and X be random vari-
ables such that Xn → X almost surely. If E(supn≥1 |Xn|) < ∞ then

E(Xn) → E(X).

Definition 2.11. Let X1, X2, . . . be a collection of random variables, and let Sn = X1+ . . .+
Xn. The collection of random variables satisfies a weak law of large numbers if Sn/n → µ
in probability for some constant µ. The collection satisfies a strong law of large numbers if
Sn/n → µ almost surely.

Theorem 2.12 (A weak law of large numbers). Let X1, X2, . . . be independent and indenti-
cally distrubuted with

NP(|Xi| > N) → 0 and E(X1{|Xi|≤N}) → µ as N ↑ ∞
for some µ ∈ R then

X1 + . . . + Xn

n
→ µ in probability.

Theorem 2.13 (A strong law of large numbers). Let X1, X2, . . . be independent and identi-
cally distributed integrable random variables with common mean E(Xi) = µ. Then

X1 + . . . + Xn

n
→ µ almost surely.

Theorem 2.14 (Lévy’s continuity theorem). Let X1, X2, . . . and X be random variables with
characteristic functions φ1, φ2, . . . and φ respectively. The following are equivalent:

• Xn → X in distribution
• φn(t) → φ(t) for all t ∈ R

Theorem 2.15 (Central limit theorem). Let X1, X2, . . . be independent and identically dis-
tributed with E(Xi) = µ and Var(Xi) = σ2 for each i = 1, 2, . . ., and let

Zn =
X1 + . . . + Xn − nµ

σ
√

n
.

Then Zn → Z in distribution, where Z ∼ N(0, 1).

3. Markov chains

Definition 3.1. A stochastic process is a collection (Xi)i∈I of random variables. If the index
set I is N, then the stochastic process is called discrete time and is denoted by (Xn)n≥0. If
the index set I is [0,∞), then the stochastic process is called continuous time and is denoted
by (Xt)t≥0.

3.1. Discrete time Markov chains.

Definition 3.2. Let (Xn)n≥0 be a discrete time stochastic process taking values in a count-
able set S. The process (Xn)n≥0 is called a Markov chain if

P(Xn = in|X0 = i0, . . . , Xn−1 = in−1) = P(Xn = in|Xn−1 = in−1)

for each n ≥ 1, and s0, . . . , sn ∈ S. The set S is called the state space of the Markov chain,
and an elements of S is called a state. The Markov chain is called time homogeneous if

P(Xn = j|Xn−1 = i) = P(X1 = j|X0 = i)

for all n ≥ 1 and all states i, j ∈ S.
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Throughout these notes, all Markov chains are assumed to be time homogeneous.

Definition 3.3. Let (Xn)n≥0 be a Markov chain on a state space S. The numbers pij =
P(X1 = j|X0 = i) for i, j ∈ S are called the one-step transition probabilities, and pij(n) =
P(Xn = j|X0 = i) for n ≥ 0 the n-step transition probabilities.

The |S| × |S| matrix P = (pij)i,j∈S is called the transition matrix.
We use the notation

Pi(A) = P(A|X0 = i)

for any event A ∈ F , and
Ei(Z) = E(Z|X0 = i)

for any random variable Z for which the conditional expectation can be defined.

Theorem 3.4 (Chapman-Kolmogorov equations). Let pij(n) for i, j ∈ S and n ≥ 0 denote
the n-step transition probabilities of a Markov chain with state space S. Then

pik(m + n) =
∑
j∈S

pij(m)pjk(n)

for all i, k ∈ S and m, n ≥ 0. In particular, the n-step transition probabilities are given by

pij(n) = (P n)ij

where P is the transition matrix of the Markov chain.

Definition 3.5. A |S|×|S| matrix P = (pij)i,j∈S is called stochastic if pij ≥ 0 for all i, j ∈ S
and

∑
j∈S pij = 1 for all i ∈ S. In particular, a matrix is stochastic if and only if it is the

transition matrix of a Markov chain.

Theorem 3.6. Let P be an d×d matrix where d < ∞. Let λ1, . . . , λd be the eigenvalues of P .

If the eigenvalues are distinct, then there exists complex numbers a
(k)
ij for i, j, k ∈ {1, . . . , d}

such that

(P n)ij =
d∑

k=1

a
(k)
ij λn

k

for all n ∈ N. More generally, if the eigenvalues are not necessarily distinct, then there exists

polynomials a
(k)
ij : N → C for i, j, k ∈ {1, . . . , d} of degree less than the multiplicity of the

eigenvalue λk such that

(P n)ij =
d∑

k=1

a
(k)
ij (n)λn

k

for all n ∈ N.

Theorem 3.7. Let (Xn)n≥0 be a Markov chain on a state space S, and let A ⊆ S. Define
the random variable HA valued in N ∪ {∞} by

HA = inf{n ≥ 0 : Xn ∈ S}.
[The standard convention inf ∅ = ∞ is used throughout.] For each state i ∈ S let hA

i =
Pi(H

A < ∞). Then (hA
i )i∈S is the minimal non-negative solution to

hA
i =

{
1 if i ∈ A∑

i∈S pijh
A
j otherwise
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Definition 3.8. Let pij(n) for i, j ∈ S and n ≥ 0 denote the n-step transition probabilities
of a Markov chain with state space S.

States i leads to state j, written i → j, if there exists an n ≥ 0 such that pij(n) > 0.
States i and j communicate, written i ↔ j, if i → j and j → i. The communicating class
containing a state i is the largest subset C ⊆ S with the property that if state j is in C then
states i and j communicate.

A communicating class C is called closed it has the property if i ∈ C and i → j then
j ∈ C. Otherwise, C is called open if there exists a state i in C and a state j not in C such
that i leads to j.

A Markov chain is irreducible if all states in S communicate.

Definition 3.9. A state i ∈ S is called recurrent if

Pi(Xn = i infinitely often) = 1,

and called transient if
Pi(Xn = i infinitely often) < 1.

Let C ⊆ S be a communicating class of the Markov chain. The class is called a transient
class if every state i ∈ C is transient, and the class is called a recurrent class if every state
i ∈ C is recurrent.

[The terms recurrent and persistent are interchangeable.]

Definition 3.10. Let (Xn)n≥0 be a Markov chain with state space S. A stopping time T
is a random variable taking values in N ∪ {∞} having the property that for each n ∈ N
the event {T = n} is determined by X0, . . . , Xn} in the sense that there exists a function
f : Sn → {0, 1} such that

1{T=n} = f(X0, . . . , Xn).

Theorem 3.11 (The strong Markov property). Let (Xn)n≥0 be a Markov chain with state
space S and let T be a stopping time. Then conditional on the events {T < ∞} and XT = i,
the random process (XT+n)n≥0 is a Markov chain starting at i, independent of X0, . . . , XT .

Theorem 3.12. Let (Xn)n≥0 be a Markov chain with state space S. For each state i ∈ S
define the random variable Ti taking values in N ∪ {∞} by

Ti = inf{n ≥ 1 : Xn = i}.
The following are equivalent:

• State i is recurrent.
•

∑∞
n=1 pii(n) = ∞.

• Pi(Ti < ∞) = 1

Moreover, the following are equivalent:

• State i is transient.
• Pi(Xn = i infinitely often) = 0.
• Pi(Ti < ∞) < 1.
•

∑∞
n=1 pii(n) = 1

1−Pi(Ti<∞)
< ∞.

Definition 3.13. Let (Xn)n≥0 be a Markov chain and let Ti = inf{n ≥ 1 : Xn = i}. The
state i is called positive recurrent if Ei(Ti) < ∞ and is called null recurrent otherwise. [The
terms positive and non-null are interchangeable in the context of recurrent Markov chains.]
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Theorem 3.14 (Recurrence, transience, and positive recurrence are class properties). Let
i and j be communicating states of a Markov chain. Then i is recurrent if and only if j is
recurrent. Equivalently, i is transient if and only if j is transient. Also, i is positive recurrent
if and only if j is positive recurrent.

Definition 3.15. Let P be the transition matrix of a Markov chain. An invariant distribu-
tion is a row vector π = (πi)i∈S such that πi ≥ 0 for all i ∈ S,

∑
i∈S πi = 1 and

πP = π.

[The terms invariant distribution and stationary distribution are interchangeable.]

Theorem 3.16. Let (Xn)n≥0 be an irreducible Markov chain with transition matrix P . Then
(Xn)n≥0 is positive recurrent if an only if there exists an invariant distribution for P . If the
Markov chain is positive recurrent then the invariant distribution is unique and is given by
the formula

πi =
1

Ei(Ti)

where Ti = inf{n ≥ 1 : Xn = i}.

Theorem 3.17. Let (Xn)n≥0 be an irreducible recurrent Markov chain on S with transition
matrix P . Let k ∈ S be a fixed state and let Tk = inf{n ≥ 1 : Xn = k}. For each i ∈ S let

γ
(k)
i = Ek

Tk∑
n=1

1{Xn=i}

be the expected number of times, conditional starting from state k, the chain visits state

i before returning to k, and let γ(k) be the row vector (γ
(k)
i )i∈S. Then γ(k) is satisfies the

equation
γ(k)P = γ(k)

with γ
(k)
k = 1. If (Xn)n≥0 is positive recurrent with invariant distribution π then

γ
(k)
i =

πi

πk

.

Definition 3.18. Let (pij(n))i,j∈S be the n-step transition probabilities for a Markov chain.
The period di of the state i is given by

di = gcd{n ≥ 1 : pii(n) > 0}.
A state i is aperiodic if di = 1.

A communicating class C is has period d if d = di for all i ∈ C. A communicating class is
aperiodic if it has period d = 1.

Theorem 3.19 (Periods are class properties). If i and j are communicating states of a
Markov chain, then they have the same period di = dj.

Definition 3.20. A Markov chain is ergodic if it is irreducible, positive recurrent, and
aperiodic.

Theorem 3.21 (Ergodic theorems). Let (Xn)n≥0 be an ergodic Markov chain on S with
n-step transition probabilites pij(n) and let Ti = inf{n ≥ 1 : Xn = i}. Let π be the unique
invariant distribution.

12



•
pij(n) → πj

for all i, j ∈ S where π.
•

1

n

n∑
k=0

1{Xk=j} → πj almost surely

for all j ∈ S, independently of the distribution of X0.

3.2. Continuous time Markov chains.

Definition 3.22. Let (Xt)t≥0 be a continuous time stochastic process taking values in a
countable set S such that t 7→ Xt(ω) is right-continuous for almost all ω ∈ Ω. Then (Xt)t≥0

is a Markov chain if

P(Xtn = in|Xt0 = i0 . . . , Xtn−1 = in−1) = P(Xtn = in|Xtn−1 = in−1)

for each n ≥ 1, and i0, . . . , in ∈ S. The Markov chain is called time homogeneous if

P(Xt = j|Xs = i) = P(Xt−s = j|X0 = i)

for all 0 ≤ s ≤ t and all states i, j ∈ S.

As before, all Markov chains in these notes are time homogeneous.

Notation 3.23. Let (Xt)t≥0 be a Markov chain on a state space S. Let pij(t) = Pi(Xt = j)
for i, j ∈ S denote the transition probabilities, and let P (t) = (pij(t))i,j∈S denote the |S|×|S|
transition matrix.

Theorem 3.24. The collection (P (t))t≥0 of transition matrices for a continuous time Markov
chain has the following properties:

• For all t ≥ 0 the matrix P (t) is stochastic.
• P (0) = I where I is the |S| × |S| identity matrix
• The Chapman-Kolmogorov equation P (s + t) = P (s)P (t) holds for s, t ≥ 0. Equiva-

lently, pik(s + t) =
∑

j∈S pij(s)pjk(t) for all i, k ∈ S.

Definition 3.25. The collection (P (t))t≥0 of transition matrices is uniform if the following
conditions hold:

• There exist finite constants gij ≥ 0 such that

lim
t↓0

pij(t)

t
= gij

for all i 6= j.
• There exist finite constants gii ≤ 0 such that

gii = −
∑
j 6=i

gij

for all i.
• infi gii > −∞

The matrix G = (gij)i,j∈S is called the generator of the Markov process.

All Markov chains considered here have uniform transition matrices.
13



Theorem 3.26. Let (Xt)t≥0 be a Markov chain with generator G, and for each state i, let

Ui = inf{t > 0, Xt 6= i}.
Then conditional on X0 = i, the random variable Ui is exponential with rate −gii; that is

Pi(Ui > t) = egiit.

Furthermore,

Pi(XU = j) =
gij

−gii

.

Theorem 3.27. Let G be the generator of a Markov chain with transition matrices (P (t))t≥0.
Then for all t ≥ 0

•
∑

j∈S gij = 0, or in matrix notation, G1 = 0 where 1 = (1, 1, . . .)

• P (t) = etG =
∑∞

n=0
tnGn

n!

• (Kolmogorov’s forward equation) P ′(t) = P (t)G
• (Kolmogorov’s backward equation) P ′(t) = GP (t)

where P ′(t) denotes the matrix (p′ij(t))i,j∈S and p′ij denotes the derivative of pij.

Definition 3.28. An invariant distribution for a Markov chain with transition matrices
(P (t))t≥0 is a row vector π = (πi)i∈S such that πP (t) = π for all t ≥ 0.

Theorem 3.29. Let G be the generator of a Markov chain. Then a row vector π is an
invariant distribution if and only if

πG = 0.

Definition 3.30. Let (pij(t))i,j∈S be the transition probabilities of a Markov chain. The
Markov chain is irreducible if pij(t) > 0 for all t > 0.

Theorem 3.31. Let (pij(t))i,j∈S be the transition probabilities of an irreducible Markov
chain. If there exists an invariant distribution π, the invariant distribution is unique and

pij(t) → πj as t ↑ ∞
for all i, j ∈ S . Otherwise, if no invariant distribution exists, then

pij(t) → 0.

4. Martingales

Theorem 4.1. Let X be an integrable random variable defined on the probability space
(Ω,F , P), and let G ⊆ F be a sigma-field of F . Then there exists an integrable G-measureable
random variable Y such that

E(1GY ) = E(1GX)

for all G ∈ G. Furthermore, if there exists another G-measureable random variable Y ′ such
that E(1GY ′) = E(1GX) for all G ∈ G, then Y = Y ′ almost surely.

Definition 4.2. Let X be an integrable random variable and let G ⊆ F be a sigma-field. The
conditional expectation of X given G, written E(X|G), is a G-measurable random variable
with the property that

E [1GE(X|G)] = E(1GX)

for all G ∈ G.
14



Theorem 4.3. Let X and Y be integrable random variables defined on (Ω,F , P), let H ⊆
G ⊆ F be sigma-algebras, and a, b ∈ R be constants.

• E(X|{∅, Ω}) = E(X)
• E(X|F) = X.
• E(aX + bY |G) = aE(X|G) + bE(Y |G)
• If X ≥ 0 almost surely, then E(X|G) ≥ 0 almost surely
• E[E(X|G)|H] = E[E(X|H)|G] = E(X|H)
• If Y is independent of G (the events {Y ≤ t} and G are indendent for each t ∈ R

and G ∈ G) then E(XY |G) = Y E(X|G)

Theorem 4.4. Let X be an integrable random variables defined on (Ω,F , P).

• Let B1, B2, . . . be a sequence of disjoint non-null events with
⋃

n Bn = Ω. Let G be
the smallest sigma-field containing {B1, B2, . . . , ...}. Then

E(X|G) =
E(X1Bn)

P(Bn)
if ω ∈ Bn.

• Let Y be a random variable on (Ω,F , P) and let G be the smallest sigma-field con-
taining the events {Y ≤ t} for all t ∈ R. Then

E(X|G) = E(X|Y )

where the right side is defined by Definition 1.18.

Definition 4.5. A filtration (Fn)n≥0 on Ω is a collection of sigma-fields on Ω such that

F0 ⊆ F1 ⊆ F2 ⊆ . . . .

Definition 4.6. A martingale relative to a filtration (Fn)n≥0 is a stochastic process with
the following properties:

• E|Mn| < ∞ for all n ≥ 0
• E(Mn+1|Fn) = Mn for all n ≥ 0.

Theorem 4.7 (The L2 martingale convergence theorem). Let (Mn)n≥0 be a martingale
relative to a filtration (Fn)n≥0. If supn≥0 E(S2

n) < ∞ then there exists a random variable M
such that E(M2) < ∞ and Mn → M in L2. Furthermore Mn = E(M |Fn).

Definition 4.8. A stopping time for a filtration (Fn)n≥0 is a random variable T : Ω →
N ∪ {∞} with the property that {T = n} ∈ Fn for each n ≥ 0.

Theorem 4.9 (The optional sampling theorem). Let (Mn)n≥0 be a martingale relative to a
filtration (Fn)n≥0, let T a bounded stopping time (there exists a real constant C > 0 such
that T (ω) < C for almost all ω ∈ Ω.) Then

E(MT ) = E(M0).

Theorem 4.10 (The optional stopping theorem). Let (Mn)n≥0 be a martingale relative to
a filtration (Fn)n≥0, let T be almost surely finite stopping time. (that is P(T < ∞) = 1.) If
supn≥0 E(M2

n) < ∞ then
E(MT ) = E(M0).
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R the set of real numbers
R the set of extended real numbers {−∞} ∪ R ∪ {∞}
N the set of natural numbers {0, 1, 2, . . .}
C the set of complex numbers
Z the set of integers {. . . ,−2,−1, 0, 1, 2, . . .}
P(Ω) the set of all subsets of Ω, called the power set of Ω
Ac the complement of the set A
A ⊂ B A is a proper subset of B
A ⊆ B A is a subset of B, and the possibility that A = B is allowed

FX the distribution function of a random variable X
pX the mass function of a discrete random variable X
fX the density function of an absolutely continuous random variable X
FX,Y the joint distribution function of X and Y
pX,Y the joint mass function of X and Y
fX,Y the joint density function of X and Y
pX|Y the conditional mass function of X given Y
fX|Y the conditional density of X given Y
GX the probability generating function of X
MX the moment generating function of X
φX the characteristic function of X

E(X) the expected value of the random variable X
Var(X) the variance of X
Cov(X, Y ) the covariance of X and Y
E(X|B) the conditional expectation of X given the event B
E(X|Y = t) the conditional expectation of X given the (possibly null) event Y = t
E(X|Y ) the conditional expectation of X given the random variable Y
Ei(Z) the conditional expection E(Z|X0 = i), where (Xn)n≥0 is a Markov chain
E(X|G) the conditional expectation of X given the sigma-field G
a+ max{a, 0}
a− max{−a, 0}

X ∼ ν the random variable X is distributed as the probability measure ν
1A the indicator function of the event A
N(µ, σ2) the normal probability law with mean µ and variance σ2

bin(n, p) the binomial probability law with parameters n and p
exp(λ) the exponential probability law with parameter λ
unif(a, b) the uniform probability law on the interval (a, b)

lim supn↑∞ xn the limit superior of the sequence x1, x2, . . .
lim infn↑∞ xn the limit inferior of the sequence x1, x2, . . .
Lp the set of random variables X with E|X|p < ∞

gcd(A) the greatest common divisor of the set A ⊆ N
Table 1. Notation
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