1. Basic tools

1.1. Probability spaces.

Definition 1.1. Let Ω be a set. A *sigma-field* on Ω is a non-empty set \(F\) of subsets of Ω such that

1. if \(A \in F\) then \(A^c \in F\),
2. if \(A_1, A_2, \ldots \in F\) then \(\bigcup_{i=1}^{\infty} A_i \in F\).

[The terms sigma-field and *sigma-algebra* are interchangeable.]

Definition 1.2. Let Ω be a set and let \(F\) be a sigma-field on Ω. A *probability measure* on \(F\) is a function \(P : F \to [0,1]\) such that

1. if \(A_1, A_2, \ldots \in F\) are disjoint then \(P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)\),
2. \(P(\Omega) = 1\).

[The terms *disjoint* and *mutually exclusive* are interchangeable and refer to events \(A\) and \(B\) such that \(A \cap B = \emptyset\).]

Definition 1.3. Let Ω be a set, \(F\) a sigma-field on Ω, and \(P\) a probability measure on \(F\).

The triple \((\Omega, F, P)\) is called a *probability space*.

The set \(\Omega\) is called the *sample space*, and an element of \(\Omega\) is called an *outcome*. A subset of \(\Omega\) which is an element of \(F\) is called an *event*.

Let \(A \in F\) be an event. If \(P(A) = 1\) then \(A\) is called an *almost sure* event, and if \(P(A) = 0\) then \(A\) is called a *null* event. [The phrase “almost surely” is often abbreviated *a.s.*]

1.2. Random variables and distribution functions.

Definition 1.4. Let \((\Omega, F, P)\) be a probability space. A *random variable* is a function \(X : \Omega \to \mathbb{R}\) such that the set \(\{\omega \in \Omega : X(\omega) \leq t\}\) is an element of \(F\) for all \(t \in \mathbb{R}\).

Let \(A\) be a subset of \(\mathbb{R}\), and let \(X\) be a random variable. We use the notation \(\{X \in A\}\) to denote the set \(\{\omega \in \Omega : X(\omega) \in A\}\). A random variable \(X\) is said to *take values* in a subset \(S \subseteq \mathbb{R}\) if \(X \in S\) almost surely.

The *distribution function* of \(X\) is the function \(F_X : \mathbb{R} \to [0,1]\) defined by

\[
F_X(t) = P(X \leq t)
\]

for all \(t \in \mathbb{R}\).

[A distribution function is called *defective* if either \(\lim_{t \to \infty} F_X(t) < 1\) or \(\lim_{t \to -\infty} F_X(t) > 0\). Unless otherwise indicated, all random variables considered here are assumed to have non-defective distribution functions.]
The law of X is the probability measure ν such that

$$\nu([a, b]) = \mathbb{P}(a \leq X \leq b)$$

for all $a \leq b$. The statement “the random variable X has law ν” is written $X \sim \nu$. [The measure ν is defined on the Borel sigma-field \mathcal{B}, which is defined as the smallest sigma-field on \mathbb{R} containing the intervals $[a, b]$ for all $a \leq b$.]

Definition 1.5. Let A be an event in Ω. The **indicator function** of the event A is the random variable $1_A : \Omega \to \{0, 1\}$ defined by

$$1_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \in A^c \end{cases}$$

for all $\omega \in \Omega$.

Definition 1.6. A random variable X is called **discrete** if X takes values in a countable set. If X is discrete, the function $p_X : \mathbb{R} \to [0, 1]$ defined by $p_X(t) = \mathbb{P}(X = t)$ is called the **mass function** of X.

Definition 1.7. Let X is a discrete random variable taking values in \mathbb{N} with mass function p_X.

The random variable X is called

- **Bernoulli** with parameter p if

 $$p_X(0) = 1 - p \text{ and } p_X(1) = p.$$
 where $0 \leq p \leq 1$.

- **binomial** with parameters n and p, written $X \sim \text{bin}(n, p)$, if

 $$p_X(k) = \binom{n}{k} p^k (1 - p)^{n-k} \text{ for all } k = 0, 1, \ldots, n$$

 where $n \in \mathbb{N}$ and $0 \leq p \leq 1$.

- **Poisson** with parameter λ if

 $$p_X(k) = \frac{\lambda^k}{k!} e^{-\lambda} \text{ for all } k = 0, 1, 2, \ldots$$

 where $\lambda \geq 0$.

- **geometric** with parameter p if

 $$p_X(k) = p(1 - p)^{k-1} \text{ for all } k = 1, 2, 3, \ldots$$

 where $0 \leq p \leq 1$.

[In the above formulae, the convention $0^0 = 1$ is used. If X is geometric with parameter $p = 0$, then $X = \infty$ almost surely.]

Definition 1.8. Let F_X be the distribution of a random variable X. The random variable X is **continuous** if and only if F_X is a continuous function.

The random variable X is **absolutely continuous** if and only if there exists a positive function $f_X : \mathbb{R} \to [0, \infty)$ such that

$$F_X(t) = \int_{-\infty}^{t} f_X(s)ds$$

for all $t \in \mathbb{R}$, in which case the function f_X is called the **density function** of X.

Definition 1.9. Let X be a continuous random variable with density function f_X. The random variable X is called
- **uniform** on the interval (a, b), written $X \sim \text{unif}(a, b)$, if
 \[f_X(t) = \frac{1}{b - a} \text{ for all } a < t < b \]
 for some $a < b$.
- **normal** with mean μ and variance σ^2, written $X \sim \mathcal{N}(\mu, \sigma^2)$, if
 \[f_X(t) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right) \text{ for all } t \in \mathbb{R} \]
 for some $\mu \in \mathbb{R}$ and $\sigma^2 > 0$.
- **exponential** with rate λ, written $X \sim \text{exp}(\lambda)$, if
 \[f_X(t) = \lambda e^{-\lambda t} \text{ for all } t \geq 0 \]
 for some $\lambda > 0$.
- **Cauchy** if
 \[f_X(t) = \frac{1}{\pi(1 + t^2)} \text{ for all } t \in \mathbb{R}. \]

1.3. Expectations and variances.

Definition 1.10. Let X be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$. The **expected value** of X is denoted by $E(X)$ and is given by the integral
\[E(X) = \int_{\Omega} X(\omega) \mathbb{P}(d\omega). \]

The above integral is defined in the following cases:
- if $X \geq 0$ almost surely.
- if either $E(X^+)$ or $E(X^-)$ is finite, in which case $E(X) = E(X^+) - E(X^-)$.

A random variable X is **integrable** if $E|X| < \infty$ and is **square-integrable** if $E(X^2) < \infty$. The terms expected value, expectation, and mean are interchangeable.

The **variance** of an integrable random variable X, written $\text{Var}(X)$, is
\[\text{Var}(X) = E(X^2) - E(X)^2. \]

The **covariance** of square-integrable random variable X and Y, written $\text{Cov}(X, Y)$, is
\[\text{Cov}(X, Y) = E(XY) - E(X)E(Y). \]

If neither X or Y is almost surely constant, then their correlation, written $\rho(X, Y)$, is
\[\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\text{Var}(X)^{1/2}\text{Var}(Y)^{1/2}}. \]

Random variables X and Y are called **uncorrelated** if $\text{Cov}(X, Y) = 0$.

Theorem 1.11. Let the function $g : \mathbb{R} \to \mathbb{R}$ be such that $g(X)$ is integrable.
If X is a discrete random variable with probability mass function p_X taking values in a countable set S then
\[E(g(X)) = \sum_{t \in S} g(t) \ p_X(t). \]
If X is an absolutely continuous integrable random variable with density function f_X then
\[
\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(t) \, f_X(t) \, dt.
\]

Theorem 1.12 (Cauchy–Schwarz inequality). Let X and Y square-integrable random variables. Then
\[
\mathbb{E}(XY)^2 \leq \mathbb{E}(X^2)\mathbb{E}(Y^2)
\]
with equality if and only if $aX = bY$ almost surely, for some constants $a, b \in \mathbb{R}$.

1.4. Conditional probability and expectation, independence.

Definition 1.13. Let B be an event with $\mathbb{P}(B) > 0$. The conditional probability of an event A given B, written $\mathbb{P}(A|B)$, is
\[
\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.
\]
The conditional expectation of X given B, written $\mathbb{E}(X|B)$, is
\[
\mathbb{E}(X|B) = \frac{\mathbb{E}(X 1_B)}{\mathbb{P}(B)}.
\]

Theorem 1.14 (The law of total probability). Let B_1, B_2, \ldots be disjoint, non-null events such that $\bigcup_{i=1}^{\infty} B_i = \Omega$. Then
\[
\mathbb{P}(A) = \sum_{i=1}^{\infty} \mathbb{P}(A|B_i)\mathbb{P}(B_i)
\]
for all events A.

Definition 1.15. Let X and Y be random variables. The function $F_{X,Y}: \mathbb{R}^2 \rightarrow [0, 1]$ defined by
\[
F_{X,Y}(s, t) = \mathbb{P}(X \leq s, Y \leq t)
\]
is called their joint distribution function.

If both X and Y are discrete random variables, then the function $p_{X,Y}: \mathbb{R}^2 \rightarrow [0, 1]$ defined by
\[
p_{X,Y}(s, t) = \mathbb{P}(X = s, Y = t)
\]
is called their joint mass function. The conditional mass function of X given $Y = t$, where $p_Y(t) > 0$, is defined as
\[
p_{X|Y}(s|t) = \mathbb{P}(X = s|Y = t) = \frac{p_{X,Y}(s, t)}{p_Y(t)}.
\]

If there exists a function $f_{X,Y}: \mathbb{R}^2 \rightarrow [0, \infty)$ such that
\[
F_{X,Y}(s, t) = \int_{u=-\infty}^{s} \int_{v=-\infty}^{t} f_{X,Y}(u, v) \, du \, dv
\]
then X and Y are said to be jointly absolutely continuous and $f_{X,Y}$ is called their joint density function. The conditional density function of X given $Y = t$, where $f_Y(t) > 0$, is defined as
\[
f_{X|Y}(s|t) = \lim_{\delta \downarrow 0, \epsilon \downarrow 0} \frac{1}{\delta} \mathbb{P}(|X - s| < \delta \mid |Y - t| < \epsilon) = \frac{f_{X,Y}(s, t)}{f_Y(t)}.
\]
Theorem 1.16. Let the function $g : \mathbb{R}^2 \to \mathbb{R}$ be such that $g(X,Y)$ is integrable. If X and Y are discrete and taking values in a countable set S then
\[
\mathbb{E}(g(X,Y)) = \sum_{s,t \in S} g(s,t) \, p_{X,Y}(s,t).
\]
If X and Y are jointly absolutely continuous then
\[
\mathbb{E}(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(s,t) \, f_{X,Y}(s,t) \, ds \, dt.
\]

Definition 1.17. Random variables X and Y are jointly normal with means μ_X and μ_Y, variances σ_X^2 and σ_Y^2, and correlation ρ, written $(X,Y) \sim N((\mu_X, \mu_Y), (\sigma_X^2, \sigma_Y^2, \rho))$ if the joint density function is
\[
f_{X,Y}(s,t) = \frac{1}{2\pi \sigma_X \sigma_Y \sqrt{1-\rho^2}} \exp\left(-\frac{1}{2} Q(s,t)\right)
\]
where
\[
Q(s,t) = \frac{1}{1-\rho^2} \left(\frac{(s-\mu_X)^2}{\sigma_X^2} - 2\rho \frac{(s-\mu_X)(t-\mu_Y)}{\sigma_X \sigma_Y} + \frac{(t-\mu_Y)^2}{\sigma_Y^2}\right)
\]

Definition 1.18. The conditional expectation of X given $Y = t$, written $\mathbb{E}(X|Y = t)$, is defined by either Definition 1.13, if $\mathbb{P}(Y = t) > 0$, or by the formula
\[
\mathbb{E}(X|Y = t) = \lim_{\epsilon \downarrow 0} \frac{\mathbb{E}(X \mathbb{1}_{\{|Y-t| < \epsilon\}})}{\mathbb{P}(|Y-t| < \epsilon)}
\]
if $\mathbb{P}(Y = t) = 0$.

For fixed random variable X and Y, let $h : \mathbb{R} \to \mathbb{R}$ be the function defined by $h(t) = \mathbb{E}(X|Y = t)$. The conditional expectation of X given Y, written $\mathbb{E}(X|Y)$, is
\[
\mathbb{E}(X|Y) = h(Y).
\]

Theorem 1.19. Let the function $g : \mathbb{R} \to \mathbb{R}$ be such that $g(X)$ is integrable. If X and Y are discrete taking values in S and $p_Y(t) > 0$, then
\[
\mathbb{E}(g(X)|Y = t) = \sum_{s \in S} g(s) \, p_{X|Y}(s,t).
\]
If X and Y are jointly absolutely continuous and if $f_Y(t) > 0$ then
\[
\mathbb{E}(g(X)|Y = t) = \int_{-\infty}^{\infty} g(s) \, f_{X|Y}(s,t) \, ds.
\]

Theorem 1.20 (The law of iterated expectation). Let X and Y be random variables and suppose X is integrable. Then
\[
\mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X|Y)).
\]
Definition 1.21. Let A_1, A_2, \ldots be events. If
\[
P(\bigcap_{i \in I} A_i) = \prod_{i \in I} P(A_i)
\]
for every finite subset $I \subset \mathbb{N}$ then the events are said to be **independent**.

Random variables X_1, X_2, \ldots are called **independent** if the events \{\(X_1 \leq t_1\), \(X_2 \leq t_2\), \ldots\} are independent. [The phrase “independent and identically distributed” is often abbreviated \text{i.i.d.}]

Theorem 1.22. If X and Y are discrete and independent random variables then
\[
p_{X,Y}(s, t) = p_X(s)p_Y(t).
\]
If X and Y are jointly absolutely continuous and independent random variables then
\[
f_{X,Y}(s, t) = f_X(s)f_Y(t).
\]
If X and Y are independent and integrable, then
\[
E(XY) = E(X)E(Y).
\]

1.5. Probability inequalities.

Theorem 1.23 (Markov’s inequality). Let X be a positive random variable. Then
\[
P(X \geq \epsilon) \leq \frac{E(X)}{\epsilon}
\]
for all $\epsilon > 0$.

Corollary 1.24 (Chebychev’s inequality). Let X be a random variable with $E(X) = \mu$ and $\text{Var}(X) = \sigma^2$. Then
\[
P(|X - \mu| \geq \epsilon) \leq \frac{\sigma^2}{\epsilon^2}
\]
for all $\epsilon > 0$.

1.6. Generating and characteristic functions.

Definition 1.25. Let X be a random variable on (Ω, \mathcal{F}, P) taking values in \{0, 1, 2, \ldots\}. The **probability generating function** of X is the function $G_X : [0, 1] \rightarrow [0, 1]$ defined by
\[
G_X(t) = E(t^X)
\]
for all $t \in (0, 1]$ and $G_X(0) = P(X = 0)$.

Theorem 1.26. Let G_X be the probability generating function of X. Then
\[
P(X = n) = \frac{1}{n!} G_X^{(n)}(0)
\]
for all $n \in \mathbb{N}$, where $G_X^{(n)}(0)$ denotes the n-th derivative of G_X evaluated at 0.

Definition 1.27. Let X be a random variable on (Ω, \mathcal{F}, P). The **moment generating function** of X is the function $M_X : \mathbb{R} \rightarrow \mathbb{R} \cup \{\infty\}$ defined by
\[
M_X(t) = E(e^{tX})
\]
for all $t \in \mathbb{R}$.

6
Theorem 1.28. Let M_X be the moment-generating function of a random variable X, and suppose there exists an $\epsilon > 0$ such that $M_X(t) < \infty$ for all $-\epsilon < t < \epsilon$. Then

$$\mathbb{E}(X^n) = M_X^{(n)}(0)$$

for all $n \in \mathbb{N}$, where $M_X^{(n)}(0)$ denotes the n-th derivative of M_X evaluated at 0. (The number $\mu_n = \mathbb{E}(X^n)$ is called the n-th moment of X.)

Definition 1.29. The characteristic function of a real-valued random variable X is the function $\phi_X : \mathbb{R} \to \mathbb{C}$ defined by

$$\phi_X(t) = \mathbb{E}(e^{itX})$$

for all $t \in \mathbb{R}$, where $i = \sqrt{-1}$.

Theorem 1.30 (Uniqueness of generating and characteristic functions). Let X and Y be real-valued random variables with distribution functions F_X and F_Y.

- Let ϕ_X and ϕ_Y be the characteristic functions of X and Y. Then $\phi_X(t) = \phi_Y(t)$ for all $t \in \mathbb{R}$ if and only if $F_X(t) = F_Y(t)$ for all $t \in \mathbb{R}$.

- Let X and Y be valued in \mathbb{N} with probability generating functions G_X and G_Y. Then $G_X(t) = G_Y(t)$ for all $t \in [0, 1]$ if and only if $F_X(t) = F_Y(t)$ for all $t \in \mathbb{R}$.

- Let M_X and M_Y be the moment generating functions of X and Y. If there exists an $\epsilon > 0$ such that $M_X(t) = M_Y(t) < \infty$ for all $t \in (-\epsilon, \epsilon)$ then $F_X(t) = F_Y(t)$ for all $t \in \mathbb{R}$.

2. Fundamental probability results

Definition 2.1. Let x_1, x_2, \ldots be a sequence of real numbers. The limit superior is defined by

$$\limsup_{n \to \infty} x_n = \inf_N \sup_{n \geq N} x_n$$

and limit inferior by

$$\liminf_{n \to \infty} x_n = \sup_N \inf_{n \geq N} x_n.$$

Equivalently, if $x \in \mathbb{R}$ then

$$x = \limsup_{n \to \infty} x_n \iff \text{for all } \epsilon > 0 \left\{ \begin{array}{ll} \{n \in \mathbb{N} : x_n > x + \epsilon\} & \text{is finite} \\ \{n \in \mathbb{N} : x_n > x - \epsilon\} & \text{is infinite} \end{array} \right.$$

and

$$x = \liminf_{n \to \infty} x_n \iff \text{for all } \epsilon > 0 \left\{ \begin{array}{ll} \{n \in \mathbb{N} : x_n < x + \epsilon\} & \text{is infinite} \\ \{n \in \mathbb{N} : x_n < x - \epsilon\} & \text{is finite} \end{array} \right.$$

If $\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = x$ then the sequence x_1, x_2, \ldots is convergent and with limit $x = \lim_{n \to \infty} x_n$.

7
Definition 2.2 (Modes of convergence). Let X_1, X_2, \ldots and X be random variables.

- $X_n \to X$ almost surely if $\mathbb{P}(X_n \to X) = 1$
- $X_n \to X$ in L_p, for $p \geq 1$, if $\mathbb{E}|X|^p < \infty$ and $\mathbb{E}|X_n - X|^p \to 0$ for all $\epsilon > 0$
- $X_n \to X$ in probability if $\mathbb{P}(|X_n - X| > \epsilon) \to 0$ for all $\epsilon > 0$
- $X_n \to X$ in distribution if $F_{X_n}(t) \to F_X(t)$ for all points $t \in \mathbb{R}$ of continuity of F_X

Theorem 2.3. The following implications hold:

$$X_n \to X \text{ almost surely} \quad \text{or} \quad X_n \to X \text{ in } L_p, p \geq 1 \quad \Rightarrow \quad X_n \to X \text{ in probability} \quad \Rightarrow \quad X_n \to X \text{ in distribution}$$

Furthermore, if $r \geq p \geq 1$ then $X_n \to X$ in $L_r \Rightarrow X_n \to X$ in L_p.

Definition 2.4. Let A_1, A_2, \ldots be events. The term eventually is defined by

$$\{A_n \text{ eventually}\} = \bigcup_{N \in \mathbb{N}} \bigcap_{n \geq N} A_n$$

and infinitely often by

$$\{A_n \text{ infinitely often}\} = \bigcap_{N \in \mathbb{N}} \bigcup_{n \geq N} A_n.$$

[The phrase “infinitely often” is often abbreviated i.o.]

Theorem 2.5 (The first Borel-Cantelli lemma). Let A_1, A_2, \ldots be a sequence of events. If

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$$

then $\mathbb{P}(A_n \text{ infinitely often}) = 0$.

Theorem 2.6 (The second Borel-Cantelli lemma). Let A_1, A_2, \ldots be a sequence of independent events. If

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$$

then $\mathbb{P}(A_n \text{ infinitely often}) = 1$.

Theorem 2.7 (A sufficient condition for almost sure convergence). Let X_1, X_2, \ldots and X be random variables. If

$$\sum_{n=1}^{\infty} \mathbb{P}(|X_n - X| > \epsilon) < \infty$$

for all $\epsilon > 0$ then $X_n \to X$ almost surely.

Theorem 2.8 (Monotone convergence theorem). Let X_1, X_2, \ldots be positive random variables with $X_n \leq X_{n+1}$ almost surely for all $n \geq 1$, and let $X = \sup_{n \in \mathbb{N}} X_n$. Then $X_n \to X$ almost surely and

$$\mathbb{E}(X_n) \to \mathbb{E}(X).$$

Theorem 2.9 (Fatou’s lemma). Let X_1, X_2, \ldots be positive random variables. Then

$$\mathbb{E}(\liminf_{n \to \infty} X_n) \leq \liminf_{n \to \infty} \mathbb{E}(X_n).$$
Theorem 2.10 (Dominated convergence theorem). Let X_1, X_2, \ldots and X be random variables such that $X_n \to X$ almost surely. If $\mathbb{E}(\sup_{n \geq 1} |X_n|) < \infty$ then
$$
\mathbb{E}(X_n) \to \mathbb{E}(X).
$$

Definition 2.11. Let X_1, X_2, \ldots be a collection of random variables, and let $S_n = X_1 + \ldots + X_n$. The collection of random variables satisfies a \textit{weak law of large numbers} if $S_n/n \to \mu$ in probability for some constant μ. The collection satisfies a \textit{strong law of large numbers} if $S_n/n \to \mu$ almost surely.

Theorem 2.12 (A weak law of large numbers). Let X_1, X_2, \ldots be independent and identically distributed with
$$
N\mathbb{P}(|X_i| > N) \to 0 \text{ and } \mathbb{E}(X 1_{\{|X_i| \leq N\}}) \to \mu \text{ as } N \to \infty
$$
for some $\mu \in \mathbb{R}$ then
$$
\frac{X_1 + \ldots + X_n}{n} \to \mu \text{ in probability.}
$$

Theorem 2.13 (A strong law of large numbers). Let X_1, X_2, \ldots be independent and identically distributed integrable random variables with common mean $\mathbb{E}(X_i) = \mu$. Then
$$
\frac{X_1 + \ldots + X_n}{n} \to \mu \text{ almost surely.}
$$

Theorem 2.14 (Lévy’s continuity theorem). Let X_1, X_2, \ldots and X be random variables with characteristic functions ϕ_1, ϕ_2, \ldots and ϕ respectively. The following are equivalent:

- $X_n \to X$ in distribution
- $\phi_n(t) \to \phi(t)$ for all $t \in \mathbb{R}$

Theorem 2.15 (Central limit theorem). Let X_1, X_2, \ldots be independent and identically distributed with $\mathbb{E}(X_i) = \mu$ and $\text{Var}(X_i) = \sigma^2$ for each $i = 1, 2, \ldots$, and let
$$
Z_n = \frac{X_1 + \ldots + X_n - n\mu}{\sigma \sqrt{n}}.
$$
Then $Z_n \to Z$ in distribution, where $Z \sim N(0, 1)$.

3. Markov chains

Definition 3.1. A \textit{stochastic process} is a collection $(X_i)_{i \in I}$ of random variables. If the index set I is \mathbb{N}, then the stochastic process is called \textit{discrete time} and is denoted by $(X_n)_{n \geq 0}$. If the index set I is $[0, \infty)$, then the stochastic process is called \textit{continuous time} and is denoted by $(X_t)_{t \geq 0}$.

3.1. Discrete time Markov chains.

Definition 3.2. Let $(X_n)_{n \geq 0}$ be a discrete time stochastic process taking values in a countable set S. The process $(X_n)_{n \geq 0}$ is called a \textit{Markov chain} if
$$
\mathbb{P}(X_n = i_n | X_0 = i_0, \ldots, X_{n-1} = i_{n-1}) = \mathbb{P}(X_n = i_n | X_{n-1} = i_{n-1})
$$
for each $n \geq 1$, and $s_0, \ldots, s_n \in S$. The set S is called the \textit{state space} of the Markov chain, and an elements of S is called a \textit{state}. The Markov chain is called \textit{time homogeneous} if
$$
\mathbb{P}(X_n = j | X_{n-1} = i) = \mathbb{P}(X_1 = j | X_0 = i)
$$
for all $n \geq 1$ and all states $i, j \in S$.
Throughout these notes, all Markov chains are assumed to be time homogeneous.

Definition 3.3. Let \((X_n)_{n \geq 0}\) be a Markov chain on a state space \(S\). The numbers \(p_{ij} = \mathbb{P}(X_1 = j | X_0 = i)\) for \(i, j \in S\) are called the one-step transition probabilities, and \(p_{ij}(n) = \mathbb{P}(X_n = j | X_0 = i)\) for \(n \geq 0\) the \(n\)-step transition probabilities.

The \(|S| \times |S|\) matrix \(P = (p_{ij})_{i,j \in S}\) is called the transition matrix.

We use the notation \(\mathbb{P}_i(A) = \mathbb{P}(A | X_0 = i)\) for any event \(A \in \mathcal{F}\), and \(\mathbb{E}_i(Z) = \mathbb{E}(Z | X_0 = i)\) for any random variable \(Z\) for which the conditional expectation can be defined.

Theorem 3.4 (Chapman-Kolmogorov equations). Let \(p_{ij}(n)\) for \(i, j \in S\) and \(n \geq 0\) denote the \(n\)-step transition probabilities of a Markov chain with state space \(S\). Then
\[
p_{ik}(m + n) = \sum_{j \in S} p_{ij}(m) p_{jk}(n)
\]
for all \(i, k \in S\) and \(m, n \geq 0\). In particular, the \(n\)-step transition probabilities are given by
\[
p_{ij}(n) = (P^n)_{ij}
\]
where \(P\) is the transition matrix of the Markov chain.

Definition 3.5. A \(|S| \times |S|\) matrix \(P = (p_{ij})_{i,j \in S}\) is called stochastic if \(p_{ij} \geq 0\) for all \(i, j \in S\) and \(\sum_{j \in S} p_{ij} = 1\) for all \(i \in S\). In particular, a matrix is stochastic if and only if it is the transition matrix of a Markov chain.

Theorem 3.6. Let \(P\) be an \(d \times d\) matrix where \(d < \infty\). Let \(\lambda_1, \ldots, \lambda_d\) be the eigenvalues of \(P\). If the eigenvalues are distinct, then there exists complex numbers \(a_{ij}^{(k)}\) for \(i, j, k \in \{1, \ldots, d\}\) such that
\[
(P^n)_{ij} = \sum_{k=1}^{d} a_{ij}^{(k)} \lambda_k^n
\]
for all \(n \in \mathbb{N}\). More generally, if the eigenvalues are not necessarily distinct, then there exists polynomials \(a_{ij}^{(k)} : \mathbb{N} \to \mathbb{C}\) for \(i, j, k \in \{1, \ldots, d\}\) of degree less than the multiplicity of the eigenvalue \(\lambda_k\) such that
\[
(P^n)_{ij} = \sum_{k=1}^{d} a_{ij}^{(k)}(n) \lambda_k^n
\]
for all \(n \in \mathbb{N}\).

Theorem 3.7. Let \((X_n)_{n \geq 0}\) be a Markov chain on a state space \(S\), and let \(A \subseteq S\). Define the random variable \(H^A\) valued in \(\mathbb{N} \cup \{\infty\}\) by
\[
H^A = \inf\{n \geq 0 : X_n \in S\}.
\]
[The standard convention \(\inf \emptyset = \infty\) is used throughout.] For each state \(i \in S\) let \(h^A_i = \mathbb{P}_i(H^A < \infty)\). Then \((h^A_i)_{i \in S}\) is the minimal non-negative solution to
\[
h^A_i = \begin{cases}
1 & \text{if } i \in A \\
\frac{1}{\sum_{j \in S} p_{ij} h^A_j} & \text{otherwise}
\end{cases}
\]
Definition 3.8. Let \(p_{ij}(n) \) for \(i, j \in S \) and \(n \geq 0 \) denote the \(n \)-step transition probabilities of a Markov chain with state space \(S \).

States \(i \) leads to state \(j \), written \(i \rightarrow j \), if there exists an \(n \geq 0 \) such that \(p_{ij}(n) > 0 \). States \(i \) and \(j \) communicate, written \(i \leftrightarrow j \), if \(i \rightarrow j \) and \(j \rightarrow i \). The communicating class containing a state \(i \) is the largest subset \(C \subseteq S \) with the property that if state \(j \) is in \(C \) then states \(i \) and \(j \) communicate.

A communicating class \(C \) is called closed it has the property if \(i \in C \) and \(i \rightarrow j \) then \(j \in C \). Otherwise, \(C \) is called open if there exists a state \(i \) in \(C \) and a state \(j \) not in \(C \) such that \(i \rightarrow j \).

A Markov chain is irreducible if all states in \(S \) communicate.

Definition 3.9. A state \(i \in S \) is called recurrent if
\[
P_i(X_n = i \text{ infinitely often}) = 1,
\]
and called transient if
\[
P_i(X_n = i \text{ infinitely often}) < 1.
\]

Let \(C \subseteq S \) be a communicating class of the Markov chain. The class is called a transient class if every state \(i \in C \) is transient, and the class is called a recurrent class if every state \(i \in C \) is recurrent.

[The terms recurrent and persistent are interchangeable.]

Definition 3.10. Let \((X_n)_{n \geq 0}\) be a Markov chain with state space \(S \). A stopping time \(T \) is a random variable taking values in \(\mathbb{N} \cup \{\infty\} \) having the property that for each \(n \in \mathbb{N} \) the event \(\{T = n\} \) is determined by \(X_0, \ldots, X_n \) in the sense that there exists a function \(f : S^n \rightarrow \{0, 1\} \) such that
\[
\mathbb{1}_{\{T = n\}} = f(X_0, \ldots, X_n).
\]

Theorem 3.11 (The strong Markov property). Let \((X_n)_{n \geq 0}\) be a Markov chain with state space \(S \) and let \(T \) be a stopping time. Then conditional on the events \(\{T < \infty\} \) and \(X_T = i \), the random process \((X_{T+n})_{n \geq 0}\) is a Markov chain starting at \(i \), independent of \(X_0, \ldots, X_T \).

Theorem 3.12. Let \((X_n)_{n \geq 0}\) be a Markov chain with state space \(S \). For each state \(i \in S \) define the random variable \(T_i \) taking values in \(\mathbb{N} \cup \{\infty\} \) by
\[
T_i = \inf\{n \geq 1 : X_n = i\}.
\]
The following are equivalent:

- State \(i \) is recurrent.
- \(\sum_{n=1}^{\infty} p_{ii}(n) = \infty \).
- \(P_i(T_i < \infty) = 1 \)

Moreover, the following are equivalent:

- State \(i \) is transient.
- \(P_i(X_n = i \text{ infinitely often}) = 0 \).
- \(P_i(T_i < \infty) < 1 \).
- \(\sum_{n=1}^{\infty} p_{ii}(n) = \frac{1}{1-P_i(T_i < \infty)} < \infty \).

Definition 3.13. Let \((X_n)_{n \geq 0}\) be a Markov chain and let \(T_i = \inf\{n \geq 1 : X_n = i\} \). The state \(i \) is called positive recurrent if \(E_i(T_i) < \infty \) and is called null recurrent otherwise. [The terms positive and non-null are interchangeable in the context of recurrent Markov chains.]
Theorem 3.14 (Recurrence, transience, and positive recurrence are class properties). Let \(i \) and \(j \) be communicating states of a Markov chain. Then \(i \) is recurrent if and only if \(j \) is recurrent. Equivalently, \(i \) is transient if and only if \(j \) is transient. Also, \(i \) is positive recurrent if and only if \(j \) is positive recurrent.

Definition 3.15. Let \(P \) be the transition matrix of a Markov chain. An invariant distribution is a row vector \(\pi = (\pi_i)_{i \in S} \) such that \(\pi_i \geq 0 \) for all \(i \in S \), \(\sum_{i \in S} \pi_i = 1 \) and
\[
\pi P = \pi.
\]

[The terms invariant distribution and stationary distribution are interchangeable.]

Theorem 3.16. Let \((X_n)_{n \geq 0} \) be an irreducible Markov chain with transition matrix \(P \). Then \((X_n)_{n \geq 0} \) is positive recurrent if and only if there exists an invariant distribution for \(P \). If the Markov chain is positive recurrent then the invariant distribution is unique and is given by the formula
\[
\pi_i = \frac{1}{\mathbb{E}_i(T_i)}
\]

where \(T_i = \inf\{n \geq 1 : X_n = i\} \).

Theorem 3.17. Let \((X_n)_{n \geq 0} \) be an irreducible recurrent Markov chain on \(S \) with transition matrix \(P \). Let \(k \in S \) be a fixed state and let \(T_k = \inf\{n \geq 1 : X_n = k\} \). For each \(i \in S \) let
\[
\gamma_i^{(k)} = \frac{1}{\mathbb{E}_k(T_k)} \sum_{n=1}^{T_k} 1\{X_n = i\}
\]

be the expected number of times, conditional starting from state \(k \), the chain visits state \(i \) before returning to \(k \), and let \(\gamma^{(k)} \) be the row vector \((\gamma_i^{(k)})_{i \in S}\). Then \(\gamma^{(k)} \) is satisfies the equation
\[
\gamma^{(k)} P = \gamma^{(k)}
\]

with \(\gamma_k^{(k)} = 1 \). If \((X_n)_{n \geq 0} \) is positive recurrent with invariant distribution \(\pi \) then
\[
\gamma_i^{(k)} = \frac{\pi_i}{\pi_k}.
\]

Definition 3.18. Let \((p_{ij}(n))_{i,j \in S}\) be the \(n \)-step transition probabilities for a Markov chain. The period \(d_i \) of the state \(i \) is given by
\[
d_i = \gcd\{n \geq 1 : p_{ii}(n) > 0\}.
\]

A state \(i \) is aperiodic if \(d_i = 1 \).

A communicating class \(C \) is has period \(d \) if \(d = d_i \) for all \(i \in C \). A communicating class is aperiodic if it has period \(d = 1 \).

Theorem 3.19 (Periods are class properties). If \(i \) and \(j \) are communicating states of a Markov chain, then they have the same period \(d_i = d_j \).

Definition 3.20. A Markov chain is ergodic if it is irreducible, positive recurrent, and aperiodic.

Theorem 3.21 (Ergodic theorems). Let \((X_n)_{n \geq 0} \) be an ergodic Markov chain on \(S \) with \(n \)-step transition probabilities \(p_{ij}(n) \) and let \(T_i = \inf\{n \geq 1 : X_n = i\} \). Let \(\pi \) be the unique invariant distribution.
\[p_{ij}(n) \to \pi_j \]
for all \(i, j \in S \) where \(\pi \).

\[\frac{1}{n} \sum_{k=0}^{n} \mathbb{1}_{\{X_k=j\}} \to \pi_j \text{ almost surely} \]
for all \(j \in S \), independently of the distribution of \(X_0 \).

3.2. Continuous time Markov chains.

Definition 3.22. Let \((X_t)_{t \geq 0}\) be a continuous time stochastic process taking values in a countable set \(S \) such that \(t \mapsto X_t(\omega) \) is right-continuous for almost all \(\omega \in \Omega \). Then \((X_t)_{t \geq 0}\) is a Markov chain if

\[\mathbb{P}(X_{t_n} = i_n | X_{t_0} = i_0, \ldots, X_{t_{n-1}} = i_{n-1}) = \mathbb{P}(X_{t_n} = i_n | X_{t_{n-1}} = i_{n-1}) \]
for each \(n \geq 1 \), and \(i_0, \ldots, i_n \in S \). The Markov chain is called *time homogeneous* if

\[\mathbb{P}(X_t = j | X_s = i) = \mathbb{P}(X_{t-s} = j | X_0 = i) \]
for all \(0 \leq s \leq t \) and all states \(i, j \in S \).

As before, all Markov chains in these notes are time homogeneous.

Notation 3.23. Let \((X_t)_{t \geq 0}\) be a Markov chain on a state space \(S \). Let \(p_{ij}(t) = \mathbb{P}_i(X_t = j) \)
for \(i, j \in S \) denote the transition probabilities, and let \(P(t) = (p_{ij}(t))_{i,j \in S} \) denote the \(|S| \times |S|\) transition matrix.

Theorem 3.24. The collection \((P(t))_{t \geq 0}\) of transition matrices for a continuous time Markov chain has the following properties:

- For all \(t \geq 0 \) the matrix \(P(t) \) is stochastic.
- \(P(0) = I \) where \(I \) is the \(|S| \times |S|\) identity matrix
- The Chapman-Kolmogorov equation \(P(s + t) = P(s)P(t) \) holds for \(s, t \geq 0 \). Equivalently, \(p_{ik}(s + t) = \sum_{j \in S} p_{ij}(s)p_{jk}(t) \) for all \(i, k \in S \).

Definition 3.25. The collection \((P(t))_{t \geq 0}\) of transition matrices is *uniform* if the following conditions hold:

- There exist finite constants \(g_{ij} \geq 0 \) such that

\[\lim_{t \downarrow 0} \frac{p_{ij}(t)}{t} = g_{ij} \]
for all \(i \neq j \).

- There exist finite constants \(g_{ii} \leq 0 \) such that

\[g_{ii} = -\sum_{j \neq i} g_{ij} \]
for all \(i \).

- \(\inf_i g_{ii} > -\infty \)

The matrix \(G = (g_{ij})_{i,j \in S} \) is called the *generator* of the Markov process.

All Markov chains considered here have uniform transition matrices.
Theorem 3.26. Let \((X_t)_{t \geq 0}\) be a Markov chain with generator \(G\), and for each state \(i\), let
\[U_i = \inf\{ t > 0, X_t \neq i \}. \]
Then conditional on \(X_0 = i\), the random variable \(U_i\) is exponential with rate \(-g_{ii}\); that is
\[P_i(U_i > t) = e^{-g_{ii}t}. \]
Furthermore,
\[P_i(X_U = j) = \frac{g_{ij}}{-g_{ii}}. \]

Theorem 3.27. Let \(G\) be the generator of a Markov chain with transition matrices \((P(t))_{t \geq 0}\). Then for all \(t \geq 0\)
\[\sum_{j \in S} g_{ij} = 0, \text{ or in matrix notation, } G \mathbf{1} = 0 \text{ where } \mathbf{1} = (1, 1, \ldots) \]
\[P(t) = e^{tG} = \sum_{n=0}^{\infty} \frac{t^n G^n}{n!} \]
\[(\text{Kolmogorov’s forward equation}) \quad P'(t) = P(t)G \]
\[(\text{Kolmogorov’s backward equation}) \quad P'(t) = GP(t) \]
where \(P'(t)\) denotes the matrix \((p'_{ij}(t))_{i,j \in S}\) and \(p'_{ij}\) denotes the derivative of \(p_{ij}\).

Definition 3.28. An invariant distribution for a Markov chain with transition matrices \((P(t))_{t \geq 0}\) is a row vector \(\pi = (\pi_i)_{i \in S}\) such that
\[\pi P(t) = \pi \text{ for all } t \geq 0. \]

Theorem 3.29. Let \(G\) be the generator of a Markov chain. Then a row vector \(\pi\) is an invariant distribution if and only if
\[\pi G = 0. \]

Definition 3.30. Let \((p_{ij}(t))_{i,j \in S}\) be the transition probabilities of a Markov chain. The Markov chain is irreducible if \(p_{ij}(t) > 0\) for all \(t > 0\).

Theorem 3.31. Let \((p_{ij}(t))_{i,j \in S}\) be the transition probabilities of an irreducible Markov chain. If there exists an invariant distribution \(\pi\), the invariant distribution is unique and
\[p_{ij}(t) \to \pi_j \text{ as } t \uparrow \infty \]
for all \(i, j \in S\). Otherwise, if no invariant distribution exists, then
\[p_{ij}(t) \to 0. \]

4. Martingales

Theorem 4.1. Let \(X\) be an integrable random variable defined on the probability space \((\Omega, \mathcal{F}, \mathbb{P})\), and let \(\mathcal{G} \subseteq \mathcal{F}\) be a sigma-field of \(\mathcal{F}\). Then there exists an integrable \(\mathcal{G}\)-measurable random variable \(Y\) such that
\[\mathbb{E}(1_G Y) = \mathbb{E}(1_G X) \]
for all \(G \in \mathcal{G}\). Furthermore, if there exists another \(\mathcal{G}\)-measurable random variable \(Y'\) such that
\[\mathbb{E}(1_G Y') = \mathbb{E}(1_G X) \text{ for all } G \in \mathcal{G}, \]
then \(Y = Y'\) almost surely.

Definition 4.2. Let \(X\) be an integrable random variable and let \(\mathcal{G} \subseteq \mathcal{F}\) be a sigma-field. The conditional expectation of \(X\) given \(\mathcal{G}\), written \(\mathbb{E}(X|\mathcal{G})\), is a \(\mathcal{G}\)-measurable random variable with the property that
\[\mathbb{E}[1_G \mathbb{E}(X|\mathcal{G})] = \mathbb{E}(1_G X) \]
for all \(G \in \mathcal{G}\).
Theorem 4.3. Let X and Y be integrable random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$, let $\mathcal{H} \subseteq \mathcal{G} \subseteq \mathcal{F}$ be sigma-algebras, and $a, b \in \mathbb{R}$ be constants.

- $\mathbb{E}(X|\emptyset, \Omega) = \mathbb{E}(X)$
- $\mathbb{E}(X|\mathcal{F}) = X$
- $\mathbb{E}(aX + bY|\mathcal{G}) = a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G})$
- If $X \geq 0$ almost surely, then $\mathbb{E}(X|\mathcal{G}) \geq 0$ almost surely
- $\mathbb{E}[\mathbb{E}(X|\mathcal{G})|\mathcal{H}] = \mathbb{E}[\mathbb{E}(X|\mathcal{H})|\mathcal{G}] = \mathbb{E}(X|\mathcal{H})$
- If Y is independent of \mathcal{G} (the events $\{Y \leq t\}$ and G are independent for each $t \in \mathbb{R}$ and $G \in \mathcal{G}$) then $\mathbb{E}(XY|\mathcal{G}) = Y\mathbb{E}(X|\mathcal{G})$

Theorem 4.4. Let X be an integrable random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$.

- Let B_1, B_2, \ldots be a sequence of disjoint non-null events with $\bigcup_n B_n = \Omega$. Let \mathcal{G} be the smallest sigma-field containing $\{B_1, B_2, \ldots, \}\}$. Then
 $$\mathbb{E}(X|\mathcal{G}) = \frac{\mathbb{E}(X1_{B_n})}{\mathbb{P}(B_n)} \text{ if } \omega \in B_n.$$

- Let Y be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ and let \mathcal{G} be the smallest sigma-field containing the events $\{Y \leq t\}$ for all $t \in \mathbb{R}$. Then
 $$\mathbb{E}(X|\mathcal{G}) = \mathbb{E}(X|Y)$$

where the right side is defined by Definition 1.18.

Definition 4.5. A filtration $(\mathcal{F}_n)_{n \geq 0}$ on Ω is a collection of sigma-fields on Ω such that
$$\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \ldots.$$

Definition 4.6. A martingale relative to a filtration $(\mathcal{F}_n)_{n \geq 0}$ is a stochastic process with the following properties:

- $\mathbb{E}|M_n| < \infty$ for all $n \geq 0$
- $\mathbb{E}(M_{n+1}|\mathcal{F}_n) = M_n$ for all $n \geq 0$.

Theorem 4.7 (The L_2 martingale convergence theorem). Let $(M_n)_{n \geq 0}$ be a martingale relative to a filtration $(\mathcal{F}_n)_{n \geq 0}$. If $\sup_{n \geq 0} \mathbb{E}(S_n^2) < \infty$ then there exists a random variable M such that $\mathbb{E}(M^2) < \infty$ and $M_n \to M$ in L_2. Furthermore $M_n = \mathbb{E}(M|\mathcal{F}_n)$.

Definition 4.8. A stopping time for a filtration $(\mathcal{F}_n)_{n \geq 0}$ is a random variable $T : \Omega \to \mathbb{N} \cup \{\infty\}$ with the property that $\{T = n\} \in \mathcal{F}_n$ for each $n \geq 0$.

Theorem 4.9 (The optional sampling theorem). Let $(M_n)_{n \geq 0}$ be a martingale relative to a filtration $(\mathcal{F}_n)_{n \geq 0}$, let T a bounded stopping time (there exists a real constant $C > 0$ such that $T(\omega) < C$ for almost all $\omega \in \Omega$.) Then
$$\mathbb{E}(M_T) = \mathbb{E}(M_0).$$

Theorem 4.10 (The optional stopping theorem). Let $(M_n)_{n \geq 0}$ be a martingale relative to a filtration $(\mathcal{F}_n)_{n \geq 0}$, let T be almost surely finite stopping time. (that is $\mathbb{P}(T < \infty) = 1$.) If $\sup_{n \geq 0} \mathbb{E}(M_n^2) < \infty$ then
$$\mathbb{E}(M_T) = \mathbb{E}(M_0).$$
\(\mathbb{R} \) the set of real numbers
\(\overline{\mathbb{R}} \) the set of extended real numbers \(\{-\infty\} \cup \mathbb{R} \cup \{\infty\} \)
\(\mathbb{N} \) the set of natural numbers \(\{0, 1, 2, \ldots\} \)
\(\mathbb{C} \) the set of complex numbers
\(\mathbb{Z} \) the set of integers \(\{\ldots, -2, -1, 0, 1, 2, \ldots\} \)
\(\mathcal{P}(\Omega) \) the set of all subsets of \(\Omega \), called the power set of \(\Omega \)
\(A^c \) the complement of the set \(A \)
\(A \subset B \) \(A \) is a proper subset of \(B \)
\(A \subseteq B \) \(A \) is a subset of \(B \), and the possibility that \(A = B \) is allowed

\(F_X \) the distribution function of a random variable \(X \)
\(p_X \) the mass function of a discrete random variable \(X \)
\(f_X \) the density function of an absolutely continuous random variable \(X \)
\(F_{X,Y} \) the joint distribution function of \(X \) and \(Y \)
\(p_{X,Y} \) the joint mass function of \(X \) and \(Y \)
\(f_{X,Y} \) the joint density function of \(X \) and \(Y \)
\(p_{X|Y} \) the conditional mass function of \(X \) given \(Y \)
\(f_{X|Y} \) the conditional density of \(X \) given \(Y \)
\(G_X \) the probability generating function of \(X \)
\(M_X \) the moment generating function of \(X \)
\(\phi_X \) the characteristic function of \(X \)

\(E(X) \) the expected value of the random variable \(X \)
\(\text{Var}(X) \) the variance of \(X \)
\(\text{Cov}(X,Y) \) the covariance of \(X \) and \(Y \)
\(E(X|B) \) the conditional expectation of \(X \) given the event \(B \)
\(E(X|Y = t) \) the conditional expectation of \(X \) given the (possibly null) event \(Y = t \)
\(E(X|Y) \) the conditional expectation of \(X \) given the random variable \(Y \)
\(E_i(Z) \) the conditional expectation \(E(Z|X_0 = i) \), where \((X_n)_{n \geq 0}\) is a Markov chain
\(E(X|\mathcal{G}) \) the conditional expectation of \(X \) given the sigma-field \(\mathcal{G} \)
\(a^+ \) \(\max\{a, 0\} \)
\(a^- \) \(\max\{-a, 0\} \)

\(X \sim \nu \) the random variable \(X \) is distributed as the probability measure \(\nu \)
\(1_A \) the indicator function of the event \(A \)
\(N(\mu, \sigma^2) \) the normal probability law with mean \(\mu \) and variance \(\sigma^2 \)
\(\text{bin}(n, p) \) the binomial probability law with parameters \(n \) and \(p \)
\(\exp(\lambda) \) the exponential probability law with parameter \(\lambda \)
\(\text{unif}(a, b) \) the uniform probability law on the interval \((a, b)\)

\(\limsup_{n \to \infty} x_n \) the limit superior of the sequence \(x_1, x_2, \ldots \)
\(\liminf_{n \to \infty} x_n \) the limit inferior of the sequence \(x_1, x_2, \ldots \)
\(L_p \) the set of random variables \(X \) with \(E|X|^p < \infty \)
\(\gcd(A) \) the greatest common divisor of the set \(A \subseteq \mathbb{N} \)

Table 1. Notation