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Problem 1. Let Y1, Y2, . . . be independent, identically distributed random variables with
values in {1, 2, . . .}. Suppose that the set of integers

{n : P(Y1 = n) > 0}

has greatest common divisor 1. Set µ = E(Y1). Prove that the following process is a Markov
chain: X0 = 0 and

Xn = inf{m ≥ n : m = Y1 + . . . + Yk for some k ≥ 1} − n

for n ≥ 1. Furthermore show that

lim
n↑∞

P(Xn = 0) =
1

µ
.

Solution 1. Let Sk = Y1 + . . . + Yk for k ≥ 1, and let

Kn = inf{k ≥ 1 : Sk ≥ n}

so that
Xn = SKn − n.

Since

Xn+1 =

{
Xn − 1 if Xn ≥ 1
YKn+1 − 1 if Xn = 0

and the random variable YKn+1 is independent of X1, . . . , Xn, it follows that (Xn)n is a time
homogeneous Markov chain with transition probabilities

p0,j = P(Y1 = j + 1) and pj+1,j = 1 for all j ≥ 0.

The chain is irreducible since all states communicate with 0. The first time that the
chain visits 0 is inf{n ≥ 1 : Xn = 0} = Y1. Because E(Y1) = µ < +∞ the chain is positive
recurrent, and hence has a unique invariant measure π satisfying π0 = 1/µ.

[Alternatively, one could solve the equation πP = π to deduce

πi =
P(Y1 > i)

µ
.

where P = (pij)ij. ]
Since

P(Xn+m = 0|Xm = 0) = P(Y1 = n)

the set of n’s such that the n-step transition probabilities are positive have greatest common
divisor 1, and hence the chain is aperiodic. Therefore, the ergodic theorem implies

lim
n↑∞

P(Xn = 0) = π0 =
1

µ
.

1



Problem 2. Consider a continuous time Markov chain with generator

G =

(
−µ µ
λ −λ

)
.

Use the Kolmogorov equations to find the transition probabilities. What is the invariant
distribution?

Solution 2. The forward Kolmogorov equation is

P ′(t) = P (t)G, P (0) = I

or in component form:
p′11(t) = −µp11(t) + λp12(t), p11(0) = 1
p′12(t) = µp11(t)− λp12(t), p12(0) = 0
p′21(t) = −µp21(t) + λp22(t), p21(0) = 0
p′22(t) = µp21(t)− λp22(t), p22(0) = 1

The solution is 
p11(t) = λ

λ+µ
+ µ

λ+µ
e−t(λ+µ)

p12(t) = µ
λ+µ

(1− e−t(λ+µ))

p21(t) = λ
λ+µ

(1− e−t(λ+µ))

p22(t) = µ
λ+µ

+ λ
λ+µ

e−t(λ+µ)

Alternatively, one could solve the backward Kolmogorov equation

P ′(t) = GP (t), P (0) = I.

In either case, the solution is given by P (t) = etG. The matrix exponential can also be
calculated from the decomposition

G =

(
1 −µ
1 λ

) (
0 0
0 −(λ + µ)

) (
1 −µ
1 λ

)−1

as

etG =

(
1 −µ
1 λ

) (
1 0
0 e−t(λ+µ)

) (
1 −µ
1 λ

)−1

.

The invariant distribution can either be found by letting t ↑ ∞ in the above equations:

π1 =
λ

λ + µ
, π2 =

µ

λ + µ

or by solving πG = 0 subject to π1 + π2 = 1.
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Problem 3. Consider a continuous time immigration-death process with constant immigra-
tion rate λi = λ and proportional death rate µi = iµ. That is, the generator G = (gij)i,j≥0

is such that

gij =


λ if j = i + 1
−(λ + iµ) if j = i
iµ if j = i− 1
0 otherwise.

Show that the invariant distribution is Poisson with parameter λ/µ.

Solution 3. Let π be the row vector with entries

πi =
(λ/µ)i

i!
e−λ/µ.

Since

(πG)j =

{
π0g00 + π1g10 if j = 0
πj−1gj−1,j + πjgjj + πj+1gj,j+1 if j > 0

= 0

the measure π is invariant.

Problem 4. Let (Xn)n be a Markov chain on S with transition matrix P = (pij)(i,j)∈S×S.
Consider a bounded function f : S → R such that∑

j∈S

pijf(j) = f(i).

for all states j ∈ S. Prove that (f(Xn))n is a martingale with respect to the filtration
generated by (Xn)n.

Solution 4. If Fn = σ(X1, . . . , Xn) then

E[f(Xn+1)|Fn] = E[f(Xn+1)|Xn]

by the Markov property. But

E[f(Xn+1)|Xn = i] =
∑
j∈S

pijf(j) = f(i)

by assumption so that
E[f(Xn+1)|Fn] = f(Xn).

Problem 5. Let X1, X2, . . . be independent and identically distributed with common mo-
ment generating function M(t) = E(etX1), and let Sn = X1 + . . . + Xn. Show that

Zn = etSnM(t)−n

is a martingale with respect to the filtration generated by (Xn)n for all t for which the
moment generating function is finite.
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Solution 5.

E(Zn+1|Fn) = E(etXn+1M(t)−1Zn|Fn) = E(etXn+1)M(t)−1Zn = Zn

Problem 6. Let X1, X2, . . . be independent and identically distributed with

P(X1 = 1) = P(X1 = −1) =
1

2
,

and let Sn = X1 + . . . + Xn. Fix a natural number k and define the random time

τ = inf{n ≥ 1 : |Sn| = k}.

Use Problem 5 and the optional stopping theorem to show that the probability generating
function G(s) = E(sτ ) is given by

G(s) = sech(k sech−1(s))

for 0 < s ≤ 1. Recall that

sech(x) =
2

ex + e−x
.

Solution 6. The moment generating function of X1 is given by E(etX1) = 1
2
et + 1

2
e−t = cosh t.

By the previous exercise, the process

Zn(t) = etSn(cosh t)−n

defines a martingale for every t ∈ R. Since the random variables |Sτ∧n| are bounded by k
and cosh t ≥ 1, we have Zn(t) ≤ ekt for all n and hence the the optional stopping theorem
implies

E(Zτ (t)) = 1.

On the other hand,

1

2
E[Zτ (t) + Zτ (−t)] = E[cosh(tSτ )(cosh t)−τ ]

= cosh(kt)E[(cosh t)−τ ]

since cosh(tSτ ) = cosh(tk) on the almost sure event {τ < ∞}.
Letting t = sech−1s and rearranging completes the proof.

Problem 7. Let (Mn)n≥0 be a bounded martingale. The goal of this exercise is to prove
Doob’s maximal inequality.

1. Use Jensen’s inequality to show that (|Mn|)n is a submartingale.

2. Fix λ ≥ 0 and let τ = inf{n ≥ 0 : |Mn| ≥ λ}. By using the optional sampling theorem
at the stopping times τ ∧N and N , show that

λP(M∗ ≥ λ) ≤ E(|MN |1{M∗≥λ})

where M∗ = max0≤n≤N |Mn|.
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3. Integrate both sides with respect to λ to show

E[(M∗)2] ≤ 2 E(|MN |M∗)

4. Use the Cauchy-Schwarz inequality to prove

E( max
0≤n≤N

M2
n) ≤ 4 E(M2

N).

Solution 7. 1. E(|Mn+1|
∣∣Fn) ≥ |E(Mn+1|Fn)| = |Mn|

2. Since τ ∧ N ≤ N and (|Mn|)n is a submartingale, we have by the optional sampling
theorem

E|Mτ∧N | ≤ E|MN |.

We have |Mτ∧N | = λ1{τ≤N} + |MN |1{τ>N}. But since {τ ≤ N} = {M∗ ≥ λ}, we have

E|Mτ∧N | = λP(M∗ ≥ λ) + E(|MN |1{M∗<λ}).

Hence

λP(M∗ ≥ λ) = E|Mτ∧N | − E(|MN |1{M∗<λ})

≤ E|MN | − E(|MN |1{M∗<λ}) = E(|MN |1{M∗≥λ})

3. Integrate both sides of the above inequality with respect to λ. On the left side we have∫∞
0

λP(M∗ ≥ λ)dλ = 1
2
E[(M∗)2].

On the ride side, note that
∫∞

0
1{M∗≥λ}dλ = M∗ identically. The interchange of expec-

tation and integration with respect to λ is justified since the integrand is almost surely
positive.

4.
E[(M∗)2] ≤ 2E(|MN |M∗) ≤ 2

(
E[M2

N ]
)1/2 (

E[(M∗)2]
)1/2

by the Cauchy-Schwarz inequality. Squaring both sides and dividing by E(M∗)2 yields
the desired conclusion.
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