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Problem 1. Let Y7,Y5,... be independent, identically distributed random variables with
values in {1,2,...}. Suppose that the set of integers

{n:P(Y; =n) >0}

has greatest common divisor 1. Set p = E(Y7). Prove that the following process is a Markov
chain: Xy =0 and

X,=inf{m>n-m=Y,+...+Y, forsome k > 1} —n

for n > 1. Furthermore show that

1
limP(X,, =0) = —.
nloo 1%

Solution 1. Let S, =Y, + ...+ Y, for k > 1, and let
K, =inf{k > 1: S, >n}
so that
Xn:SK —n.

n

Since

Yiep1—1 if X, =0

and the random variable Yk, 11 is independent of X, ..., X, it follows that (X,,), is a time
homogeneous Markov chain with transition probabilities

X, -1  ifX,>1
XnJrl:{ _

po; =P(Y1=j+1)and pjy1,; =1 for all j > 0.

The chain is irreducible since all states communicate with 0. The first time that the
chain visits 0 is inf{n > 1: X,, = 0} =Y. Because E(Y]) = p < +o0 the chain is positive
recurrent, and hence has a unique invariant measure 7 satisfying mo = 1/pu.

[Alternatively, one could solve the equation 7P = 7 to deduce

P(Y; >
= P> 1)
]
Since
P(X,1m =0/X,, =0) =P(Y; =n)

the set of n’s such that the n-step transition probabilities are positive have greatest common
divisor 1, and hence the chain is aperiodic. Therefore, the ergodic theorem implies
1

limP(X, =0)=m = —.
InPXn=0) =m0 =



Problem 2. Consider a continuous time Markov chain with generator

o= (4.

Use the Kolmogorov equations to find the transition probabilities. What is the invariant
distribution?

Solution 2. The forward Kolmogorov equation is
P'(t) = P(t)G, P(0)=1

or in component form:

PL(t) = —ppu(t) + Apie(t), pu(0) =1
Pio(t) = ppi(t) — Apia(t),  p12(0) =0
Py (t) = —ppai(t) + Apaa(t), pxn(0) =0
Poo(t) = ppar(t) — Apaa(t),  p22(0) =1

The solution is

pull) = 52+ et
pio(t) = (1 —e i)
parlt) = 3o (1—e )
pa(l) = s+ i)

Alternatively, one could solve the backward Kolmogorov equation
P'(t) = GP(t), P(0)=1.

In either case, the solution is given by P(t) = €/“. The matrix exponential can also be
calculated from the decomposition

(1) (¢ ) (1)
()G ) ()

The invariant distribution can either be found by letting ¢ T oo in the above equations:

as

A Iz

:ma 2 = 5

m A+

or by solving 7G = 0 subject to m; + m = 1.



Problem 3. Consider a continuous time immigration-death process with constant immigra-
tion rate A; = A and proportional death rate p; = ip. That is, the generator G' = (g;5)i >0
is such that

A ifj=i+1

) =) =i
95 =9 ip if j=i—1
0 otherwise.

Show that the invariant distribution is Poisson with parameter \/pu.

Solution 3. Let m be the row vector with entries

L
7! ’
Since

(xQ); — { Togoo + T1910 ifj=0
! Tj-19j-1j + g5 + Tjx1gjier  ifJ >0
= 0

the measure 7 is invariant.

Problem 4. Let (X,,), be a Markov chain on S with transition matrix P = (pi;)(j)esxs-
Consider a bounded function f : S — R such that

ZPijf(j) = f(i)

for all states 7 € S. Prove that (f(X,)), is a martingale with respect to the filtration
generated by (X,,)n.

Solution 4. If F,, = 0(Xy,...,X,) then

E[f(Xni1)[Fn] = E[f (Xns1)[Xa]

by the Markov property. But
E[f(Xnt1)| X5 = 1] Zpuf
jES

by assumption so that
E[f(Xn+1)|]:n] - f(Xn)~

Problem 5. Let X, X5, ... be independent and identically distributed with common mo-
ment generating function M (t) = E(e**1), and let S, = X; + ...+ X,,. Show that

Zp =S M(t)™"

is a martingale with respect to the filtration generated by (X,), for all ¢ for which the
moment generating function is finite.



Solution 5.
E(Zn1|Fn) = E(e™ 0 M(t) ' Z,|F,) = E(eX )M (1) Z, = Z,
Problem 6. Let X3, X5, ... be independent and identically distributed with

P(X; =1)=P(X; = —1) = %

and let S,, = X; + ...+ X,,. Fix a natural number £ and define the random time
T =inf{n >1:15,| =k}

Use Problem 5 and the optional stopping theorem to show that the probability generating
function G(s) = E(s7) is given by

G(s) = sech(k sech™(s))

for 0 < s < 1. Recall that

2
sech(z) = ———.
@)= 2
Solution 6. The moment generating function of X is given by E(e'*1) = Zef 4+ 1e™" = cosh .

By the previous exercise, the process
Z,(t) = e (cosh t)™"

defines a martingale for every ¢ € R. Since the random variables |S;,,| are bounded by k
and cosht > 1, we have Z,(t) < e* for all n and hence the the optional stopping theorem
implies
E(Z.(t)) = 1.

On the other hand,

1

§E[ZT(75) + Z.(—t)] = E[cosh(tS;)(cosht)™7]

= cosh(kt)E[(cosht)™]

since cosh(tS,) = cosh(tk) on the almost sure event {7 < co}.
Letting ¢ = sech™'s and rearranging completes the proof.

Problem 7. Let (M,),>0 be a bounded martingale. The goal of this exercise is to prove
Doob’s maximal inequality.

1. Use Jensen’s inequality to show that (|M,|), is a submartingale.

2. Fix A > 0 and let 7 = inf{n > 0: |M,| > A}. By using the optional sampling theorem
at the stopping times 7 A N and N, show that

AP(M™ > X) <E(|My|Liar>ay)

where M* = maxo<,<n | M|



3. Integrate both sides with respect to A to show

E[(M*)?] < 2 E(|My|M")

4. Use the Cauchy-Schwarz inequality to prove

Solution 7. 1. E(| M| |fn) > |E(M 1| F)| = | M,

2. Since 7 AN < N and (|M,|), is a submartingale, we have by the optional sampling
theorem
E|M:an| < E[My|.

We have | M an| = Ali-<ny + [My|1irsny. But since {7 < N} = {M* > A}, we have
Hence

< E|My| = E(|My|Liar<ny) = E(IMy|Tar2x)

3. Integrate both sides of the above inequality with respect to A. On the left side we have
fooo AP(M* > N)dX\ = %]E[(M*)Q]

On the ride side, note that fooo Liar+>xpdX = M* identically. The interchange of expec-
tation and integration with respect to A is justified since the integrand is almost surely
positive.

E[(M*)?] < 2E(|My|M*) < 2 (E[M3])"* (E[(M7)2) "

by the Cauchy-Schwarz inequality. Squaring both sides and dividing by E(M*)? yields
the desired conclusion.



