
Introduction to Probability Michael Tehranchi
Example Sheet 3 - Michaelmas 2006

Problem 1. Let (Xn)n≥0 be a homogeneous Markov chain on S with transition matrix P .
Given a k ∈ N, let Zn = Xkn. Prove that (Zn)n≥0 is Markov chain with transition matrix
P k.

Solution 1. First we prove a general result: if (Xn)n≥0 is a Markov chain then for any
collection of states i1, . . . , ik and any collection of indices 0 ≤ n1 < . . . < nk we have

P(Xnk
= ik|Xnk−1

= ik−1, . . . , Xn1 = i1) = P(Xnk
= ik|Xnk−1

= ik−1).

Equivalently, we will show that

P(Xn1 = i1, . . . , Xnk
= ik) = P(Xnk

= ik|Xnk−1
= ik−1) · · ·P(Xn2 = i2|Xn1 = i1).

Note that

P(Xn1 = i1, . . . , Xnk
= ik) =

∑
j∈A

n1,...,nk
i1,...,ik

P(X0 = j0, . . . Xnk
= jk)

where An1,...,nk
i1,...,ik

= {(j0, . . . , jnk
) ∈ Snk+1 : jnl

= il for l = 1, . . . , k}. But by induction we have

P(X0 = j0, . . . Xn = jn) = P(Xn = jn|Xn−1 = jn−1) · · ·P(X1 = j1|X0 = j0)P(X0 = j0).

Hence for n ≥ m and im, in ∈ S we have

P(Xn = in|Xm = im) =
P(Xn = in, Xm = im)

P(Xm = im)

=

∑
j∈Am,n

im,in
P(Xn = jn|Xn−1 = jn−1) · · ·P(X1 = j1|X0 = j0)P(X0 = j0)∑

j∈Am
im

P(Xm = jm|Xm−1 = jm−1) · · ·P(X1 = j1|X0 = j0)P(X0 = j0)

=
∑

j∈Bm,n
im,in

P(Xn = jn|Xn−1 = jn−1) · · ·P(Xm+1 = jm+1|Xm = jm)

where Bm,n
im,in

= {(jm, . . . , jn) ∈ Sn−m+1 : jm = im, jn = im}. The claim now follows.
Returning to the specific problem, we have

P(Zn = in|Zn−1 = in−1, . . . , Z0 = i0) = P(Xkn = in|Xk(n−1) = in−1, . . . , X0 = i0)

= P(Xkn = in|Xk(n−1) = in−1)

= (P k)in−1,in

= P(Zn = in|Zn−1 = in−1)

and (Zn)n is a Markov chain with transition matrix P k.
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Problem 2. Let U1, U2, . . . be a sequence of independent random variable uniformly dis-
tributed on [0, 1]. Given a function G : S × [0, 1] → S, let (Xn)n be defined recursively
by

Xn+1 = G(Xn, Un+1).

Show that (Xn)n is a Markov chain on S. Prove that all Markov chains can be realized in
this fashion with a suitable choice of the function G.

Solution 2. Let i0, . . . , in+1 be any collection of points in S. Since Un+1 is independent of
X0, . . . , Xn we have

P(Xn+1 = in+1|X0 = i0, . . . , Xn = in) = P(G(Xn, Un+1) = in+1|X0 = i0, . . . , Xn = in)

= P(G(in, Un+1) = in+1)

= P(G(Xn, Un+1) = in+1|Xn = in)

= P(Xn+1 = in+1|Xn = in)

and hence (Xn)n is a Markov chain. The transition probabilities are then given by

pij = P(G(i, U1) = j).

Conversely, suppose P = (pij)i,j is an arbitrary stochastic matrix. Let G : S × [0, 1] → S
be defined by

G(i, u) = j if

j−1∑
k=1

pik ≤ u <

j∑
k=1

pik.

If U is a random variable uniformly distributed on [0, 1] then

P(G(i, U) = j) = pij

by construction. Hence the Markov chain with transition matrix P can be realized by the
recurrence Xn+1 = G(Xn, Un+1) where U1, U2, . . . is a sequence of independent uniform [0, 1]
random variables.

Problem 3. Let X1, X2, . . . be a sequence of independent random variables with

P(Xn = 1) = P(Xn = −1) =
1

2

for all n. Let Sn = X1 + . . . + Xn. Prove that (Sn)n≥0 is a recurrent Markov chain on the
set of integers Z = {0,±1,±2, . . .}.

[You might find Stirling’s formula useful: n! ≈
√

2πnn+1/2e−n.]

Solution 3. The stochastic process (Sn)n is a Markov chain since for all integers i1, . . . , in+1

we have

P(Sn+1 = in+1|S1 = i1, . . . , Sn = in) = P(Sn + Xn+1 = in+1|S1 = i1, . . . , Sn = in)

= P(Xn+1 = in+1 − in)

= P(Sn+1 = in+1|Sn = in)
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where we have used the fact that Xn+1 is independent of S1, . . . Sn.
We can prove recurrence in two ways. First, by counting the left and right turns of the

random walk we have

P(Sn = 0) =

{
0 if n is odd
2−n

(
n

n/2

)
if n is even.

By Stirling’s formula, we have the approximation(
2k

k

)
≈ 22k

√
πk

and which implies
∞∑

n=1

p00(n) =
∞∑

n=1

P(Sn = 0) = ∞.

The state zero is thus a recurrent state. Since the Markov chain is irreducible, it is recurrent.
Alternatively, let Xn = Sn + X0 and define the stopping time T = inf{n ≥ 0 : Xn = 0}.

Let hi = P(T < ∞|X0 = i). By conditioning on the first step of the walk we have hi =
1
2
hi−1 + 1

2
hi+1. All solutions to this linear difference equation are of the form hi = a + bi

for constants a, b ∈ R. Since we have the bound 0 ≤ hi ≤ 1 then b = 0. Also, we have
the boundary condition h0 = 1 so a = 1. In particular, the P(Sn = 0 for some n ≥ 1} =
1
2
h1 + 1

2
h−1 = 1 and the random walk is recurrent.

Problem 4. Fix a natural number d ≥ 1, and let X1, X2, . . . be a sequence of independent
vector-valued random variables with

P(Xn = ei) = P(Xn = −ei) =
1

2d

for all 1 ≤ i ≤ d, where
ei = (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
d−i

)

Let Sn = X1 + · · · + Xn. Prove that (Sn)n≥0 is a transient Markov chain on Zd if and only
if d ≥ 3.

[You may find the following inequality useful: If i1 + . . .+ id = dn then i1! · · · id! ≥ (n!)d.]

Solution 4. As before, by counting the left, right, up, down, etc. turns of the random walk
we have

P(Sn = 0) =

{
0 if n is odd
(2d)−n

∑
i1+···+id=n/2

n!
(i1!)2···(id!)2

if n is even.

For d = 2, a miracle occurs and P(S2k = 0) = [2−2k
(
2k
k

)
]2 exactly. By Stirling’s formula

we have P(S2k = 0) ≈ (πk)−1, and since
∑

n≥1 p00(n) = ∞ the walk is recurrent.
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We can bound the probability of {S2k = 0} by

(2d)−2k
∑

i1+···+id=k

(2k)!

(i1!)2 · · · (id!)2
≤ (2d)−2k (2k)!

k! mini1+···+id=k(i1!) · · · (id!)
∑

i1+···+id=k

k!

(i1!) · · · (id!)

= (4d)−k (2k)!

k! mini1+···+id=k(i1!) · · · (id!)

= (4d)−k (2k)!

k![(k/d)!]d

≈ Ck−d/2

for some constant C > 0, at least when k is divisible by d, where we have used the fact∑
i1+···+id=k

k!
(i1!)···(id!)

= dk. (If k is not divisible by d we have mini1+···+id=k(i1!) · · · (id!) =

(bk/dc!)d(1−{k/d})(b1 + k/dc!)d{k/d} where bxc is the greatest integer less than or equal to x
and {x} = x− bxc is the fractional part of x, in which case the asymptotics still hold.)

If d ≥ 3 the sum
∑

n≥1 p00(n) converges and 0 is a transient state, and hence the chain
is transient.

Problem 5. Let T1 and T2 be stopping times for a Markov chain (Xn)n≥0 on S. Prove that
each of the following are also stopping times:

1. T = min{n ≥ 1 : Xn = i} for some fixed i ∈ S.

2. T (ω) = N for all ω ∈ Ω for a fixed N ∈ N.

3. T = min{T1, T2}.

4. T = max{T1, T2}.

5. T = T1 + T2.

Solution 5. By definition, a random variable T : Ω → N∪{∞} is a stopping time if and only
if for every n ∈ N there is a function fn : Sn+1 → {0, 1} such that 1{T=n} = fn(X0, . . . , Xn).

Notice that that if T is a stopping time then there exist functions gn such that 1{T≥n+1} =
gn(X0, . . . , Xn) since

1{T≥n+1} = 1− 1{T≤n} = 1−
n∑

k=0

gk(X0, . . . , Xk)

Conversely, if a random variable T has the property that for every n ∈ N there is a function
gn such that 1{T≥n+1} = gn(X0, . . . , Xn) then T is a stopping time, since

1{T=n} = 1{T≥n} − 1{T≥n+1} = gn−1(X0, . . . , Xn−1)− gn(X0, . . . , Xn).

Similarly, T is a stopping time if and only if there exist then there exists hn such that
1{T≤n} = hn(X0, . . . , Xn).
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1.
1{T=n} = 1{X1 6=i,...,Xn−1 6=i,Xn=i}

2.

1{τ=n} =

{
1 if n = N
0 if n 6= N

3.
1{T≥n+1} = 1{T1≥n+1,T2≥n+1} = 1{T1≥n+1}1{T2≥n+1}.

4.
1{T≤n} = 1{T1≤n,T2≤n} = 1{T1≤n}1{T2≤n}.

5.

1{T=n} =
n∑

k=0

1{T1=k}1{T2=n−k}.

Problem 6. A flea hops randomly on the vertices of a triangle with vertices labelled 1,2,
and 3, hopping to each of the other vertices with equal probability. If the flea starts at vertex
1, find the probability that after n hops the flea is back to vertex 1.

A second flea also starts at vertex 1 and hops about on the vertices of a triangle, but this
flea is twice as likely to jump clockwise as anticlockwise. What is the probability that after
n hops this second flea is back to vertex 1?

Solution 6. At any time, the flea is either on vertex 1 (state A), or it is on one of the two
other vertices (state A). If it is in state a, it hops to state b with probability 1. On the other
hand, if it is in state B, it hops to state A with probability 1/2 and stays in state B with
probability 1/2. Hence the transition matrix is

P =

(
0 1
1
2

1
2

)
.

The eigenvalues of P are 1 and −1/2. We know from general principle that (P n)11 =
a + b(−1/2)n for some constants a, b. But (P 0)11 = 1 and (P 1)11 = 0 so The desired
probability is

(P n)11 =
1

3
+

2

3
(−1/2)n.

Now label the vertices of the triangle states 1, 2, and 3. The transition matrix is

P =

 0 2
3

1
3

1
3

0 2
3

2
3

1
3

0


with eigenvalues 1 and −1

2
± i

2
√

3
= −3−1/2e±iπ/6, where i =

√
−1. We know that the entries

of the matrix P n are of the form

(P n)ij = a + (−3−1/2)n(b cos(πn/6) + c sin(πn/6)).
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Since (P 0)11 = 1, (P 1)11 = 0, and (P 2)11 = 4
9

we have

(P n)11 =
1

3
+

2

3
(−3−1/2)n cos(nπ/6)

In both cases, it saves time to notice that the invariant distribution puts probability 1/3
on vertex 1, so that the constant term a = 1/3.

Problem 7. Consider the second flea of Problem 6. What is the expected number of hops
the flea makes before it is first back to vertex 1? What is the expected number of times the
flea visits vertex 3 before first reaching vertex 2? (Assume that the vertices are labelled so
that 1 → 2 → 3 → 1 . . . is clockwise.)

Solution 7. Consider the Markov chain (Xn)n≥0 on {1, 2, 3} with transition matrix

P =

 0 2
3

1
3

1
3

0 2
3

2
3

1
3

0


For each vertex i let Ti = inf{n ≥ 1 : Xn = i}.

Since the chain is irreducible and positive recurrent, and has unique invariant distribution
π = (1/3, 1/3, 1/3), we have

E1(T1) =
1

π1

= 3.

Now we are asked to compute E1(
∑T2

n=1 1{Xn=3}). Here are two approaches: First, let

ki = Ei

∑T2

n=1 1{Xn=3}. Then by conditioning on X1 we have

k1 = E(

T2∑
n=1

1{Xn=3}|X0 = 1)

= E(

T2∑
n=1

1{Xn=3}|X0 = 1, X1 = 2)P(X1 = 2|X0 = 1)

+E(

T2∑
n=1

1{Xn=3}|X0 = 1, X1 = 3)P(X1 = 3|X0 = 1)

= (0)(2/3) + (1 + k3)(1/3)

where we have used the time homogeneity of the chain. Similarly,

k3 = (0)(1/3) + (k1)(2/3)

so that k1 = 3/7.
Here is another approach. Let N =

∑T2

n=1 1{Xn=3}. Note that

P1(N = 0) = P(X1 = 2|X0 = 1) = 2/3.
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and for k ≥ 1,

P1(N = k) = P1(X1 = 3, X2 = 1, . . . , X2k−2 = 1, X2k−1 = 3, X2k = 2}
+P1(X1 = 3, X2 = 1, . . . , X2k−2 = 1, X2k−1 = 3, X2k = 1, X2k+1 = 2}

= (1/3)k+1(2/3)k−1 + (1/3)k(2/3)k+1 = (7/6)(2/9)k

so that

E1(N) =
∞∑

k=1

k(7/6)(2/9)k = 3/7

as before. [Thanks to those who contributed to these solutions during the examples class.]

Although irrelevant to the question, note that k2 = E2(N) = γ
(2)
3 = π3/π2 = 1 is the

expected number of times the flea visits vertex 3 before returning to vertex 2, assuming the
flea began at vertex 2.
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