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Problem 1. Let X1, X2, . . . be independent and identically distributed exponential random
variables with parameter λ. Prove

lim sup
n↑∞

Xn

log n
=

1

λ

almost surely.

Solution 1. Fix an ε > 0. Since P(Xn > t) = e−λt and

∞∑
n=1

P
( Xn

log n
> 1/λ + ε

)
=

∞∑
n=1

n−1−λε < +∞

we have by the first Borel-Cantelli lemma that

lim sup
n↑∞

Xn

log n
≤ 1

λ
+ ε

almost surely.
Also, since the random variables X1, X2, . . . are independent and

∞∑
n=1

P
( Xn

log n
> 1/λ

)
=

∞∑
n=1

n−1 = +∞

we have by the second Borel-Cantelli lemma that

lim sup
n↑∞

Xn

log n
≥ 1

λ

almost surely.
By the sequential continuity of P the event{

lim sup
n↑∞

Xn

log n
=

1

λ

}
=

∞⋂
k=1

{
1

λ
≤ lim sup

n↑∞

Xn

log n
≤ 1

λ
+

1

k

}
has probability one.

Problem 2. Let X1, X2, . . . be independent absolutely continuous random variables such
that Xn has density function fn given by

fn(x) =
n

π(1 + n2x2)
.

With respect to which modes of convergence does Xn converge to zero as n ↑ ∞?

1



Solution 2. Since E|Xn|p = +∞ for all p ≥ 1, the sequence X1, X2, . . . does not converge in
any Lp. On the other hand for every ε > 0 we have

P(|Xn| > ε) =
2

π
tan−1(

1

εn
) ≈ 2

πnε

for large n. Hence Xn → 0 in probability and in distribution. But since X1, X2, . . . are
independent and

∑∞
n=1 P(|Xn| > ε) = +∞ then |Xn| > ε infinitely often almost surely by

the second Borel-Cantelli lemma. Thus Xn does not converge to zero almost surely.

Problem 3. Let M(t) = E(etX) be the moment generating function of a random variable
X. Prove

P(X ≥ ε) ≤ inf
t≥0

e−εtM(t).

Solution 3. For every t ≥ 0 we have

P(X ≥ ε) = P(etX ≥ eεt) ≤ E(etX)

eεt

by Markov’s inequality. Since the inequality holds for each t ≥ 0, it holds for the infimum.

Problem 4. Let X and Y be jointly normal with zero means and unit variances and corre-
lation ρ. Prove

P(X > 0, Y > 0) =
1

4
+

1

2π
sin−1 ρ.

Solution 4. Let Z = (1− ρ2)−1/2(Y − ρX). Since the random variables X and Y are jointly
normal, the random variables X and Z are also jointly normal. Also, since Cov(X, Z) = 0,
then X and Z are independent.

By changing from Cartesian to polar coordinates (x, z) 7→ (r, θ) we have

P(X > 0, Y > 0) = P(X > 0, ρX + (1− ρ2)1/2Z > 0)

=

∫∫
x>0,ρx+(1−ρ2)1/2z>0

1

2π
e−(x2+z2)/2dx dz

=
1

2π

∫ π/2

θ=− sin−1 ρ

∫ ∞

r=0

re−r2/2dr dθ

=
1

4
+

1

2π
sin−1 ρ.

Problem 5. If Xn → X in L1 then prove E(Xn) → E(X). If Xn → X in L2 then prove
Var(Xn) → Var(X).

Solution 5. If Xn → X in L1 then |E(Xn) − E(X)| = |E(Xn − X)| ≤ E|Xn − X| → 0 by
Jensen’s inequality.
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Now if Xn → X in L2, then E|Xn − X| ≤ E[(Xn − X)2]1/2 by Jensen’s inequality, so
Xn → X in L1 and, by the first part, E(Xn) → E(X). Furthermore,

|E(X2
n)− E(X2)| ≤ E(|Xn −X||Xn + X|)

≤ E[(Xn −X)2]1/2E[(Xn + X)2]1/2.

Since E[(Xn − X)2] → 0 there exists an N such that E[(Xn − X)2] ≤ 1 for all n ≥ N .
Hence, for n ≥ N we have

E[(Xn + X)2] = E[(Xn −X + 2X)2]

≤ 2E[(Xn −X)2] + 8E(X2)

≤ 2 + 8E(X2)

and we conclude that E[(Xn + X)2] is bounded uniformly in n. Hence E(X2
n) → E(X2) and

thus Var(Xn) → Var(X) as desired.

Problem 6. Let X1, X2, . . . be a sequence of random variables such that E supn≥1 |Xn| < ∞.
If Xn → X in probability, then prove Xn → X in L1.

Solution 6. Let Z = supn≥1 |Xn|. We first prove that |X| ≤ Z almost surely. We could
appeal to Problem 11 to assert the existence of a subsequence (Xnk

)k≥1 such that Xnk
→ X

almost surely. Hence |X| ≤ supk≥1 |Xnk
| ≤ Z almost surely.

Alternatively,

P(|X| > Z + ε) = P(|X| > Z + ε, |Xn −X| ≥ ε) + P(|X| > Z + ε, |Xn −X| < ε)

≤ P(|Xn −X| ≥ ε) + P(|Xn| > Z)

→ 0

as n ↑ ∞ and hence X ≤ Z + ε almost surely. By either method, we can conclude that
the event {X ≤ Z} = ∩∞k=1{X ≤ Z + 1/k} has probability one. Note, in particular, the
inequality |Xn −X| ≤ |Xn|+ |X| ≤ 2Z holds almost surely.

Next we claim that if A1, A2, . . . is a sequence of events with P(An) → 0 then E(Z1An) →
0. Pick a z > 0 and note that

E(Z1An) = E(Z1An∩{|Z|>z}) + E(Z1An∩{|Z|≤z})

≤ E(Z1{|Z|>z}) + zP(An).

Letting n ↑ ∞ first and then z ↑ ∞ proves the claim.
Now, fix an ε > 0.

E|Xn −X| = E(|Xn −X|1{|Xn−X|≤ε}) + E(|Xn −X|1{|Xn−X|>ε})

≤ ε + 2E(Z1{|Xn−X|>ε})

Letting An = {|Xn −X| > ε} in the above claim and letting ε ↓ 0 implies E|Xn −X| → 0
as desired.

[Note that this is a version of the dominated convergence theorem that holds under a
weaker hypothesis than the one proved in the lecture.]
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Problem 7. Let X2, X3, . . . be a sequence of independent random variables such that

P(Xn = n) = P(Xn = −n) =
1

2n log n
; P(Xn = 0) = 1− 1

n log n
.

Let Sn = X2 + . . . + Xn. Prove that Sn

n
→ 0 in probability, but not almost surely. (That is,

the weak law of large numbers holds, but not the strong law.)

Solution 7. Since the Xn’s are independent and E(Xn) = 0 for all n ∈ N we have

E(S2
n) =

n∑
k=2

n

log n
.

Hence by Chebyshev’s inequality,

P(
|Sn|
n

> ε) <
1

n2ε2

n∑
k=2

n

log n
<

1

ε2 log n
→ 0

where we have made use of the fact that x → x/ log x is increasing for x > e. Hence
Sn/n → 0 in probability.

On the other hand, since the random variables X2, X3, . . . are independent and

∞∑
n=2

P(Xn = n) =
∞∑

n=2

1

2n log n
= +∞,

the second Borel-Cantelli lemma asserts that there exists an event E ⊂ Ω with P(E) = 1
such that for all ω ∈ E the equation Xn(ω) = n is satisfied for an infinite number of n’s.
But if Xn(ω) = n then

Sn(ω)

n
− Sn−1(ω)

n− 1
=

Xn(ω) + Sn−1

n
− Sn−1(ω)

n− 1

= 1− Sn−1(ω)

n(n− 1)

≥ 1/2

where we have used the inequality Sn−1 = X2 + . . . + Xn−1 ≤ 1 + . . . + n− 1 = n(n−1)
2

. For

each ω ∈ E the inequality Sn(ω)
n

− Sn−1(ω)
n−1

≥ 1/2 holds for infinitely many n’s. Thus the
sequence (Sn(ω)/n)n diverges for each ω ∈ E.

Problem 8. Let X be a random variable and let KX(t) = log E(etX) be the logarithm of
the moment generating function. Prove that KX is convex. Suppose that KX has a Taylor
series

KX(t) =
∞∑

n=1

1

n!
kn(X)tn.

Compute k1(X), k2(X), and k3(X) in terms of the moments of X. If X and Y are indepen-
dent, prove that kn(X + Y ) = kn(X) + kn(Y ) for all n ≥ 1.
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Solution 8. We give two proofs of the convexit of KX . Proof 1:

K ′′
X(t) =

E(X2etX)E(etX)− E(XetX)2

E(etX)2
≥ 0

by the Cauchy–Schwarz inequality E(Y Z) ≤ [E(Y 2)]1/2[E(Z2)]1/2 with Y = etX/2 and Z =
XetX/2.

Proof 2: Let 0 < λ < 1.

KX(λs + (1− λ)t) = log E[(esX)λ(etX)1−λ]

≤ log[E(esX)]λ[E(etX)]1−λ

= λKX(s) + (1− λ)KX(t)

where we have used Hölder’s inequality E(Y Z) ≤ [E(Y p)]1/p[E(Zq)]1/q where 1/p + 1/q = 1,
with Y = esX , Z = etX , and p = 1/λ. [Note that the Cauchy–Schwarz inequality is the
special case of Hölder’s inequality with p = 2.]

Now, if a function f has a Taylor series

f(t) = 1 + a1t + a2t
2 + a3t

3 + . . .

converging on some neighborhood of the origin, then

log f(t) = a1t + (a2 −
1

2
a2

1)t
2 + (a3 − a1a2 +

1

3
a3

1)t
3 + . . .

converging on some (possibly smaller) neighborhood of the origin.
Now, for a moment generating function MX(t) = E(etX), finite in some neighborhood of

the origin, we have

MX(t) = 1 +
∞∑

n=1

E(Xn)

n!
tn.

Matching coefficients yields k1(X) = E(X), k2(X) = E(X2)−E(X)2 = Var(X), and k3(X) =
E(X3)− 3E(X)E(X2) + 2E(X)3.

[The number kn(X) is called the n-th cumulant of X, and the function KX is called
the cumulant generating function. Note that a random variable is normal if and only if its
cumulant generating function is quadratic.]

If X and Y are independent then

∞∑
n=1

1

n!
kn(X + Y )tn = log E(et(X+Y ))

= log E(etX) + log E(etY )

=
∞∑

n=1

1

n!
kn(X)tn +

∞∑
n=1

1

n!
kn(Y )tn

and kn(X + Y ) = kn(X) + kn(Y ) by the uniqueness of Taylor series.
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Problem 9. Let X1, X2, . . . be a sequence of independent random variables each uniformly
distributed uniformly [0, 1]. Let Mn = min{X1, . . . , Xn}. Prove that nMn converges in
distribution to an exponential random variable with parameter one.

Solution 9. For t ∈ [0, 1] we have

P(Mn > t) = P(X1 > t, . . . , Xn > t) = (1− t)n

Hence, the distribution function Fn(t) = P(nMn ≤ t) of nMn is given by

Fn(t) =


0 if t < 0

1− (1− t/n)n if 0 ≤ t < n
1 if t ≥ n

and Fn(t) → 1− e−t for all t ≥ 0.

Problem 10. If a sequence of random variables Xn → c in distribution, where c is a constant,
then prove Xn → c in probability.

Solution 10. We are given that P(Xn ≤ t) → 1[c,∞)(t) for all t 6= c. Fixing ε > 0 we have

P(|Xn − c| ≤ ε) = P(c− ε ≤ Xn ≤ c + ε)

= P(Xn ≤ c + ε)− P(Xn < c− ε)

≥ P(Xn ≤ c + ε)− P(Xn ≤ c− ε)

→ 1[c,∞)(c + ε)− 1[c,∞)(c− ε) = 1

and hence P(|Xn − c| > ε) → 0 as desired.

Problem 11. Let Xn → X in probability. Prove that there exists a subsequence Xn1 , Xn2 , . . .
such that Xnk

→ X almost surely.

Solution 11. Since P(|Xn − X| > ε) → 0 for each ε > 0, there exists a subsequence
Xn1 , Xn2 , . . . such that P(|Xnk

−X| > 1/k) ≤ 1/k2. For this subsequence we have

∞∑
k=1

P(|Xnk
−X| > 1/k) < ∞

so that by the first Borel–Cantelli lemma, P(|Xnk
−X| > 1/k infinitely often) = 0. We are

done since the events {|Xnk
−X| ≤ 1/k eventually} and {Xn → X} are equal.

Problem 12. Let U be uniformly distributed on [0, 1]. Let the conditional distribution of
X given U be binomial with parameters U and n. Find the distribution of X.

Solution 12. If Y is binomial with parameters n and p, then there are n independent Bernoulli
random variables with parameter p such that Y = Z1+. . .+Zn. In particular, the probability
generating function of Y is given by GY (s) = (GZ(s))n = (1− p + ps)n.
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Now consider the probability generating function of X:

GX(s) = E(sX) = E(E(sX |U))

= E[(1 + (s− 1)U)n]

=
1

n + 1

sn+1 − 1

s− 1

=
1

n + 1
(1 + s + s2 + . . . + sn).

Hence X is uniformly distributed on {0, 1, . . . , n}.
[Alternatively, one could proceed directly:

P(X = k) = E[P(X = k|U)] = E
(

n

k

)
Uk(1− U)n−k =

1

n + 1
.

This approach requires the formula:∫ 1

0

um(1− u)ndu =
m!n!

(m + n + 1)!
.

The above formula is true in more generality:∫ 1

0

us−1(1− u)t−1du =
Γ(s)Γ(t)

Γ(s + t)

for s, t > 0 where Γ(q) =
∫ ∞

0
xq−1e−xdx is the gamma function. The above integral defines

the beta function B(s, t).]

Problem 13. The random variables X and Y are distributed uniformly on the disk {(x, y) ∈
R2 : x2 + y2 ≤ 1} Find the density of the random variable X/Y .

Solution 13. The joint density f of (X, Y ) is given by f(x, y) = 1/π for x2 + y2 ≤ 1.

P(X/Y ≤ t) =

∫∫
x/y≤t,x2+y2<1

1

π
dx dy

=
1

2
+

1

π
tan−1 t.

Hence, the density f of X/Y is given by f(t) = 1
π

1
1+t2

. That is, the random variable X/Y
has the Cauchy distribution.
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