Introduction to Probability Michael Tehranchi
Example Sheet 2 - Michaelmas 2006

Problem 1. Let X;, X5, ... be independent and identically distributed exponential random
variables with parameter \. Prove

1

li =
H:Tilp logn A

almost surely.

Solution 1. Fix an € > 0. Since P(X,, > t) = ¢~ and
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we have by the first Borel-Cantelli lemma that
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almost surely.

Also, since the random variables X, X5, ... are independent and
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we have by the second Borel-Cantelli lemma that
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almost surely.
By the sequential continuity of P the event
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has probability one.

Problem 2. Let X, Xs,... be independent absolutely continuous random variables such
that X, has density function f, given by

fn<x) = 7_(_(1_'_”21_2)'

With respect to which modes of convergence does X,, converge to zero as n T oo?



Solution 2. Since E|X,|P = +oo for all p > 1, the sequence X, Xs, ... does not converge in
any LP. On the other hand for every ¢ > 0 we have

2 1 2
P(|X,| >€) = Ztan '(—) ~ —
([ Xn] > €) = —tan™ (=) ~ —
for large n. Hence X,, — 0 in probability and in distribution. But since X;, X, ... are

independent and Y >°  P(|X,| > €) = 400 then |X,,| > € infinitely often almost surely by
the second Borel-Cantelli lemma. Thus X, does not converge to zero almost surely.

Problem 3. Let M(t) = E(e'¥) be the moment generating function of a random variable
X. Prove
P(X >¢) < gl(f) e " M(t).

Solution 3. For every t > 0 we have

P(X >¢) =P(e'* > e?) <

by Markov’s inequality. Since the inequality holds for each ¢ > 0, it holds for the infimum.

Problem 4. Let X and Y be jointly normal with zero means and unit variances and corre-
lation p. Prove

1 1
P(X>O,Y>O):Z+2—sin*1p.
m

Solution 4. Let Z = (1 — p?)""/2(Y — pX). Since the random variables X and Y are jointly
normal, the random variables X and Z are also jointly normal. Also, since Cov(X, Z) = 0,
then X and Z are independent.

By changing from Cartesian to polar coordinates (z, z) — (r,6) we have

P(X >0,Y>0) = P(X >0,pX+(1-p)"2Z>0)
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Problem 5. If X,, — X in L; then prove E(X,) — E(X). If X,, — X in Ly then prove
Var(X,,) — Var(X).

Solution 5. If X,, — X in L' then |E(X,,) — E(X)| = |[E(X, — X)| < E|X,, — X| — 0 by
Jensen’s inequality.



Now if X,, — X in L?, then E|X, — X| < E[(X,, — X)?]"/? by Jensen’s inequality, so
X,, — X in L' and, by the first part, E(X,,) — E(X). Furthermore,

[E(XD) —EX)] < E(X, — XX, + X])
< E[(Xn - X)YVPE[(X, + X)7H2.

Since E[(X,, — X)?] — 0 there exists an N such that E[(X,, — X)?] <1 for all n > N.
Hence, for n > N we have

E[(X, + X)?]

E[(X, — X 4+ 2X)?]
< 2E[(X, — X)?] 4 8E(X?)
< 2+8E(X?)

and we conclude that E[(X,, + X)?] is bounded uniformly in n. Hence E(X?) — E(X?) and
thus Var(X,,) — Var(X) as desired.

Problem 6. Let X}, X5, ... be a sequence of random variables such that Esup,,, |X,| < oco.
If X,, — X in probability, then prove X,, — X in L;.

Solution 6. Let Z = sup,; |X,|. We first prove that |X| < Z almost surely. We could
appeal to Problem 11 to assert the existence of a subsequence (X, )r>1 such that X,, — X
almost surely. Hence |X| < sup;s; |X,,| < Z almost surely.

Alternatively,

P(|X|>Z+¢) = P(UX|>Z+¢€|X,—X[>2€)+P(X]|>Z+¢|X,—X]| <e¢)
< B(|X,— X| > ) +P(X,] > 2)
— 0

as n ] oo and hence X < Z + e almost surely. By either method, we can conclude that
the event {X < Z} = N2, {X < Z + 1/k} has probability one. Note, in particular, the
inequality | X, — X| < |X,| +|X| < 2Z holds almost surely.

Next we claim that if A, Ao, ... is a sequence of events with P(A4,,) — 0 then E(Z1,4,) —
0. Pick a z > 0 and note that

E(Z14,) = E(Z1a,n(z>2) T E(Z14,ng21<2})
< E(Z]l{|z|>z}) + ZP(AH).

Letting n T oo first and then z T oo proves the claim.
Now, fix an € > 0.

ElX, — X| = E(X, — X[1yx,-x1<}) + E(| X0 — X|1jx,-x|>c})
< e+ QE(ZE{\anXbe})

Letting A,, = {|X,, — X| > €} in the above claim and letting € | 0 implies E|X,, — X| — 0
as desired.

[Note that this is a version of the dominated convergence theorem that holds under a
weaker hypothesis than the one proved in the lecture.]
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Problem 7. Let X5, X3,... be a sequence of independent random variables such that

1 1

P(X, = n) = P(X, = —n) P(X, =0)=1—

:2nlogn; nlogn’

Let S,, = Xs + ...+ X,,. Prove that % — 0 in probability, but not almost surely. (That is,
the weak law of large numbers holds, but not the strong law.)

Solution 7. Since the X,,’s are independent and E(X,,) = 0 for all n € N we have

- n
k=2 &

Hence by Chebyshev’s inequality,

|S,| I < n 1
p(E
( >€)<n2e2§10gn<621 =0

n ogn

where we have made use of the fact that z — z/logx is increasing for x > e. Hence
S, /n — 0 in probability.

On the other hand, since the random variables X5, X3, ... are independent and
P
—~ —~ 2nlogn

the second Borel-Cantelli lemma asserts that there exists an event £ C Q with P(E) =1

such that for all w € F the equation X, (w) = n is satisfied for an infinite number of n’s.
But if X, (w) = n then

Sp(w)  Sp_1(w) Xp(Ww) + Sp1 Spaa(w)

n n—1 n n—1
Sn,l(w)
T an-1)
> 1/2

where we have used the inequality S, 1 =Xo+ ...+ X, 1 <1+ ... +n—-1= @ For
each w € FE the inequality S"T(Lw) — S"n*_lgw) > 1/2 holds for infinitely many n’s. Thus the
sequence (S, (w)/n), diverges for each w € E.

Problem 8. Let X be a random variable and let Kx(t) = logE(e'*) be the logarithm of
the moment generating function. Prove that Kx is convex. Suppose that Ky has a Taylor
series

n=1
Compute kq(X), ko(X), and k3(X) in terms of the moments of X. If X and Y are indepen-
dent, prove that k,(X +Y) = k,(X) + k,(Y) for all n > 1.
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Solution 8. We give two proofs of the convexit of Kx. Proof 1:

K (t) = 22 )Eléfewz); B S

by the Cauchy-Schwarz inequality E(Y Z) < [E(Y?)]Y/2[E(Z%)]Y/? with Y = /2 and Z =
X@tX/Q.
Proof 2: Let 0 < A < 1.

< log[E(es)ME())

= MKx(s)+ (1 = \)Kx(t)
where we have used Holder’s inequality E(Y Z) < [E(Yp)]l/p[E(Zq)]l/q where 1/p+1/q = 1,
with YV = eX Z = €' and p = 1/)\. [Note that the Cauchy-Schwarz inequality is the

special case of Holder’s inequality with p = 2.
Now, if a function f has a Taylor series

f(t):1+a1t+a2t2+a3t3—|—...

converging on some neighborhood of the origin, then
1 1
log f(t) = ait + (az — 5@%)152 + (a3 — aras + gaf)t?’ +...

converging on some (possibly smaller) neighborhood of the origin.
Now, for a moment generating function My (t) = E(e!™), finite in some neighborhood of

the origin, we have
o0

Mx(t) =1+ E(jjn)t“.

Matching coefficients yields k; (X ) = E(X), ko(X) = E(X?)—E(X)? = Var(X), and k3(X) =
E(X?) — 3E(X)E(X?) + 2E(X)3.

[The number k,(X) is called the n-th cumulant of X, and the function Kx is called
the cumulant generating function. Note that a random variable is normal if and only if its
cumulant generating function is quadratic.]

If X and Y are independent then

— k(X +Y)t" = logE(e' )
n:

W

n=1

= logE(e"™) + log E(e™)
= > k(X" + > —ka (V)1
n=1 n=1
and k,(X +Y) = k,(X) + k,(Y) by the uniqueness of Taylor series.
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Problem 9. Let X;, X5, ... be a sequence of independent random variables each uniformly
distributed uniformly [0,1]. Let M, = min{Xy,...,X,}. Prove that nM, converges in
distribution to an exponential random variable with parameter one.

Solution 9. For t € [0, 1] we have
P(M, > 1) =P(X; > t,..., X, >t) = (1 — )"

Hence, the distribution function F,(t) = P(nM,, < t) of nM,, is given by

0 ift<O
F,t)=} 1—-(1—=t/n)" if0<t<n
1 ift>n

and F,(t) > 1 —e ' forall t > 0.

Problem 10. If a sequence of random variables X,, — ¢ in distribution, where ¢ is a constant,
then prove X,, — c in probability.

Solution 10. We are given that P(X,, <1t) — 1) (t) for all ¢ # c. Fixing € > 0 we have
P(|X,—¢c| <€) = Plc—e<X,<c+e
= PX,<c+e)—P(X,<c—¢
> P(X,<c+e)—PX,<c—¢)
ﬂ[c’oo)(c + E) — ]1[0700)(6 — 6) =1

l

and hence P(| X, — ¢| > €) — 0 as desired.

Problem 11. Let X,, — X in probability. Prove that there exists a subsequence X,,,, X,,, ...
such that X, — X almost surely.

Solution 11. Since P(|X, — X| > ¢) — 0 for each ¢ > 0, there exists a subsequence
Xy Xy, - - - such that P(| X, — X| > 1/k) < 1/k*. For this subsequence we have

> P(IX, — X| > 1/k) < 00
k=1
so that by the first Borel-Cantelli lemma, P(|X,, — X| > 1/k infinitely often) = 0. We are

done since the events {|X,, — X| < 1/k eventually} and {X,, — X} are equal.

Problem 12. Let U be uniformly distributed on [0,1]. Let the conditional distribution of
X given U be binomial with parameters U and n. Find the distribution of X.

Solution 12. If Y is binomial with parameters n and p, then there are n independent Bernoulli
random variables with parameter p such that Y = Z,+...+Z,,. In particular, the probability
generating function of Y is given by Gy (s) = (Gz(s))" = (1 — p+ ps)™.
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Now consider the probability generating function of X:

Gx(s) = E(s") E(E(s*|U))
= E[1+(s-1U)"]
1 st -1

n+1 s—1

1
= n+1(1+5+52+...+5”).

Hence X is uniformly distributed on {0,1,...,n}.
[Alternatively, one could proceed directly:

1
n+1

P(X = k) = E[P(X = k|U)] = E(Z) Uk(1-U)"t =

This approach requires the formula:

1 In|
m:in!
um 1—u"du:—.
/0 ( ) (m+n+1)!

The above formula is true in more generality:

P(s)C(?)

1
s—1 1 — t—1 —
/0 w1 —u)""du TG1h)

for s,t > 0 where I'(q) = fooo 297 te™®dx is the gamma function. The above integral defines
the beta function B(s,t).]

Problem 13. The random variables X and Y are distributed uniformly on the disk {(x,y) €
R?: 22 + y* < 1} Find the density of the random variable X/Y.

Solution 13. The joint density f of (X,Y) is given by f(z,y) = 1/ for 2 +y* < 1.

PX)Y <1) — / / Lz dy

Jy<tz2+y2<1 T

1 1 1
= —+ —tan "{.
2 7

Hence, the density f of X/Y is given by f(t) = 1
has the Cauchy distribution.

. That is, the random variable X/Y
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