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Problem 1. Show that if F is a sigma-field on a set Ω then that both Ω and ∅ are elements
of F .

Solution 1. If A is in F , so is the complement Ac. Hence the union A∪Ac = Ω is in F , and
so is its complement Ωc = ∅.

Problem 2. Let F and G be two sigma-fields on a set Ω. Prove that F ∩ G is also a
sigma-field on Ω. Show by example that F ∪ G may fail to be a sigma-field.

Solution 2. If A is in F ∩G then A is in both F and G. Since F and G are both sigma-fields,
the complement Ac is in both F and G, and thus Ac is in the intersection F ∩ G. Similarly,
if A1, A2, . . . ∈ F ∩ G then A1, A2, . . . ∈ F and A1, A2, . . . ∈ G. The union ∪∞i=1Ai is in both
F and G, and thus is an element of F ∩ G. This completes the verification that F ∩ G is a
sigma-field.

[Note that the above argument can be extended to the intersection of an arbitrary collec-
tion of sigma-fields. That is, if {Fi}i∈I is a (finite, countable, or even uncountable) collection
of sigma-fields on Ω, then

⋂
i∈I Fi is also a sigma-field. It is because of this observation that

we can, for instance, define the Borel sigma-field as the smallest sigma-field containing the
intervals.]

Now let Ω = {1, 2, 3}, F = {∅, {1}, {2, 3}, {1, 2, 3}} and G = {∅, {2}, {1, 3}, {1, 2, 3}}.
The union F ∪G contains both {1} and {2}, yet does not contain {1}∪{2} = {1, 2}. Hence
F ∪ G is not a sigma-field.

Problem 3. Let A1, A2, A3, . . . be a sequence of events such that A1 ⊂ A2 ⊂ A3 ⊂ . . ., and
let A =

⋃∞
n=1 An. Prove that

P(A) = lim
n↑∞

P(An).

Solution 3. Let B1 = A1 and Bn = An\An−1. The disjoint events B1, B2, B3, . . . are such that
An =

⋃n
i=1 Bi and A =

⋃∞
i=1 Bi by construction. The conclusion follows by the countable

additivity of P:

P(A) = P(
∞⋃
i=1

Bi)

=
∞∑
i=1

P(Bi)

= lim
n↑∞

n∑
i=1

P(Bi)

= lim
n↑∞

P(
n⋃

i=1

Bi) = lim
n↑∞

P(An).
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Problem 4. Let X be a real-valued random variable, and let FX be its distribution function.
Show that

lim
t↓−∞

FX(t) = 0, lim
t↑+∞

FX(t) = 1, P(X = t) = FX(t)− lim
s↑t

FX(s).

In particular, the distribution function of X is defective if and only if

P(X = +∞ or X = −∞) > 0.

Solution 4. Let t1, t2, . . . be any unbounded increasing sequence of numbers and let An =
{X ≤ tn}. The sequence of events A1 ⊂ A2 ⊂ A3 ⊂ . . . is such that

⋃∞
n=1 An = Ω, where Ω

is the sample space on which the random variable X is defined. By question 1 we have

lim
n↑∞

F (tn) = lim
n↑∞

P(An) = P(Ω) = 1.

Similarly, since
⋃∞

n=1{X > −tn} = Ω we have the equality

lim
n↑∞

F (−tn) = 1− lim
n↑∞

P(X > −tn) = 0.

Finally, let ε1, ε2, . . . be any sequence of positive numbers decreasing to zero so that
{X < t} =

⋃∞
n=1{X ≤ t− εn}.

P(X = t) = P(X ≤ t)− P(X < t) = F (t)− lim
n↑∞

F (t− εn).

Problem 5. Let F : R → [0, 1] be increasing, right-continuous, with

lim
t↓−∞

F (t) = 0 and lim
t↑+∞

F (t) = 1.

Show that there exists a probability space (Ω,F , P) on which there is a random variable X
such that F is the distribution function of X. (Hint: Let the sample space Ω be the unit
interval [0, 1], the events F the Borel sigma-field, and P the uniform measure.)

Solution 5. Let X : [0, 1] → R be defined as

X(ω) = inf{t ∈ R : F (t) ≥ ω}

for ω ∈ [0, 1]. [Note that if F is strictly increasing and continuous, then X = F−1. ]
Since X(ω) ≤ t if and only if F (t) ≥ ω, the distribution function of X is given by

P(X ≤ t) = P([0, F (t)]) = F (t)

as desired.
[This contruction can be used to generate random numbers with a given law, assuming

your computer can generate uniformly distributed random variables.]
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Problem 6. A box contains 20 balls, labelled with the numbers from 1 to 20. Three balls
are drawn at random from the box. Find the probability that 10 is the smallest label of the
three balls.

Solution 6. There are
(
20
3

)
ways to choose 3 balls from 20. There are

(
10
2

)
ways to choose 2

balls from the balls labelled 11 to 20,
(
1
1

)
ways to choose 1 ball with the label 10, and

(
9
0

)
ways to choose no balls from those labelled 1 to 9. The desired probability is then(

10
2

)(
1
1

)(
9
0

)(
20
3

) =
10·9
2·1

20·19·18
3·2·1

=
3

76
.

Problem 7. A coin is tossed n times with probability p of heads on each toss. Let E be
the event that the first toss lands heads. Let F be the event that there are exactly k heads.
For which pairs of natural numbers n and k are the events E and F independent?

Solution 7. P(E) = p and P(F ) =
(

n
k

)
pk(1 − p)n−k. Finally P(E ∩ F ) = P(F |E)P(E) =(

n−1
k−1

)
pk−1(1 − p)n−k · p. Equating the formulas for P(E)P(F ) = P(E ∩ F ) and simplifying

yields

p =
k

n
.

Problem 8. Let X1, . . . , Xn be independent and identically distributed random variables
with mean µ and variance σ2. Find the mean of the random variables X̄ and S2 where

X̄ =
1

n

n∑
i=1

Xi and S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

If X1, . . . , Xn ∼ N(µ, σ2), prove that X̄ and S2 are independent.

Solution 8. By the linearity of expectation:

E(X̄) =
1

n

n∑
i=1

E(Xi) = µ.

Also for i = 1, . . . , n we have Xi − X̄ = n−1
n

(Xi − µ) −
∑

j 6=i
1
n
(Xj − µ). Since the

summands are independent and mean zero we have

E[(Xi − X̄)2] =

(
n− 1

n

)2

E[(Xi − µ)2] +
∑
j 6=i

1

n2
E[(Xj − µ)2] =

n− 1

n
σ2

and hence

E(S2) =
1

n− 1

n∑
i=1

E[(Xi − X̄)2] = σ2.

Now assume that X1, . . . , Xn ∼ N(µ, σ2). Since

Cov(X̄, Xi − X̄) = Cov(X̄, Xi)− Var(X̄) =
σ2

n
− σ2

n
= 0
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we can conclude that the random variables X̄ and Xi − X̄ are independent, because the
random variables X̄ and Xi − X̄ are jointly normal for each i = 1, . . . , n. Hence X̄ and∑n

i=1(Xi − X̄)2 are independent as desired.

Problem 9. A population contains n animals. Every day, an animal is captured at random.
If that animal has not been captured before, it is tagged and released. Prove that the
expected number of days needed to tag all the animals is n

∑n
i=1 1/i.

Solution 9. Let Ti be the random variable corresponding to the number of days between
tagging of the i-th and (i + 1)-th animal. Note if i animals have already been tagged, the
probability of capturing an untagged animal is 1 − i/n. Hence, P(Ti = 1) = 1 − i/n, and
in general, P(Ti = k) = (1 − i/n)(i/n)k−1. That is, Ti is a geometric random variable for
i = 1, . . . , n − 1 with parameter 1 − i/n. (The random variable T0 is such that T0(ω) = 1
identically.) In particular, E(Ti) = n

n−i
. Thus the expected number of days need to tag all

the animals is

E
n−1∑
i=0

Ti =
n−1∑
i=0

n

n− i
= n

n∑
i=1

1

i
.

Problem 10. Let X and Y be independent Poisson random variables with parameters λ
and µ respectively. What is the conditional distribution of X given X + Y = n?

Solution 10. First we find that the distribution of the sum X +Y is Poisson with parameter
λ + µ:

P(X + Y = n) =
n∑

i=0

P(X = i, Y = n− i)

=
n∑

i=0

P(X = i)P(Y = n− i)

=
n∑

i=0

e−λ λi

i!
e−µ µn−i

(n− i)!

= e−(λ+µ) 1

n!

n∑
i=0

(
n

i

)
λiµn−i

= e−(λ+µ) (λ + µ)n

n!
.

Thus the conditional distribution of X given X + Y = n is given by

P(X = i|X + Y = n) =
P(X = i, X + Y = n)

P (X + Y = n)

=
e−λ λi

i!
e−µ µn−i

(n−i)!

e−(λ+µ) (λ+µ)n

n!

=

(
n

i

)(
λ

λ + µ

)i(
1− λ

λ + µ

)n−i

4



which is the binomial distribution with parameters n and λ
λ+µ

.

Problem 11. Let X and Y be independent geometric random variables with the same
parameter p. What is the conditional distribution of X given X + Y = n?

Solution 11. For n = 2, 3, . . . we have

P(X + Y = n) =
n−1∑
i=1

P(X = i)P(Y = n− i)

=
n−1∑
i=1

p(1− p)i−1p(1− p)n−i−1

= (n− 1)p2(1− p)n−2

and hence for i = 1, . . . , n− 1 we have

P(X = i|X + Y = n) =
P(X = i, X + Y = n)

P (X + Y = n)

=
p(1− p)i−1p(1− p)n−i−1

(n− 1)p2(1− p)n−2

=
1

n− 1

and the conditional distribution of X given X + Y = n is uniform on the set {1, . . . , n− 1}.

Problem 12. Let X be a geometric random variable. Prove that P(X = n + m|X > m) =
P(X = n) for all m, n = 1, 2, 3, . . .. Why does one say that geometric random variables are
memoryless?

Solution 12. Since X is geometric, there is a p such that 0 < p < 1 and P(X = k) =
p(1− p)k−1 for k = 1, 2, . . .. Hence P(X > m) =

∑∞
k=m+1 p(1− p)k−1 = (1− p)m and

P(X = n + m|X > m) =
P(X = n + m, X > m)

P(X > m)

=
p(1− p)m+n−1

(1− p)m

= p(1− p)n−1 = P(X = n)

Problem 13. Let X be an exponential random variable. Prove that P(X > t + s|X >
s) = P(X > t) for all s, t ≥ 0. Why does one say that exponential random variables are
memoryless?

Solution 13. Since X is exponentially distributed, there is a λ > 0 such that the density
f of X is f(x) = λe−λx for x ≥ 0 and f(x) = 0 for x < 0. Hence for all s ≥ 0 we have
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P(X > s) =
∫∞

s
λe−λxdx = e−λs and hence

P(X > t + s|X > s) =
P(X > t + s, X > s)

P(X > s)

=
e−λ(t+s)

e−λs

= e−λt = P(X > t)

Problem 14. Let X1, . . . , Xn be uncorrelated random variables with mean 0 and variance
1. Let X̄ = 1

n

∑n
i=1 Xi. By using Chebyshev’s inequality, find the smallest n such that

P(|X̄| > 2) ≤ 1

100
.

Now redo this problem under the additional assumption that the random variables X1, . . . , Xn

are jointly normal.

Solution 14. The sample mean X̄ has mean zero and variance 1/n. By the Chebyshev’s
inequality

P(|X̄| > 2) <
1

4n
.

Hence n = 25 suffices.
If X1, . . . , Xn are jointly normal, then the random variable Z =

√
nX̄ is a standard

normal. By the symmetry of the standard normal density we have

P(|X̄| > 2) = P(|Z| > 2
√

n)

= 2(1− P(Z ≤ 2
√

n)).

Since Φ(2.58) ≈ 0.995, the answer is the smallest integer solution to 2
√

n ≥ 2.58, which is
n = 2.

Problem 15. Let X and Y be independent exponential random variables with parameters
λ and µ respectively. Show that U = min{X, Y } is exponential with parameter λ+µ. Show
that the events {U ≤ t} and {X < Y } are independent for all t.

Solution 15. P(U > t) = P(min{X, Y } > t) = P(X > t, Y > t) = P(X > t)P(Y > t) =
e−(λ+µ)t. Hence P(U ≤ t) = 1− e−(λ+µ)t. That is, the random variable U has the exponential
distribution with parameter λ + µ.

The desired probabilities can be calculated by integrating the joint density of the appro-
priate region:

P(X < Y ) =

∫ ∞

x=0

∫ ∞

y=x

λµe−λx+µydx dy

=

∫ ∞

x=0

λµe−(λ+µ)ydy

=
λ

λ + µ
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and

P(U ≤ t,X < Y ) =

∫ t

x=0

∫ ∞

y=x

λµe−λx+µydx dy

=

∫ t

x=0

λµe−(λ+µ)ydy

=
λ

λ + µ
(1− e−(λ+µ)t)

= P(X < Y )P(U ≤ t)

and so the events {U ≤ t} and {X < Y } are independent.

Problem 16. Let X and Y be identically distributed random variables with finite mean
and variance. Show that U = X + Y and V = X − Y are uncorrelated. Show by example
that U and V need not be independent.

Solution 16. E(V ) = E(X−Y ) = µ−µ = 0 and E(UV ) = E(X2−Y 2) = σ2+µ2−(σ2+µ2) = 0

Cov(U, V ) = E(UV )− E(U)E(V ) = 0

Let X and Y be independent Bernoulli random variables with parameter p. Then the
events {U = 2} = {X = 1, Y = 1} and {V = 1} = {X = 1, Y = 0} are not independent
since

P(U = 2, V = 1) = 0 6= p3(1− p) = P(U = 2)P(V = 1).

The random variables U and V are dependent.

Problem 17. Let X ∼ N(µ, σ2). Find the moment generating function M where M(t) =
E(etX) for all real t.

Solution 17. Since X = µ + σZ, where Z ∼ N(0, 1), we first compute

E(etZ) =

∫ ∞

−∞
etz 1√

2π
e−z2/2dz

=

∫ ∞

−∞

1√
2π

e−(z−t)2/2+t2/2dz

= et2/2

∫ ∞

−∞

1√
2π

e−y2/2dy

= et2/2.

Now

E(etX) = E(et(µ+σZ))

= etµE(etσZ)

= etµ+t2σ2/2
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Problem 18. If the random variable X is normal with mean µ and variance σ2 then Y =
exp(X) is said to be log-normal. Compute the mean and variance of Y .

Solution 18. As before, let X = µ + σZ where Z ∼ N(0, 1).

E(Y ) = E(eX) = E(eµ+σZ)

= eµ+σ2/2

and

E(Y 2) = E(e2X) = E(e2µ+2σZ)

= e2µ+2σ2

so that
Var(Y ) = E(Y 2)− E(Y )2 = e2µ+σ2

(eσ2 − 1).

Problem 19. Let X be a random variable with density function fX where fX(t) = 1
2
e−|t|

for all t ∈ R. Find the characteristic function of X. Let Y be a Cauchy random variable.
Find the characteristic function of Y . (You may need to evaluate a contour integral.)

Solution 19.

φX(s) =

∫ ∞

−∞

1

2
e−|t|eist dt =

1

1 + s2

To compute the characteristic function of Y , first suppose s > 0.

φY (s) =
1

π

∫ ∞

−∞

eist

1 + t2
dt

=
1

π
lim
R↑∞

∫ R

−R

eist

1 + t2
dt

=
1

π
lim
R↑∞

(∮
ΓR

eisz

1 + z2
dz −

∫ π

0

eisReiθ+iθR

1 + R2e2iθ
dθ

)

where ΓR is the contour in the complex plane {t + 0i : t ∈ [−R,R]} ∪ {Reiθ : θ ∈ [0, π]}
where the integration is performed counterclockwise on ΓR. Since z 7→ eisz

1+z2 in meromorphic
in the interior of ΓR with simple pole at i we have that∮

ΓR

eisz

1 + z2
dz = πe−s

by the residue theorem. Also

∣∣ ∫ π

0

eisReiθ+iθR

1 + R2e2iθ
dθ
∣∣ ≤ ∫ π

0

e−sR sin(θ)R

R2 − 1
dθ → 0
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since s ≥ 0, so that
φY (s) = e−s for s ≥ 0.

A similar computation for the case s < 0 using the contour Γ−
R = {t + 0i : t ∈ [−R,R]} ∪

{Reiθ : θ ∈ [π, 2π]} shows that

φY (s) = e−|s| for all s ∈ R.

[The point of this exercise is to see a special case of the Fourier inversion formula: If X is a
random variable with differentiable density fX and characteristic function φX then

fX(t) =
1

2π

∫ ∞

−∞
e−istφX(s) ds.

]
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