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Abstract. A local martingale X is called arithmetically symmetric if the conditional dis-
tribution of XT −Xt is symmetric given Ft, for all 0 ≤ t ≤ T . Letting FT

t = Ft ∨ σ(〈X〉T ),
the main result of this note is that for a continuous local martingale X the following are
equivalent
(1) X is arithmetically symmetric.
(2) The conditional distribution of XT given FT

t is N(Xt, 〈X〉T − 〈X〉t) for all 0 ≤ t ≤ T .
(3) X is a local martingale for the enlarged filtration (FT

t )t≥0 for each T ≥ 0.
The notion of a geometrically symmetric martingale is also defined and characterized as the
Doléans-Dade exponential of an arithmetically symmetric local martingale. As an applica-
tion of these results, we show that a market model of the implied volatility surface that
is initially flat and that remains symmetric for all future times must be the Black–Scholes
model.

1. Introduction

Let X = (Xt)t≥0 be a real-valued continuous local martingale for a filtration (Ft)t≥0. We
say that X is arithmetically symmetric if the conditional distribution of XT−Xt is symmetric
given Ft for all 0 ≤ t ≤ T . More precisely, X is arithmetically symmetric if

(1) E[f(XT −Xt)|Ft] = E[f(Xt −XT )|Ft]

almost surely, for all 0 ≤ t ≤ T and bounded measurable f . The main result of this note is
Theorem 2.2 which says that X is arithmetically symmetric if and only if for all 0 ≤ t ≤ T
the conditional distribution of the increment XT −Xt given the increment 〈X〉T − 〈X〉t of
quadratic variation is normal with mean zero and variance 〈X〉T − 〈X〉t, independent of
Ft. An easy corollary of the main result is that if X is arithmetically symmetric and if the
marginal distribution of Xt is normal with mean 0 and variance t for all t ≥ 0, then X is a
standard Brownian motion.

Ocone [12] studied the related problem of characterizing local martingales with condition-
ally independent increments. He showed that if the continuous local martingales X and∫

(1[0,s] − 1(s,∞))dX have the same law for each s ≥ 0, then X has the form Xt = X0 + WAt

for a standard Brownian motion W and an independent non-decreasing process A. For this
reason, such local martingales are often called Ocone martingales. Note that the condition of
arithmetic symmetry is weaker than Ocone’s condition, since his condition directly implies
(if the filtration is generated by X) the almost sure equality of the conditional expectations

E[f(Xt1 −Xs, . . . , Xtn −Xs)|Fs] = E[f(Xs −Xt1 , . . . , Xs −Xtn)|Fs]
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for all 0 ≤ s ≤ t1 ≤ . . . ≤ tn and bounded measurable f . Nevertheless, Theorem 2.2
suggests a natural question: If a continuous local martingale X is arithmetically symmetric,
is X Ocone? Unfortunately, we do not resolve this question here. See the paper of Dubins,
Emery, and Yor [5] for a discussion of the connection between Ocone martingales and a
conjecture on the ergodicity of the Lévy transform. Further invariance properties of Ocone
martingales with respect to Girsanov’s theorem and to the reflection principle can be found
in the papers of Vostrikova and Yor [18] and Chaumont and Vostrikova [4] respectively.

A related notion of symmetry is defined similarly: we say that a positive local martingale
S is geometrically symmetric if

(2) E
[
g

(
ST

St

) ∣∣Ft

]
= E

[
ST

St

g

(
St

ST

) ∣∣Ft

]
.

almost surely, for all 0 ≤ t ≤ T and bounded measurable g. If we let g(y) = 1 for all
y > 0, then we see that geometric symmetry implies that S is a true martingale. More
interestingly, if S is a positive continuous martingale, then we can define a local martingale
X by Xt = log St + 〈log S〉t/2 or equivalently log St = Xt−〈X〉t/2. In Theorem 3.1 we show
that S is geometrically symmetric if and only if X is arithmetically symmetric.

As indicated by Bates [1], Schroder [15], and others, the financial motivation for studying
geometrically symmetric martingales is the observation that S is geometrically symmetric if
and only if the put-call symmetry formula

E
[
(ST −K)+ |Ft

]
=

K

St

E

[(
S2

t

K
− ST

)+ ∣∣Ft

]
holds almost surely for all 0 ≤ t ≤ T and strike K > 0. That is, if the price of a stock is
modelled as the geometrically symmetric martingale S for a risk-neutral measure P, then
there is no arbitrage in the market (assuming for simplicity zero interest and dividend rates)
if the time-t price of a call option struck at K is equal to K/St times the time-t price of a
put option struck at S2

t /K.
Renault and Touzi [13] showed that if S comes from the stochastic volatililty model

dSt = St

√
VtdW 1

t

dVt = α(t, Vt)dt + β(t, Vt)dW 2
t

where W 1 and W 2 are independent Brownian motions, then S is geometrically symmetric.
Carr and Lee [3] proved a converse of this result: Suppose S and V are given as above, and
the Brownian motions W 1 and W 2 have correlation ρ. Then S satisfies equation (2) for t = 0
and all T ≥ 0 and bounded measurable g if and only if ρ = 0. Theorem 3.1 of this paper is in
the spirit of the Carr–Lee result: if we replace the special structure of a stochastic volatility
model with the assumption that equation (2) holds for all 0 ≤ t ≤ T , then Theorem 3.1 says
that the distributon of log ST is simply a mixture of normal distributions for all T .

Carr and Lee showed that one way to interpret the geometric symmetry condition is via
the Black–Scholes implied volatility. Indeed, since the Black–Scholes model also satisfies put-
call symmetry, we see that S is geometrically symmetric if and only if its implied volatility
is symmetric in the sense that

Σt(τ, m) = Σt(τ, 1/m)
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almost surely for all t ≥ 0, τ > 0, m > 0, where the implied volatility is defined as the unique
(up to null sets) non-negative solution to the equation

E

[(
St+τ

St

−m

)+ ∣∣Ft

]
= BS(τΣt(τ,m)2, m),

the Black–Scholes call price function BS is given by

(3) BS(v, m) =

{
Φ
(
− log m√

v
+

√
v

2

)
−mΦ

(
− log m√

v
−

√
v

2

)
if v > 0

(1−m)+ if v = 0

and Φ is the distribution function of a standard normal random variable. In particular, we
find in Theorem 4.1 that if the initial implied volatility surface is flat, that is if Σ0(τ, m) = σ0

for all τ > 0, m > 0, and the arbitrage-free dynamics of the random field Σ are constrained
to be symmetric almost surely for all future times, then the surface satisfies Σt(τ,m) = σ0

almost surely for all t ≥ 0, τ > 0, m > 0.
The paper proceeds as follows: In Section 2 the main theorem is stated and proven,

characterizing continuous local martingales with arithmetic symmetry. In Section 3, the
case of geometric symmetry is studied by similar methods. In Section 4, we show that
a market model of implied volatility that begins flat and remains symmetric must be the
Black–Scholes model. In Section 5, we conclude.

2. The arithmetically symmetric case

Let X be a real-valued local martingale defined on a probability space (Ω,F , P) with
filtration (Ft)t≥0. We make the following assumption throughout:

Assumption 2.1. The filtration (Ft)t≥0 satisfies the usual conditions, with F0 trivial. Fur-
thermore, every (Ft)t≥0-martingale is continuous.

Note that this assumption is satisfied if the filtration is the augmentation of the filtration
generated by a (possibly multi-dimensional) Brownian motion. Filtrations of this kind occur
frequently in local and stochastic volatility models, so Assumption 2.1 is not onerous for the
financial applications motivating this study.

We will let FT
t = Ft ∨ σ(〈X〉T ) be the smallest sigma-field containing Ft for which the

random variable 〈X〉T is measurable. Note that since 〈X〉T is FT -measurable, we have
Fu = FT

u for u ≥ T . We now come to the main theorem.

Theorem 2.2. The following are equivalent

(1) X is arithmetically symmetric.
(2) The conditional distribution of XT given FT

t is N(Xt, 〈X〉T −〈X〉t) for all 0 ≤ t ≤ T .
(3) X is a local martingale for the enlarged filtration (FT

t )t≥0 for all T ≥ 0.

Proof. (2) ⇒ (1) By the assumption of conditional normality we have the computation

E[eiθ(XT−Xt)|Ft] = E{E[eiθ(XT−Xt)|FT
t ]|Ft}

= E[e−θ2(〈X〉T−〈X〉t)/2|Ft]

for all θ ∈ R. Since the conditional characteristic function of the increment is even and
characterizes the conditional distribution, we are done.
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(1) ⇒ (2) This is the main part of the proof. Without loss of generality, assume henceforth
that X0 = 0 and fix non-zero θ ∈ R and T > 0. Let M = (Mt)t∈[0,T ] be the bounded,
complex-valued martingale

Mt = E[eiθXT |Ft].

Note that M is continuous by Assumption 2.1.
Now, the process (e−2iθXtMt)t∈[0,T ] is also a martingale since by the assumption of sym-

metry, we have the equalities

Mt = eiθXtE[eiθ(XT−Xt)|Ft]

= eiθXtE[eiθ(Xt−XT )|Ft]

= e2iθXtE[e−iθXT |Ft]

But by Itô’s formula, we have

d(e−2iθXtMt) = e−2iθXt [dMt − 2iθMte
−2iθXtdXt] + 2iθe−2iθXt [iθMtd〈X〉t − d〈M, X〉t]

and hence

(4) d〈M, X〉t = iθMtd〈X〉t.
Now, fix a real φ such that 2φθ ≥ φ2 and define a complex process Z by

Zt = Mte
−iφXt−(2φθ−φ2)〈X〉t/2.

By Itô’s formula and equation (4) we see

dZt = e−iφXt−(2φθ−φ2)〈X〉t/2[dMt − iφMtdXt]

and hence Z is a local martingale. But since |Zt| ≤ 1 for all t ∈ [0, T ], the local martingale
Z is in fact a true martingale implying

E[eiθXT |Ft]e
−iφXt−(2φθ−φ2)〈X〉t/2 = Zt

= E[ZT |Ft]

= E[MT e−iφXT−(2φθ−φ2)〈X〉T /2|Ft]

= E[ei(θ−φ)XT−(2φθ−φ2)〈X〉T /2|Ft]

where we have used the terminal condition MT = eiθXT . Rearranging the above equalities
yields

E[eiθ(XT−Xt)|Ft] = E[ei(θ−φ)(XT−Xt)−(2φθ−φ2)(〈X〉T−〈X〉t)/2|Ft]

= E[e−θ2(〈X〉T−〈X〉t)/2|Ft]

where the last equality is the case φ = θ. Letting p = θ − φ and q2 = 2φθ − φ2 we have

E[eip(XT−Xt)−q2(〈X〉T−〈X〉t)/2|Ft] = E[e−(p2+q2)(〈X〉T−〈X〉t)/2|Ft]

for all p, q ∈ R and all 0 ≤ t ≤ T . The above equation implies

E[eip(XT−Xt)h(〈X〉T )|Ft] = E[e−p2(XT−Xt)/2h(〈X〉T )|Ft]

for all continuous and bounded h. We therefore have

E[eip(XT−Xt)|Ft ∨ σ(〈X〉T )] = e−p2(〈X〉T−〈X〉t)/2

for all p ∈ R, proving the claim.
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(2) ⇒ (3) Fix real p < q and define a local martingale N by

Nt = eipXt+p2〈X〉t/2

and a (continuous) martingale Y by

Yt = E[e−q2〈X〉T /2|Ft].

Note the equality

E[NT YT |Ft] = E[eipXT +(p2−q2)〈X〉T /2|Ft]

= eipXt+p2〈X〉t/2E[e−q2〈X〉T /2|Ft]

= NtYt.

Since NY is a martingale, we must have 〈N, Y 〉 = 0 which implies 〈X, Y 〉 = 0. Define a
sequence of (Ft)t≥0 stopping times by τn = inf{t ≥ 0 : |Xt| ≥ n} and the stopped process
Xn by Xn

t = Xt∧τn . Since the process XnY is a bounded martingale, we have for all
0 ≤ s ≤ t ≤ T the calculation

E[Xt∧τne−q2〈X〉T /2|Fs] = E[Xt∧τnYt|Fs]

= Xs∧τnYs

= Xs∧τnE[e−q2〈X〉T /2|Fs]

for each n > 0. Since

E[Xn
t |FT

s ] = Xn
s ,

for each n, the process X is a local martingale for the filtration (FT
t )t≥0.

(3) ⇒ (2) Suppose X is a local martingale for the filtration (FT
t )t≥0 for all T ≥ 0. As

before, fix p ∈ R and let

Nt = eipXt+p2〈X〉t/2.

Define a sequence of (Ft)t≥0-stopping times by σn = inf{t ≥ 0 : |Xt| ∨ 〈X〉t ≥ n} and the
stopped processes Xn

t = Xt∧σn and Nn
t = Nt∧σn . First note that Xn is a (FT

t )t≥0-martingale
since Xn is a bounded local martingale. Since

Nn
t = 1 +

∫ t

0

Nn
s dXn

s

and

E
[∫ T

0

|Nn
s |2〈Xn〉s

]
≤ ep2n/2n < ∞.

we see that Nn is also a (FT
t )t≥0-martingale.
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Now fix q > p. Since |Nn
T e−q2〈X〉T /2| ≤ 1 for all n, the dominated convergence theorem

implies

E[eipXT +(p2−q2)〈X〉T /2|Ft] = E[lim
n↑∞

Nn
T e−q2〈X〉T /2|Ft]

= lim
n↑∞

E[Nn
T e−q2〈X〉T /2|Ft]

= lim
n↑∞

E[E{Nn
T e−q2〈X〉T /2|FT

t }|Ft]

= lim
n↑∞

Nn
t E[e−q2〈X〉T /2|Ft]

= eipXt+p2〈X〉t/2E[e−q2〈X〉T /2|Ft]

where we have used the facts that the random variable e−q2〈X〉T /2 is FT
t -measurable and that

Nn
t = E[Nn

T |FT
t ] is Ft-measurable. The above identity establishes the claim. �

Remark 1. Note if X satisfies condition (2) of Theorem 2.2 then

E[eiθ(XT−Xt)|〈X〉T − 〈X〉t] = e−θ2(〈X〉T−〈X〉t)/2

so that the conditional distribution of the increment XT−Xt given the increment 〈X〉T−〈X〉t
of quadratic variation is normal, and independent of Ft. However, if X were Ocone, that
is of the form Xt = X0 + WAt for a Brownian motion W and independent non-decreasing
process A, then the conditional distribution XT − Xt would be normally distributed given
the much larger sigma-field σ(〈X〉u − 〈X〉t, u ≥ t).

A corollary of this theorem is a characterization of Brownian motion as the arithmetically
symmetric local martingale starting at zero with two absolute moments agreeing with those
of Brownian motion. For instance, if E[X4

t ] = 3E[X2
t ]2 = 3t2 for all t ≥ 0, then X is a

standard Brownian motion.

Corollary 2.3. Suppose X is arithmetically symmetric with X0 = 0, and that there exists
0 < m < n such that E[|Xt|m] = tm/2Cm and E[|Xt|n] = tn/2Cn for all t > 0, where
Ck = π−1/22k/2Γ(k/2 + 1/2) and Γ(x) =

∫∞
0

ux−1e−udu. Then X is a standard Brownian
motion.

Proof. By Theorem 2.2, we know the conditional law of Xt given 〈X〉t is normal. But by
assumption

E[〈X〉n/2
t ] = E[|Xt|n]/Cn

= tn/2

= E[〈X〉m/2
t ]n/m.

But Jensen’s inequality, with the strictly convex function h(x) = xn/m, holds with equality
only for constants. Hence 〈X〉t = t almost surely for all t ≥ 0. The claim follows from Lévy’s
characterization of Brownian motion. �

Remark 2. It is clear from the proof that one could replace the moment condition by, for
instance, the condition that E[eiλXt ] = e−λ2t/2 and E[eiµXt ] = e−µ2t/2 for all t ≥ 0, for
some real λ and µ with |λ| 6= |µ|. In particular, if X is arithmetically symmetric and if the
unconditional distribution of Xt is normal with mean 0 and variance t for all t ≥ 0, then X
is a standard Brownian motion.
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The above comments suggest the open following problem: If X is a continuous local
martingale such that Xt ∼ N(0, t) for all t ≥ 0, does it follow that X is a Brownian motion?
The answer is no if X were not assumed continuous. See Madan and Yor [11] and Hamza
and Klebaner [8] for examples. On the other hand, if X is a square-integrable continuous

martingale with 〈X〉t =
∫ t

0
α2

sds for a bounded, continuous, predictable process α, then
E[α2

t |Xt] = 1 almost surely for all t ≥ 0. In particular, if α is of the form αt = a(t,Xt) for
a deterministic function a, then X must be a Brownian motion by Lévy’s characterization.
This claim can be proven by fixing λ ∈ R. By Itô’s formula,

eiλXt = 1 + iλ

∫ t

0

eiλXsdXs −
λ2

2

∫ t

0

eiλXsα2
sds

Since the integrand is bounded, the stochastic integral
∫ t

0
eiλXsdXs defines a martingale so

that by Fubini’s theorem we have

e−λ2t/2 = 1− λ2

2

∫ t

0

E[eiλXsα2
s]ds.

By the assumed continuity and boundedness of α we may differentiate both sides with respect
t to conclude

e−λ2t/2 = E[eiλXtα2
t ]

and hence
E[eiλXt(α2

t − 1)] = 0

for all λ. The claim now follows.

3. The geometrically symmetric case

We now suppose that S = (St)t≥0 is a strictly positive continuous martingale. The main
theorem of this section is the following characterization:

Theorem 3.1. The martingale S is geometrically symmetric if and only if S is of the form

St = S0e
Xt−〈X〉t/2

for a arithmetically symmetric local martingale X.

Before we begin, we need a small lemma.

Lemma 3.2. The martingale S is geometrically symmetric if and only if

E
[(

ST

St

)p

|Ft

]
= E

[(
ST

St

)1−p

|Ft

]
for all complex p = a + bi with a ∈ [0, 1] and all 0 ≤ t ≤ T .

Proof of Lemma 3.2. Note∣∣∣∣E [(ST

St

)p

|Ft

]∣∣∣∣ ≤ E
[(

ST

St

)a

|Ft

]
≤ E

[
ST

St

|Ft

]a

= 1

by Hölder’s inequality, so that the conditional moments appearing in the lemma are finite
almost surely.

The ‘only if’ direction is proven in [3]: Just take g(x) = (x ∧ n)p in the definition of
symmetry, let n →∞, and apply the conditional dominated convergence theorem.
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The ‘if’ direction is proven as follows. Fix T > 0. Given a martingale S satisfying
the moment condition, we can construct another martingale by defining a measure P̂ on

(Ω,FT ) with the density process dP̂
dP = ST

S0
, with corresponding expectation operator Ê, and

let Ŝt =
S2

0

St
. Now note

Ê

[(
ŜT

Ŝt

)p

|Ft

]
= E

[(
ST

St

)1−p

|Ft

]

= E
[(

ST

St

)p

|Ft

]
for all p ∈ (0, 1) and 0 ≤ t ≤ T . That is to say, the conditional moment generating function
of log(ST /St) under the measure P agrees on the interval (0, 1) with the the conditional

moment generating function of log(ŜT /Ŝt) under the measure P̂. Since knowledge of a
moment generating function on an open interval characterizes the distribution, we have

E
[
g

(
ST

St

)
|Ft

]
= Ê

[
g

(
ŜT

Ŝt

)
|Ft

]

= E
[
ST

St

g

(
St

ST

)
|Ft

]
.

for all bounded measurable g, and we are done. �

Proof of Theorem 3.1. The ‘if’ direction is an application of Lemma 3.2. Indeed, if St =
S0e

Xt/2−〈X〉t/2 with X being arithmetically symmetric, the conditional expectation

E
[(

ST

St

)p

|Ft

]
= E

[
e−

1
2
(1−p)p(〈X〉T−〈X〉t)|Ft

]
can be computed by first conditioning on FT

t = Ft ∨ σ(〈X〉T ) and applying the conditional
normality. Since the right hand side of the above equation is unchanged if p is replaced with
1− p, we are done.

As in the proof of Theorem 2.2 the ‘only if’ direction is more involved, but the same ideas
can be made to work. Fix T > 0, and suppose that S is geometrically symmetric. Define a
measure P̃ on (Ω,FT ) by

dP̃
dP

=
S

1/2
T

E[S
1/2
T ]

with corresponding expectation Ẽ. Letting Y = log S, we have by the Lemma 3.2 the equality

Ẽ[eiθ(YT−Yt)|Ft] =
E[e(1/2+iθ)(YT−Yt)|Ft]

E[eYT /2|Ft]

=
E[e(1/2−iθ)(YT−Yt)|Ft]

E[eYT /2|Ft]

= Ẽ[e−iθ(YT−Yt)|Ft]

for all t ∈ [0, T ] and real θ.
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Following the proof of Theorem 2.2, we find that

Ẽ[eip(YT−Yt)−q2(〈Y 〉T−〈Y 〉t)/2|Ft] = Ẽ[e−(p2+q2)(〈Y 〉T−〈Y 〉t)/2|Ft]

for all real p, q for all t ∈ [0, T ]. Unlike before, however, at this stage we are not finished, as

the above expression involve the measure P̃, rather than the original measure P. We conclude
by noting that the moment generating function

r 7→ Ẽ[er(YT−Yt)−q2(〈Y 〉T−〈Y 〉t)/2|Ft] ≤
E[e(1/2+r)(YT−Yt)|Ft]

E[eYT /2|Ft]

is finite almost surely for r ∈ [−1/2, 1/2] and hence can be analytically continued to the
strip {r = a + bi : a ∈ (−1/2, 1/2)}. Therefore, we have

Ẽ[er(YT−Yt)−q2(〈Y 〉T−〈Y 〉t)/2|Ft] = Ẽ[e(r2−q2)(〈Y 〉T−〈Y 〉t)/2|Ft]

for r ∈ (−1/2, 1/2). The cases r = ±1/2 are also included by taking limits, using dominated
convergence for the left hand side and monotone convergence for the right.

Translating the above into an equality for the original measure P yields

E[e(1/2+r)(YT−Yt)−q2(〈Y 〉T−〈Y 〉t)/2|Ft] = E[e(YT−Yt)/2+(r2−q2)(〈Y 〉T−〈Y 〉t)/2|Ft].

Evaluating the above equation first at r = −1/2 and then at r = α−1/2 and q2 = β2−α2+α,
and rearranging yields

E[eα(YT−Yt)−β2(〈Y 〉T−〈Y 〉t)/2|Ft] = E[e(α2−α−β2)(〈Y 〉T−〈Y 〉t)/2|Ft]

for all α ∈ [0, 1] and β2 ≥ α2−α, and for all 0 ≤ t ≤ T . This implies that conditional on the
sigma-field FT

t = Ft∨σ(〈Y 〉T ), the increment YT −Yt is normal with mean −(〈Y 〉T −〈Y 〉t)/2
and variance 〈Y 〉T − 〈Y 〉t. If we let Xt = Yt + 〈Y 〉t/2, then 〈X〉T = 〈Y 〉T , so the conditional
distribution of XT given FT

t is N(Xt, 〈X〉T − 〈X〉t). Hence X is arithmetically symmetric
by Theorem 2.2. �

Remark 3. The measures P̂ and P̃ appearing in above proofs have been studied before in the
financial mathematics literature. For instance, the measure P̂ was introduced in Geman, El
Karoui, and Rochet [7] and was the object of interest in Schroder [15]; more recently, the

measure P̃ appeared in Theorem 2.2 of Carr and Lee’s paper [3].

4. Symmetric and initially flat implies Black–Scholes

In this section, we consider the implications of Theorem 3.1 on market models of option
prices. Let the continuous martingale S model the price of a stock after passing from the
objective measure to the risk-neutral measure P. For simplicity, we assume that the interest
and dividend rates are zero.

We model the price at time t of a call option with strike K and maturity T by the formula

C(t, T,K) = E[(ST −K)+|Ft].

In particular, since the stock price and all the call prices are martingales, there is no arbitrage
in the market.

It is well-known that call price surface specified in this way satisfies two key properties:

• T 7→ C(t, T,K) is increasing, with C(t, t, K) = (St −K)+ and C(t,∞, K) ≤ St

• K 7→ C(t, T,K) is decreasing and convex, with C(t, T, 0) = St and C(t, T,∞) = 0
9



We may define random field F of normalized call prices indexed by time to maturity and
moneyness defined by

(5) Ft(τ,m) = E

[(
St+τ

St

−m

)+ ∣∣Ft

]
so that Ct(T,K) = St Ft(T − t,K/St). If we consider a set of arbitrage-free normalized call
price surfaces f : R+ × R+ → [0, 1] defined by

C = {f : f(·, m) increasing, f(0, m) = (1−m)+, f(∞, m) ≤ 1,

f(τ, ·) convex, f(τ, 0) = 1, f(τ,∞) = 0}
then the process (Ft)t≥0 takes values in C. Note that the set C is convex.

We now consider the effect of the assumption that S is geometrically symmetric. In this
case note the equality

Ft(τ,m) = E

[
St+τ

St

(
St

St+τ

−m

)+ ∣∣Ft

]

= E

[(
1−m

St+τ

St

)+ ∣∣Ft

]

= E

[
1−m

St+τ

St

+ m

(
St+τ

St

− 1/m

)+ ∣∣Ft

]
= 1−m + mFt(τ, 1/m).

Hence, we can consider the following subset of normalized call prices that also satisfy put-call
symmetry:

Csym = {f ∈ C : mf(τ, 1/m) + 1−m = f(τ,m)}.
Indeed, if (Ft)t≥0 takes values in Csym then S is geometrically symmetric. As the put-call
parity constraint is linear, the set Csym is also convex.

The following theorem says that if (Ft)t≥0 is such that the initial surface F0 agrees with
that of a constant volatility Black–Scholes model, and if the dynamics are constrained to
stay in Csym for all t ≥ 0, then the dynamics are trivial dFt = 0.

Theorem 4.1. Suppose Ft is defined by equation (5) and that F0(τ, m) = BS(σ2
0τ,m) for all

τ > 0, m > 0. If (Ft)t≥0 is valued in Csym, then Ft = F0 almost surely for all t ≥ 0.

Proof. Since F0 = BS(σ2
0·, ·) the unconditional distribution of log(St/S0) is normal with mean

−σ2
0t/2 and variance σ2

0t implying

E
[(

St

S0

)p]
= ep(p−1)σ2

0t/2

for all real p. On the other hand, since (Ft)t≥0 takes values in Csym, the martingale S is geo-
metrically symmetric and hence of the form St = S0e

Xt−〈X〉t/2 for arithmetically symmetric
X. By conditioning on 〈X〉t, we have

E
[(

St

S0

)p]
= E[ep(p−1)〈X〉t/2].
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In particular, E[eλ〈X〉t ] = eλσ2
0t for all λ > −1/8, implying 〈X〉t = σ2

0t almost surely, proving
the claim. �

Remark 4. Recall that we define the implied volatility Σt(τ,m) implicitly by the formula

Ft(τ,m) = BS[τΣt(τ,m), m].

where the function BS is defined in equation (3). Since BS is in Csym, we see that the geomet-
ric symmetry of S implies the symmetry of the implied volatility surface since Ft(τ, 1/m) =
BS[τΣt(τ,m)2, 1/m] and hence Σt(τ, m) = Σt(τ, 1/m). Theorem 4.1 says that if the initial
implied volatility surface is flat, in the sense that Σ0(τ,m) = σ0 for all τ > 0, m > 0, and if
the surface is assumed to be symmetric for all future times, then the stock price S must be
given by the Black–Scholes model.

Remark 5. Another way to view Theorem 4.1 is as follows: if S is geometrically symmetric,
then the random field Ft has the integral representation

Ft(τ,m) =

∫
[0,∞)

BS(v, m)µt(τ, dv)

where the random measure µt(τ, ·) is a regular conditional distribution of the increment
〈log S〉t+τ − 〈log S〉t. Theorem 4.1 says that if the initial measures µ0(τ, ·) = δσ2

0τ are Dirac
point-masses, then the stochastic dynamics of this family of measures are trivial.

Remark 6. There has been significant recent interest in applying the ideas of Heath, Jarrow,
and Morton [9] to equity markets. An early paper is this direction is by Schönbucher [14];
see the papers of Carmona and Nadtochiy [2], Jacod and Protter [10], and Schweizer and
Wissel [16, 17] for more recent advances.

Indeed, for the purposes of hedging exotic options with portfolios of calls, it is necessary
to have the joint dynamics of all the call prices available. In particular, suppose that the
stock price is given by

dSt = Stσt · dWt.

for a possibly multi-dimensional Brownian motion W and predictable volatility process σ.
Under some smoothness assumptions on the field (Ft)t≥0, the generalized Itô formula and
the fact that Ct(T, K) = StFt(T − t,K/St) defines a martingale together imply

dFt(τ,m) =

(
∂Ft

∂τ
− 1

2
m2∂2Ft

∂m2
|σt|2 + m

∂Bt

∂m
· σt −Bt · σt

)
dt + Bt(τ,m) · dWt(6)

where the random field B is related to martingale representation of (Ct(T, K))t≥0. For
instance, if S is in the domain of the Malliavin derivative operator D, then the volatility B
is given by the formula

Bt(τ,m) =

(
m

∂Ft

∂m
− Ft

)
σt + E

[
DtSt+τ

St

1{St+τ /St>m}
∣∣Ft

]
by the Clark–Ocone formula.

The so-called market model approach to this issue is essentially to invert the above dis-
cussion. That is, one takes the time-0 normalized call price surface F0 as the given initial
condition, and evolves the surface (Ft)t≥0 in such a way as to prohibit arbitrage. In par-
ticular, it would be convenient to have easy-to-check sufficient conditions on the process
σ and random field B such that equation (6) has an C-valued solution. Indeed, if (Ft)t≥0
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were such a solution and if StF (T − t,K/St) defines a martingale (not just a local martin-
gale) for each T > 0 and K > 0, then we could take C(t, T,K) = StF (T − t,K/St) since
C(T, T,K) = (ST −K)+ by the definition of C, and hence

C(t, T,K) = E[(ST −K)+|Ft].

Theorem 4.1 can be taken to be bad news for the success of the above program: if we
insist that the solution to (6) takes value in the set Csym ⊂ C, then the admissible random
fields B are strongly dependent on the initial condition F0. In particular, if F0 = BS(σ2

0·, ·)
then Bt(τ,m) = 0 identically.

Following Remark 2, it would be interesting to know if there exists continuous martingales,
other than geometric Brownian motion, whose marginal distributions are log-normal. If not,
the above theorem could be strengthened by allowing the process (Ft)t≥0 to evolve in C rather
than the much smaller set Csym. In other words, if the initial implied volatility surface is flat,
and the asset price dynamics are continuous, must the implied volatility surface remain flat
for all future times?

5. Conclusion

We have seen how the assumption that a continuous local martingale has conditionally
symmetric increments implies a strong structural property. In particular, Brownian motion
scaled by constants are seen to be the only extremal distributions.

It seems plausible that a similar characterization can be carried through for arithmetically
symmetric local martingales with jumps. In fact, Ocone [12] has shown that if a general
càdlàg local martingale X has the property that

∫
(1[0,s] − 1(s,∞))dX and X share the same

law, then X has conditionally independent increments. However, as mentioned in Section
1, arithmetic symmetry is weaker a priori than Ocone’s condition. In any case, it seems
unlikely that the method of proof presented here could directly handle the general case.

For the application to finance, the general characterization of geometric symmetry is also of
interest. Fajardo and Mordecki [6] showed that an exponential Lévy process is geometrically
symmetric its Lévy measure ν satisfies ν(−dy) = eyν(dy). Carr and Lee [3] built more
examples of geometrically symmetric process by introducing random time changes to a family
of exponential Lévy processes. It is an open question if these are the only examples.
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and Cornell University. (2006)

[11] D.B. Madan and M. Yor. Making Markov martingales meet marginals: with explicit constructions.
Bernoulli 8(4): 509–536. (2002)

[12] D.L. Ocone. A symmetry characterization of conditionally independent increment martingales. Proceed-
ings of the San Felice Workshop on Stochastic Analysis, D. Nualart and M. Sanz editors. Birkhäuser.
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