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1. Introduction

Today the famous Black–Scholes formula [3] is rarely used to price vanilla call and put
options, since for a wide range of strikes and expiries these options are so liquid that the
market price cannot be disputed. Instead, the volatility implied by the Black–Scholes formula
is used as common language for expressing the market prices of these liquid options.

In recent years there has been a growing interest in the modelling the stochastic dynamics
of the Black–Scholes implied volatility surface of a stock. This approach is at some level
erroneous, proposing to model a derived quantity rather than the fundamental from which
it is derived; however, provided care is taken over the necessary consistency conditions,
something may be done. See the paper [14] of Schönbucher or the thesis [5] of Durrleman
for details. The analogy is with the Heath-Jarrow-Morton approach to modelling of interest
rates, though in the context of implied volatility surfaces the consistency conditions are more
onerous; see the recent paper [15] by Schweizer and Wissel for a thorough discussion of these
difficulties.

In this note, we shall derive certain model-independent properties of the implied volatility
surface, and use these properties to establish (under mild conditions) a conjecture of Steve
Ross [13]. This conjecture says (informally) that the implied volatility surface cannot move
by parallel shifts - the shape must also change. This is interesting and important because
it shows that blindly imposing dynamics on the implied volatility surface (for example,
postulating that it moves up and down by parallel shifts) may lead to inconsistency.

The article is structured as follows. Section 2 presents notation and Ross’s conjecture.
In Section 3 we prove that the implied volatility surface cannot make a uniform downward
move, and in Section 4 we prove (under a mild regularity condition) that the implied volatility
surface cannot make a uniform upward move, confirming Ross’s conjecture. Finally, Section
5 presents some refined results on the flattening of the implied volatility surface which are
of independent interest.

Date: 21 August 2008.
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2. The implied volatility notation and assumptions

We consider a market with one stock, and European call options of all strikes and expiries.
We assume that the interest rate is zero1 and that the stock pays no dividend. The probability
P of our filtered probability space (Ω,F , (Ft)t≥0, P ) is taken to be the pricing probability,
so the stock price process (St)t≥0 is a non-negative P -martingale, which we suppose to start
at S0 = 1.

Define the Black–Scholes call price function f : R× [0,∞) → [0, 1) in terms of the tail of
the standard Gaussian distribution2 Φ̄ by

(1) f(k, v) =

{
Φ̄

(
k√
v
−

√
v

2

)
− ekΦ̄

(
k√
v

+
√

v
2

)
if v > 0

(1− ek)+ if v = 0

The implied variance Vt(k, τ) at time t ≥ 0 for log-moneyness k ∈ R and time to maturity
τ ≥ 0 is defined implicitly by the formula

(2) E
[(St+τ

St

− ek
)+∣∣Ft

]
= f(k, Vt(k, τ)),

and in terms of this we define the implied volatility Σt(k, τ) as

(3) Σt(k, τ) =

√
Vt(k, τ)

τ

for τ > 0. We have introduced notation for both the implied variance and the implied
volatility since some of our results are more naturally stated in terms of one or the other.
Throughout, we abbreviate V0(k, τ) to V (k, τ), Σ0(k, τ) to Σ(k, τ).

Our study is concerned with the following conjecture of Steve Ross:

Suppose there exists a process (ξt)t≥0 such that for all t ≥ 0, τ > 0 and k ∈ R
(4) Σt(k, τ) = Σ0(k, τ) + ξt;

then ξt = 0 almost surely for all t ≥ 0.

We will denote by φ(x) = (2π)−1/2e−x2/2 the standard normal density, and freely make use
of the well-known bounds on the Mills’ ratio

(5) 0 ≤ 1− xΦ̄(x)

φ(x)
≡ ε(x) ≤ 1

1 + x2

for x ≥ 0. The first partial derivatives of f will be used in what follows:

fk(k, v) = −ekΦ̄

(
k√
v

+

√
v

2

)
(6)

fv(k, v) = φ

(
k√
v
−
√

v

2

)
/2
√

v(7)

1Our results can be extended to the case of non-zero but deterministic interest rates by passing to prices
denominated by the bank account.

2Explicitly, Φ̄(x) =
∫∞

x
exp(−y2/2) dy/

√
2π.
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3. Long implied volatilities cannot fall

In this section we now study the dynamics of the implied volatility surface at long matu-
rities. Notice that in order to define Vt(k, τ) via equation (2) we need St > 0 almost surely;
we therefore make the

Assumption A1: St > 0 for all t almost surely.

The main result proved in this section is the following.

Theorem 3.1. Under Assumption A1, for any k1, k2 ∈ R, for 0 ≤ s ≤ t, we have

lim sup
τ↑∞

{
Σt(k1, τ)− Σs(k2, τ)

}
≥ 0

almost surely.

Given Theorem 3.1, it is immediate that if the representation (4) of the implied volatility
surface holds, then ξ is non-decreasing.

The proof begins with several lemmas, the first being the result of Hubalek, Klein &
Teichmann [8] which they use to prove the Dybvig-Ingersoll-Ross [6] result. We present the
(short) proof for completeness.

Lemma 3.2. Let (Xp)p≥0 be a sequence of non-negative random variables with with finite
mean for each p ≥ 0. Then

lim inf
p↑∞

X1/p
p ≤ lim inf

p↑∞
E(Xp)

1/p

almost surely.

Proof. Let
X = lim inf

p↑∞
X1/p

p and x = lim inf
p↑∞

E(Xp)
1/p.

By Fatou’s lemma and Hölder’s inequality, we have

E[X1{X>x}] = E[lim inf
p↑∞

X1/p
p 1{X>x}]

≤ lim inf
p↑∞

E[X1/p
p 1{X>x}]

≤ lim inf
p↑∞

E[Xp]
1/pE[1{X>x}]

1−1/p.

The above computation implies E[(X − x)1{X>x}] ≤ 0 and hence X ≤ x almost surely. �

The next lemma explains the condition (15), which will be satisfied for most models of
interest.

Lemma 3.3. The following are equivalent:

(i) St → 0 as t ↑ ∞ in distribution.

(ii) St → 0 as t ↑ ∞ almost surely.

(iii) For some K > 0, E(Sτ −K)+ ↑ 1 as τ ↑ ∞.

(iv) For all K > 0, E(Sτ −K)+ ↑ 1 as τ ↑ ∞.

(v) For some k ∈ R, V (k, τ) ↑ ∞ as τ ↑ ∞.

(vi) For all k ∈ R, V (k, τ) ↑ ∞ as τ ↑ ∞.
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Proof. The martingale convergence theorem establishes that Sτ → S∞ almost surely for
some integrable limit S∞; the equivalence of (i) and (ii) is immediate. In view of the identity

1− E(Sτ −K)+ = E
[

Sτ ∧K
]
,

(iii) implies (ii), and (ii) implies (iv). The equivalence of (iii) and (v), and of (iv) and (vi),
are immediate. �

An important consequence of this result is the following.

Corollary 3.4. If P (S∞ > 0) > 0, then for all k

lim
τ↑∞

Σ(k, τ) = 0.

Proof. According to Lemma 3.3, for each k the increasing limit limτ↑∞ V (k, τ) is finite, and
so

Σ(k, τ) =
√

V (k, τ)/τ → 0.

�

Lemma 3.5. If St → 0 in distribution then for all M > 0 we have

inf
k∈[−M,M ]

V (k, τ) ↑ ∞.

Proof. By Lemma 3.3, V (k, τ) ↑ ∞ as τ ↑ ∞ for each k ∈ R. There exists a T ∗ > 0 large
enough that both P (ST ∗ < e−M) > 0 and P (ST ∗ > eM) > 0, since the martingale S cannot
be bounded. Then for τ ≥ T ∗ the functions k 7→ 1/V (k, τ) are positive and continuous
on [−M, M ] and converge monotonically to 0 pointwise. The conclusion follows from Dini’s
theorem. �

The heart of the proof is in the following result, which expresses the limiting behaviour of
the implied volatility surface as τ ↑ ∞.

Lemma 3.6. For each t ≥ 0, for each M > 0, we have

(8) lim
τ↑∞

sup
k∈[−M,M ]

∣∣∣∣∣Σt(k, τ)−
(
−8

τ
log E[St+τ ∧ 1|Ft]

)1/2
∣∣∣∣∣ = 0.

Proof. On the event {P (limτ↑∞ St+τ = 0|Ft) < 1} the claim is true, since we have both
limτ↑∞ Σt(0, τ) = 0 (by Corollary 3.4), and limτ↑∞ E[St+τ ∧ 1|Ft] > 0.
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So assume St → 0 almost surely. Using (5), and writing x1 ≡ (v/2 − k)/
√

v, x2 ≡
(v/2 + k)/

√
v, we have whenever v > 2k that

1− f(k, v) = Φ̄

(
v/2− k√

v

)
+ ekΦ̄

(
v/2 + k√

v

)
≡ Φ̄(x1) + ekΦ̄(x2)

= φ(x1)

{
1

x1

(1− ε(x1)) +
1

x2

(1− ε(x2))

}
= φ(x1)

{ √
v

v/2− k
+

√
v

v/2 + k
− ε(x1)

x1

− ε(x2)

x2

}
= φ(x1)

{
v3/2

v2/4− k2
− ε(x1)

x1

− ε(x2)

x2

}
We apply this when |k| ≤ M and v = Vt(k, τ), for then

E[

(
St+τ

St

)
∧ ek | Ft] = 1− f(k, v)

= φ(x1)

{
v3/2

v2/4− k2
− ε(x1)

x1

− ε(x2)

x2

}
and if τ is large enough we have from Lemma 3.5 that v is much larger than M , so ε(x1)/x1 ≤
2x−3

1 ≤ 50v−3/2, and ε(x2)/x2 ≤ 50v−3/2. Thus

−8 log(1− f(k, v)) =
(v − 2k)2

v
+ 4 log(v) + δ(v),

= v + η(v)

where |δ(v)| → 0 as τ →∞, and there exist constants A and B such that |η(v)| ≤ A+B log(v)
for all large enough τ . We therefore have

lim
τ↑∞

sup
|k|≤M

∣∣∣∣∣√Vt(k, τ)−
{
−8 log E[

(
St+τ

St

)
∧ ek | Ft]

}1/2
∣∣∣∣∣ = 0.

Dividing by
√

τ , we deduce that

lim
τ↑∞

sup
|k|≤M

∣∣∣∣∣Σt(k, τ)−
{
−8

τ
log E[

(
St+τ

St

)
∧ ek | Ft]

}1/2
∣∣∣∣∣ = 0,

and the elementary inequality for positive a, b, x

1 ∧
(a

b

)
≤ x ∧ a

x ∧ b
≤ 1 ∨

(a

b

)
leads to the result (8), by substituting x = St+τ , a = 1 and b = Ste

k. �

Notice the following Corollary of Lemma 3.6, which expresses in a quite precise sense the
flattening of the implied volatility surface.

Corollary 3.7.

(9) lim
τ↑∞

sup
k1,k2∈[−M,M ]

|Σ(k2, τ)− Σ(k1, τ)| = 0
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Now we come to the proof of the main theorem of this section.

Proof of Theorem 3.1. We present here the case s = 0 as the general case 0 ≤ s ≤ t is
essentially the same. Let Mt(τ) = E[Sτ ∧ 1|Ft] so that (Mt(τ)/M0(τ))t∈[0,τ ] is a martingale
for each τ > 0. By Lemma 3.2 we have that

lim sup
τ↑∞

{
−8

τ
log(Mt(τ)) +

8

τ
log(M0(τ))

}
≥ 0.

It is easy to see that if lim supτ↑∞ a(τ)2 − b(τ)2 ≥ 0 for positive functions a and b, then

lim supτ↑∞ a(τ)− b(τ) ≥ 0. Now taking a(τ)2 = − 8
τ

log(Mt(τ)) and b(τ)2 = − 8
τ

log(M0(τ)),
an application of Lemma 3.6 yields

lim sup
τ↑∞

Σt(k1, τ − t)− Σ0(k2, τ) ≥ 0.

The proof is completed by noting that τ 7→ Vt(k1, τ) is increasing so that Σt(k1, τ) ≥√
(τ − t)/τΣt(k1, τ − t) for τ ≥ t. �

Remark 1. We now exhibit a model such that the long volatility strictly increases. Flip a
coin at time 0 and let

St =

{
1 with probability 1/2
e−t/2+Wt with probability 1/2

where W is a Brownian motion independent of the coin. Since P (St → 0) = 1/2 < 1 we
have limτ↑∞ Σ0(k, τ) = 0 for all k ∈ R. But when t > 0 we have Σt(k, τ) = 1 > 0 with
probability 1/2.

4. The implied volatility surface cannot move in parallel shifts

In this section we prove a version of a conjecture of Ross: If the implied volatility surface
moves in parallel shifts, the surface must be constant. Again, Assumption A1 is in force for
this section.

Theorem 4.1. Suppose for all t ≥ 0, τ > 0 and k ∈ R that

Σt(k, τ) = Σ0(k, τ) + ξt

for some process (ξt)t≥0. Then ξt ≥ 0 almost surely for all t ≥ 0.
Define the function gp by

gp(t) =


1

p(p−1)
log E(Sp

t ) if p 6= 0, p 6= 1

E(St log St) if p = 1
−E(log St) if p = 0.

If for all t ≥ 0 there exists a p ∈ R and τ > 0 such that

(10) gp(t + τ) ≤ gp(t) + gp(τ) < ∞,

then ξt = 0 almost surely for all t ≥ 0.

Remark 2. By Jensen’s inequality, the function gp is positive and increasing for all p ∈ R,

and is finite at least for 0 < p < 1. Note that if St = e−σ2t/2+σWt then gp(t) = σ2t/2 for all
p ∈ R.
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Proof. Note that by hypothesis

ξt = Σt(0, τ)− Σ0(0, τ).

By considering the limit superior of the right-hand side as τ ↑ ∞ we see from Theorem 3.1
that ξt ≥ 0 almost surely.

By the fact that v 7→ f(k, v) increases for all k ∈ R, we have

E
[(St+τ

St

−K
)+|Ft

]
= f(log K, τΣt(log K, τ)2)

≥ f(log K, τΣ0(log K, τ)2)(11)

= E[(Sτ −K)+]

and by the put-call parity formula and the identity ek − 1 + f(k, v) = ekf(−k, v) we have

E
[(

K − St+τ

St

)+|Ft

]
= Kf(− log K, τΣt(log K, τ)2)

≥ E[(K − Sτ )
+]

for all K > 0. For twice-differentiable, convex G : (0,∞) → R we have the identity

G(s) = G(1) + (s− 1)G′(1) +

∫ ∞

1

(s−K)+G′′(K)dK +

∫ 1

0

(K − s)+G′′(K)dK

so that we can conclude that the following inequality holds almost surely for convex G:

(12) E
[
G

(St+τ

St

)
|Ft

]
≥ E[G(Sτ )].

Letting G be the convex function Gp(S) = 1
p(p−1)

Sp for p 6= 0, p 6= 1, we have from

inequality (12), after multiplying both sides by Sp
t and taking expectations and logarithms,

that

gp(t + τ) ≥ gp(t) + gp(τ).

A similar argument shows that the above inequality holds also for p = 0 and p = 1.
But by assumption, there exists a p ∈ R and a τ > 0 such that gp(t+τ) ≤ gp(t)+gp(τ) < ∞,

and hence the inequality is, in fact, an equality. Inequality (12) implies that there exists an
event Ω0 ∈ Ft with P (Ω0) = 1 such that

E
[
Gp

(St+τ

St

)∣∣Ft

]
= E[Gp(Sτ )]

for all ω ∈ Ω0. Fixing an ω ∈ Ω0 inequality (11) yields

E
[(St+τ

St

−K
)+|Ft

]
= E[(Sτ −K)+].

for almost all K > 0. Hence ξt = 0 on Ω0 as claimed. �

Remark 3. Here is a cautionary example which shows that the conjecture is false for implied
average variance Vt(k, τ)/τ = Σt(k, τ)2.

Take St = e−t4/2+Wt2 . Then Vt(k, τ) = (t + τ)2 − t2 so that Σt(k, τ)2 = τ + 2t. Hence this
example has ξt = 2t and

Σt(k, τ)2 = Σ0(k, τ)2 + ξt
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almost surely for all k ∈ R, τ > 0, and t ≥ 0. Note that this example, although not a
counterexample to Ross’s conjecture, is not included in Theorem 4.1 as log E(Sp

t ) grows
quadratically here

We now quote a result of Balland [1] which shows that if the implied volatility surface
is constant then the stock price is the exponential of a Levy process. We include the short
proof for completeness.

Theorem 4.2 (Balland 2002). Suppose for all t ≥ 0, τ > 0 and k ∈ R that

Σt(k, τ) = Σ0(k, τ).

If St → 1 in distribution as t ↓ 0 (or equivalently, if V0(k, τ) ↓ 0 for each k ∈ R), then (St)t≥0

is an exponential Levy process.

Proof. By assumption we have

E
[(St+τ

St

−K
)+|Ft

]
= E(Sτ −K)+

for all K ≥ 0. This shows that log(St) has independent and identically distributed incre-
ments. �

Remark 4. The fact that if the implied volatility surface moves by parallel shifts then the
shifts are non-negative is proven in complete generality and can be used to study models
for which condition (10) may not hold true. For instance, if the stock price is modelled by
dSt = StσtdWt for a Brownian motion W and spot volatility process σ, then Durrleman [5]
has shown that under mild assumptions that σt = Σt(0, 0). Hence, if the implied volatility
surface moves by parallel shifts, then σ must be a non-decreasing process, ruling out nearly
all stochastic volatility models.

5. The implied volatility surface flattens at long maturities

The main result of this section proves that the implied volatility smile/skew Σ(·, τ) becomes
very flat at long maturities. This is a consequence of the following result, which estimates
the derivative of the implied variance with respect to log strike.

Theorem 5.1. Let [k(t), k(t)] be the smallest interval containing the support of log St. Then:

(i) The right derivative D+V (k, τ) of V with respect to k exists for k 6= k(τ), and for all
k ≥ 0

(13) D+V (k, τ) < 4;

(ii) The left derivative D−V (k, τ) of V with respect to k exists for k 6= k(τ), and for all
k ≤ 0

(14) D−V (k, τ) > −4;

(iii) Whenever both one-sided derivatives exist, D−V (k, τ) ≤ D+V (k, τ).

(iv) Provided

(15) St → 0 in distribution as t ↑ ∞
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then for all M > 0 the following inequalities hold:

(16) lim sup
τ↑∞

sup
k∈[−M,M ]

max{|D−V (k, τ)|, |D+V (k, τ)|} ≤ 4.

(v) The bound (16) is sharp in the sense that there exists a martingale (St)t≥0 such that for
all M > 0, DV (k, τ) → −4 as τ ↑ ∞ uniformly for k ∈ [−M, M ].

Remark 5. The flattening of implied volatility as τ ↑ ∞ has been noticed before in the
context of specific models, and Lee [10] has shown that the gradient of the implied volatility
smile tends to zero pointwise as τ ↑ ∞ under some additional smoothness and finiteness
assumptions. The uniform bounds and sharp constant contained in Theorem 5.1 appear to
be new.

The flattening phenomenon has been incorrectly attributed to the central limit theorem;
for instance, see Section 7.3 of Rebonato’s book [12]. We would like to emphasize that the
flattening of the implied volatility smile is a universal property of all martingale models.
Indeed, suppose that the log stock price is a spectrally negative α-stable Levy process with
α < 2, as proposed by Carr and Wu [4]. Then the implied volatility surface flattens at long
maturies despite the fact that the distribution of the standardized returns do not tend to
the normal distribution!

The next lemma asserts that the map k 7→ V (k, τ) is rather smooth for each τ ≥ 0.

Lemma 5.2. For each τ ≥ 0, the function k 7→ V (k, τ) is continuous on R. The left
derivative D−V (k, τ) exists for all k 6= k(τ) and right derivative D+V (k, τ) exists for all
k 6= k(τ).

Proof. Define the function I : {(k, c) ∈ R × [0,∞) : (1 − ek)+ ≤ c < 1} → [0,∞) implicitly
by the formula

(17) f(k, I(k, c)) = c.

The function I is continuous on {(1 − ek)+ ≤ c < 1} and differentiable (in fact, infinitely-
differentiable) on {(1 − ek)+ < c < 1}. Calculus gives Ic = 1/fv, and Ik = −fk/fv. Since
V (k, τ) = I(k, E[(Sτ − ek)+]), we have the explicit calculation (omitting appearance of the
arguments (k, τ))

D+V = Ik + Ic D+E[(Sτ − ek)+]

= −fk

fv

− P (Sτ > ek)

fv

(18)

= 2
√

V
Φ̄

(
k/
√

V +
√

V /2
)
− P (Sτ > ek)

φ
(
k/
√

V +
√

V /2
) ,(19)

and

(20) D−V = 2
√

V
Φ̄

(
k/
√

V +
√

V /2
)
− P (Sτ ≥ ek)

φ
(
k/
√

V +
√

V /2
)

for k(τ) < k < k(τ). The conclusion now follows since V (k, τ) = 0 for all k ≤ k(τ) and for
all k ≥ k(τ). �

We now turn to the proof of the main result of this section.
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Proof of Theorem 5.1. For k(τ) < k < k(τ) it is clear that D−V (k, τ) ≤ D+V (k, τ) by
equations (19) and (20), establishing claim (iii). To establish claim (i), note that for 0 ≤
k < k(τ) we have the following

(21) D+V (k, τ) < −fk

fv

= 2
√

V
Φ̄

(
k/
√

V +
√

V /2
)

φ
(
k/
√

V +
√

V /2
) ≤ 4

k/V + 1
< 4;

by inequality (5). Furthermore, for k ≥ k(τ) we have D+V (k, τ) = 0, and claim (i) is
established.

As a first step to proving claim (iv), note that if St → 0 in distribution there exists a T ∗ > 0
such that k/V (k, τ) > −1/4 for all k ≥ −M and all τ ≥ T ∗ by Lemma 3.5. Hence (21) holds
for all τ ≥ T ∗ and k ≥ −M .

Now the identities
1− e−k + e−kf(k, v) = f(−k, v)

and
1− e−k + e−kE[(S − ek)+] = E[(1− Se−k)+]

imply the alternative representation of V (k, τ) as

V (k, τ) = I(−k,E[(1− Sτe
−k)+]).

Differentiating yields the explicit formula and the bound

D−V (k, τ) = 2
√

V
−Φ̄

(√
V /2− k/

√
V

)
+ E[St ; St < ek]

φ
(
− k/

√
V +

√
V /2

)(22)

≥ −2
√

V
Φ̄

(√
V /2− k/

√
V

)
φ
(
− k/

√
V +

√
V /2

)
→ −4

uniformly on (−∞, M ] as before. Claims (ii) and (iv) follow.
Finally to claim (v); the proof needs to use the following limit:

(23)
√

v
1− f(k, v)

φ(−k/
√

v +
√

v/2)
→ 4

uniformly for k ∈ [−M, M ] as v ↑ ∞.
We construct a martingale S from two independent random variables, an exponentially-

distributed random variable ξ of mean 1, and a random time with distribution

P (T ≥ t) = min{1, t−1}.
The martingale is defined by

St =

 1 if 0 ≤ t < 1
tξ if 1 ≤ t < T
0 if T ≤ t

It follows that
E[(St −K)+] = e−K/t

for t ≥ 1. We claim that for all M > 0

DV (k, t) → −4
10



uniformly for k ∈ [−M, M ] as t ↑ ∞.
In light of (22), it is sufficient to show that√

V (k, t)
E[St ; St < ek]

φ
(
k/

√
V (k, t)−

√
V (k, t)/2

) → 0

uniformly. However, from (23), we need only show that (with K = ek)

E[St ; St < K]

1− E[(St −K)+]
→ 0

uniformly. However, simple calculations give

E[St ; St < K]

1− E[(St −K)+]
=

1

t

and this is enough. Note that this example does not satisfy Assumption A1. �

Remark 6. It is interesting to compare Theorem 5.1 with the following result, which is a
slightly stronger formulation of Lemma 3.1 of Lee [9]. We include a proof for completeness.

Theorem 5.3. For each τ > 0

(24) lim
k↑∞

√
2k −

√
V (k, τ) = ∞

and there exists a k∗ > 0 such that

(25) D+V (k, τ) < 2

for all k ≥ k∗.

Proof. As k ↑ ∞, we have f(k, v) ↓ 0. Also, the AM-GM inequality gives

(26) k/
√

v +
√

v/2 ≥
√

2k

for all k, v > 0 whence

ekΦ̄(k/
√

V (k, τ) +
√

V (k, τ)/2) ≤ ekΦ̄(
√

2k) <
1

2
√

πk
↓ 0.

Hence Φ̄(k/
√

V (k, τ)−
√

V (k, τ)/2) → 0 as k ↑ ∞, and the first statement follows quickly.
Using (21), the bound (26) and the bound (5) on the Mills’ ratio, it follows also that

D+V (k, τ) <

√
2V (k, τ)

k

for all τ ≥ 0 and k > 0. But by (24) there exists a k∗ > 0 such that V (k, τ) < 2k for all
k ≥ k∗, proving the result. �

The above inequalities are sharp. See Benaim and Friz [2] to find exact asymptotics of
the implied volatility surface for large absolute log-moneyness.
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