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Abstract. This note contains two main results.

(1) (Discrete time) Suppose S is a martingale whose marginal laws agree with a geometric simple random
walk. (In financial terms, let S be a risk-neutral asset price and suppose the initial option prices agree

with the Cox–Ross–Rubinstein binomial tree model.) Then S is a geometric simple random walk.

(2) (Continuous time) Suppose S = S0eσX−σ
2〈X〉/2 is a continuous martingale whose marginal laws agree

with a geometric Brownian motion. (In financial terms, let S be a risk-neutral asset price and suppose
the initial option prices agree with the Black–Scholes model with volatility σ > 0.) Then there exists

a Brownian motion W such that Xt = Wt + o(t1/4+ε) as t ↑ ∞ for any ε > 0.

1. Introduction

Let S = (St)t≥0 be a positive martingale. If we know the marginal laws of the random variables St for all
t ≥ 0, what can we say about the law of the whole process S? The contribution of this note is two results
which may offer some insight into this question. The first result is in discrete time:

Theorem 1.1. Suppose S is a positive martingale such that

P
(
St
S0

= ukdt−k
)

=

(
t

k

)
pk(1− p)t−k for all 0 ≤ k ≤ t

for some constants 0 < d < 1 < u, where

p =
1− d
u− d

.

Then logS is a simple random walk with transition probabilities

P
(

St
St−1

= u

)
= p = 1− P

(
St
St−1

= d

)
.

The second result says that the continuous time analogue of Theorem 1.1 is true in a certain asymptotic
sense:

Theorem 1.2. Let S be a positive continuous martingale with respect to a right-continuous complete filtration
and such that

log

(
St
S0

)
∼ N(−σ2t/2, σ2t) for all t ≥ 0

for some constant σ > 0. Let X be the continuous local martingale such that

St = S0e
σXt−σ2〈X〉t/2.

Then there exists a Brownian motion W defined on the same probability space such that

t−1/4−ε(Xt −Wt)→ 0 a.s. as t ↑ ∞

for any ε > 0. In particular, the law of Xn converges weakly to the law of W as n ↑ ∞, where Xn
t = n−1/2Xnt.
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A natural question is whether the local martingale X introduced in Theorem 1.2 must be a Brownian
motion itself. Unfortunately, this note does not offer an answer. This question is connected to the existence
of so-called fake Brownian motions, but we will defer discussion of this connection to Section 3 below.

The motivation for this study comes from finance. Suppose we model the time-t price of an asset by
the random variable St, and we suppose that the process S = (St)t≥0 is a positive martingale under the
risk-neutral probability measure. Now consider a European call option written on this asset with maturity
date T ≥ 0 and strike price K ≥ 0. There would be no arbitrage in the market if the time-0 price C0(T,K)
of this option is given by the formula

C0(T,K) = E[(ST −K)+].

That is to say, that the marginal laws of the random variables St for t ≥ 0 determine the initial prices of the
options.

In practice, however, we do not need to compute option prices. Rather, we can observe the intial stock
price S0 and a collection of initial option prices {C0(Ti,Ki) : i ∈ I}. It goes without saying that, in reality,
the index set I is finite. However, since the number of observations is large, it is mathematically convenient
to pretend that {(Ti,Ki) : i ∈ I} = [0,∞)× [0,∞). Since

D+C0(T,K) = −P(ST > K),

where D+ denotes the right-hand derivative in K, the collection of option prices determines the marginal
laws of the random variables St for all t ≥ 0.

From the discussion above, a fundamental modelling problem is to find a martingale S consistent with
these observed marginal laws. The first result in this direction is due to Kellerer [14] who showed that there
exists a Markovian martingale with a prescribed set of marginal laws so long as those laws have constant
mean and increase in the convex order. A concrete formulation of this result is this: we are given a function
C0 : [0,∞)× [0,∞)→ [0,∞) and a number S0 > 0 such that

T 7→ C0(T,K) is increasing for each K ≥ 0,

K 7→ C0(T,K) is decreasing and convex for each T ≥ 0

satisfying the boundary conditions

C0(0,K) = (S0 −K)+ and C0(∞,K) ≤ S0 for all K ≥ 0,

C0(T, 0) = S0, D+C0(T, 0) = −1 and C0(T,∞) = 0 for all T ≥ 0.

Kellerer showed that there exists a positive martingale S such that C0(T,K) = E[(ST −K)+].
In the financial mathematics literature, Derman & Kani [6] and Dupire [7] considered the problem of

inferring asset price dynamics from call prices, in the discrete- and continuous-time settings respectively.
An important observation of Dupire is that, subject to some regularity assumptions on the initial call price
surface C0, there exists a function σloc such that the solution S of the SDE

dSt = Stσloc(t, St)dWt

is consistent with these option prices. (Herein W denotes a Brownian motion.) In particular, the function
σloc is given by the formula

σloc(T,K) =

(
2∂C0

∂T (T,K)

K2 ∂2C0

∂K2 (T,K)

)1/2

.

Turning from existence to uniqueness, the alliteratively named paper of Madan and Yor [16] contains a
survey of other explicit constructions of Markovian martingales with prescribed marginal laws. It should be
noted, however, that apart from the local volatility model of Dupire, the other contructions are necessarily
discontinuous martingales. For one of the special cases considered here, that S has the same marginals as
geometric Brownian motion, discontinuous constructions based on Skorohod embeddings have been proposed
by Xu [23].

With this financial context, we can interpret the main results of this note. Recall that the Cox–Ross–
Rubinstein [5] binomial tree model for a risk-neutral asset price is a discrete-time martingale S such that
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logS is a simple random walk with transition probabilities

P
(

St
St−1

= u

)
=

1− d
u− d

= 1− P
(

St
St−1

= d

)
for some constants 0 < d < 1 < u. The content of the Theorem 1.1 is that, perhaps surprisingly, the full
dynamics of the Cox–Ross–Rubinstein model (and hence the initial prices of path-dependent and American-
style options) are fully determined from the initial European call option prices.

The continuous-time version of the binomial tree model is the Black–Scholes model, in which the risk-
neutral asset price is modelled as

St = S0e
σWt−σ2t/2.

In this case that the call prices are given by the Black–Scholes formula

CBS(S0, T,K, σ) = S0Φ

(
log(S0/K)

σ
√
T

+
σ
√
T

2

)
−KΦ

(
log(S0/K)

σ
√
T

− σ
√
T

2

)
.

Note that inserting the Black–Scholes formula into Dupire’s formula yields σloc(T,K) = σ, as it should. The
content of Theorem 1.2 is that if the asset price S has continuous trajectories and if the observed option
surface is consistent with the Black–Scholes model, then in a certain sense the price process S, when properly
scaled over a very long time horizon, resembles a geometric Brownian motion.

The motivation for studying the question of uniqueness comes from attempts to apply the so-called HJM
methodology to call price dynamics. The idea is to treat the dynamics of the whole call price surface
as fundamental, rather than derived from the dynamics of the underlying asset price. See the articles of
Carmona & Nadtochiy [3, 4], of Kallsen & Krühner [13] and of Schweizer & Wissel [20, 21] for various partial
implementations of this approach.

We now outline one version of this HJM programme, which is very close in spirit (if not in detail) to [3].
The following argument also appears in [22]. Suppose F = (Ft(τ,m))t≥0,τ≥0,m≥0 is a random field evolving
according to the stochastic partial differential equation with boundary condition

(1)

{
dFt(τ,m) =

(
∂Ft
∂τ −

1
2m

2 ∂2Ft
∂m2 σ

2
t +m∂Bt

∂m σt −Btσt
)
dt+Bt(τ,m)dWt on (τ,m) ∈ (0,∞)× [0,∞)

Ft(0,m) = (1−m)+ on (τ,m) ∈ {0} × [0,∞)

and suppose that S is a positive local martingale with dynamics

dSt = StσtdWt,

where the random field B = (Bt(τ,m))t≥0,τ≥0,m≥0 and process σ = (σt)t≥0 are given. For each fixed (T,K)
define a new process by

Ct(T,K) = StFt(T − t,K/St).
Now, by an application of the generalised Itô formula (see Theorem 3.3.1 of Kunita’s book [15], for instance)
we have

dCt(T,K) =

(
StBt(T − t,K/St) + StFt(T − t,K/St)σt −K

∂Ft
∂m

σt

)
dWt.

Therefore, by construction, the process (Ct(T,K))t∈[0,T ] is a local martingale such that

CT (T,K) = (ST −K)+.

In particular, the market consisting of a stock with price S and a family I of calls options with prices
(Ct(Ti,Ki))t∈[0,Ti] for all i ∈ I is free of arbitrage opportunities. The advantage of this formulation of a
market model is that we may take the market observable initial stock price S0 and the initial normalised
call surface F0(τ,m) = C0(T,mS0)/S0 as the model input.

To implement this programme, one need only formulate a set of easy-to-check sufficient conditions on the
initial prices S0, F0 and volatility processes σ, B such that equation (1) has a financially meaningful solution.
Unfortunately, life is not so simple. Indeed, equation (1) is very poorly behaved. The first hint that there
is a problem is that the operator −∂2/∂m2 does not generate a continuous semigroup with respect to any
reasonable function space. Actually, things are even worse. If we insist that the local martingales S and
C(T,K) are true martingales, we have the formula

Ct(T,K) = E[(ST −K)+|Ft].
3



Durrleman [8] proved that in this case the at-the-money implied volatility tends to the spot volatility as
T ↓ t, which in our notation translates into the condition

σt =
√

2π lim
τ↓0

Ft(τ, 1)√
τ

.

In particular, the term − 1
2m

2 ∂2Ft
∂m2 σ

2
t is actually a cubic non-linearity! But from a modelling perspective, we

have the important observation that the stock price volatility process σ is not a free input to equation (1),
but rather it is derived from its solution. The remaining question is, then, how much freedom is there to
choose the call price volatility random field B?

It is hoped that the results of this article help to clarify where the bottleneck in this HJM programme lies.
For instance, if C0(T,K) = CBS(S0, T,K, σ0) for all (T,K) then Corollary 3.6 below says that necessarily

1

t

∫ t

0

σ2
s ds→ σ2

0 a.s. as t ↑ ∞.

That is to say, the initial call price surface constrains the possible dynamics of F , and in particular, forces
the long time average of the squared spot volatility to converge to the initial squared implied volatility.

Remark 1.3. Notice that in the original HJM framework, as proposed by Heath, Jarrow & Morton [11],
the analogous problem does not arise. Recall that if we suppose the random field (ft(τ))t≥0,τ≥0 evolves
according to the HJM-Musiela equation (probably first appearing in this form in [17])

dft(τ) =

(
∂ft
∂τ

+ bt(τ)

∫ τ

0

bt(u)du

)
dt+ bt(τ)dWt,

and define rt = ft(0) and Pt(T ) = e−
∫ T−t
0

ft(τ)dτ , then the process

(e−
∫ t
0
rsdsPt(T ))t∈[0,T ]

is a local martingale for each fixed T > 0. Interpreting f as the forward rate surface, r as the spot volatility
process and P as the price of a zero-coupon bond, we see that we have a no-arbitrage market model.
Furthermore, since the operator ∂/∂τ does generate a nice semigroup with respect to almost any function
space of interest, we see that only very mild conditions are needed on the random field b to ensure the
existence of the financially meaningful solution

ft(τ) = f0(t+ τ) +

∫ t

0

bs(τ + t− s)
∫ τ+t−s

0

bs(u)du ds+

∫ t

0

bs(τ + t− s)dWs

for any initial forward curve f0. See, for instance, the lecture notes [9] of Filipovic for a rigorous treatement
of this equation.

Now, to carry the analogy further, suppose that the initial bond price curve P0 is consistent with a model
with constant interest rate ρ, so that P0(τ) = e−ρτ or equivalently f0(τ) = ρ for all τ ≥ 0. Unlike the
call option case discussed above, nothing can be concluded about the long time behaviour of the average
1
t

∫ t
0
rsds. For instance, consider the case when f0(τ) = ρ and bt(τ) = γe−λτ . It is straight-forward to check

the spot rate dynamics are of the Vasicek–Hull–White [12] form

drt = λ(r̄(t)− rt)dt+ γdWt

where the time-varying mean reversion level is r̄(t) = ρ+ γ2

2λ2 (1− e−2λt). Since we can write rt explicitly as

rt = ρ+
γ2

2λ2
(1− e−λt)2 +

∫ t

0

γe−λ(t−s)dWs,

a routine calculation involving the stochastic Fubini theorem and the Itô isometry shows that

1

t

∫ t

0

rsds→ ρ+
γ2

2λ2
in L2.

In particular, unlike the call option case considered above, the initial forward rate curve does not perfectly
predict the long term average spot interest rate unless γ = 0, i.e. the interest rate dynamics are trivial.
This example seems to indicate that the HJM approach to call options differs in a fundamental way from
the original HJM approach to interest rate modelling.
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The remainder of this short note is organised as follows: in Section 2 we prove Theorem 1.1. In Section 3
we introduce the notion of an α-fake Brownian motion. We explore some of the properties of these process,
and in particular, prove Theorem 1.2 above. Finally, in Section 4 we state and prove a few miscellaneous
results on α-fake Brownian motions which might be useful in either proving that all α-fake Brownian motions
are true Brownian motions, or else, finding an example of a non-Brownian α-fake Brownian motion.

2. The uniqueness of the Cox–Ross–Rubinstein model

This section is devoted to the proof of Theorem 1.1. We begin with a lemma:

Lemma 2.1. Let S be a positive martingale. If for all t ≥ 1 the random variable St/St−1 takes values in
the set {u, d} for some constants 0 < d < 1 < u, then logS is a simple random walk with

P(St/St−1 = u) =
1− d
u− d

= 1− P(St/St−1 = d).

Remark 2.2. This lemma is well-known. It says that the binomial tree model has exactly one equivalent
martingale measure, and so by the second fundamental theorem of asset pricing, is complete.

Proof. Let F be the filtration relative to which S is a martingale. Since St/St−1 can only take two values,
the martingale propery shows

St−1 = E(St|Ft−1)

= St−1uP(St/St−1 = u|Ft−1) + St−1dP(St/St−1 = d|Ft−1)

we have

P(St/St−1 = u|Ft−1) =
1− d
u− d

= 1− P(St/St−1 = d|Ft−1).

Since St/St−1 is manifestly independent of Ft−1, we conclude that logS is a random walk. �

Now we are ready for the proof:

Proof of Theorem 1.1. Since S1/S0 takes values in {u, d}, Lemma 2.1 yields

P(S1 = uS0) =
1− d
u− d

= 1− P(S1 = dS0).

Now fix t ≥ 2 and let

pij = P(St = ujdt−jS0|St−1 = uidt−1−iS0) for 0 ≤ i ≤ t− 1, 0 ≤ j ≤ t

be the one-step transition probabilities. By Lemma 2.1 it is enough to show that

pij = 0 if j < i or j > i+ 1.

For clarity in the calculations to come, we will use a change of notation:

q =
1− d
u− 1

, r =
u

d
⇔ u =

r(1 + q)

1 + qr
, d =

1 + q

1 + qr
.

Now we record the observation that

(2)

t∑
j=0

pij = 1 for all 0 ≤ i ≤ t− 1.

The martingale property of S yields, in the new notation,

(3)

t∑
j=0

rjpij = ri
1 + qr

1 + q
for all 0 ≤ i ≤ t− 1,

and the law of total probability and the prescribed marginal distributions of St and St−1 yield

(4)

t∑
i=0

(
t− 1

i

)
qipij =

(
t

j

)
qj

1

1 + q
for all 0 ≤ j ≤ t.
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We must show that the only non-negative solution to equations (2), (3) and (4) is the random walk transition
probabilities

p̂ij =


1

1+q = u−1
u−d if j = i

q
1+q = 1−d

u−d if j = i+ 1

0 otherwise.

To this end, introduce a generating function P by the formula

P (x, y) =

t−1∑
i=0

t∑
j=0

(
t− 1

i

)
pijx

iyj .

The functional counterpart to equation (2) is

(5) P (x, 1) = (1 + x)t−1 for all x

Similarly, the counterpart of equation (3) is

(6) P (x, r) =
1 + qr

1 + q
(1 + xr)t−1 for all x

and of equation (4) is

(7) P (q, y) =
1

1 + q
(1 + yq)t for all y.

Now consider the polynomial

P̂ (x, y) =

t−1∑
i=0

t∑
j=0

(
t− 1

i

)
p̂ijx

iyj

=
1

q + 1
(1 + yq)(1 + xy)t−1

generated by the geometric random walk transition probabilities (p̂ij)i,j . Of course, since a geometric random
walk with these transition probabilities is consistent the martingale property and the binomial marginals,
the polynomial P̂ satisfies equations (5), (6) and (7).

Since P (x, y)− P̂ (x, y) is a polynomial of at most degree t− 1 in x and of degree t in y, vanishing when
x = q and y ∈ {1, r} we can write

(8) P (x, y) = P̂ (x, y) + (q − x)(1− y)(r − y)

t−2∑
i=0

t−2∑
j=0

bi,jx
iyj .

Our goal, then, is to show bi,j = 0 for all 0 ≤ i ≤ t− 2, 0 ≤ j ≤ t− 2. This will be done by induction.
First, we establish the base case. Matching coefficients of x0yj in equation (8) yields

p0,j = rb0,j − (1 + r)b0,j−1 + b0,j−2 for all 2 ≤ j ≤ t− 2

p0,t−1 = −(1 + r)b0,t−2 + b0,t−3

p0,t = b0,t−2.

First we show that the inequality

b0,j−1 ≥
rt−j − 1

rt−j−1 − 1
b0,j for all 1 ≤ j ≤ t− 2

holds by backward induction. The base case j = t− 2 is true since

b0,t−3 = (1 + r)b0,t−2 + p0,t−1

≥ (1 + r)b0,t−2

Now assuming

b0,J−1 ≥
rt−J − 1

rt−J−1 − 1
b0,J
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holds for some 2 ≤ J ≤ t− 2 we have

b0,J−2 = (1 + r)b0,J−1 − rb0,J + p0,J

≥ (1 + r)b0,J−1 − rb0,J

≥ (1 + r)b0,J−1 − r
rt−J−1 − 1

rt−J − 1
b0,J−1

=
rt−J+1 − 1

rt−J − 1
b0,J−1

establishing the inequality for j = J − 1 and completing the induction.
It now follows by another induction and the fact that b0,t−2 = p0,t ≥ 0 that

(9) 0 ≤ r − 1

rt−j−1 − 1
b0,t−2 ≤ b0,j ≤

rt−j−1 − 1

rt−1 − 1
b0,0 for all 0 ≤ j ≤ t− 2.

Now match the coefficients of xiy0 in equation (8):(
t− 1

i

)
pi,0 = rqbi,0 − rbi−1,0 for all 1 ≤ i ≤ t− 2

pt−1,0 = −rbt−2,0.

As before, using the fact that pi,0 ≥ 0 for all 0 ≤ i ≤ t− 1 and induction yields

(10) 0 ≥ qt−i−2bt−2,0 ≥ bi,0 ≥ q−ib0,0 for all 0 ≤ i ≤ t− 2.

Inequalites (9) and (10) together imply b0,0 = 0 and hence

bi,0 = b0,j = 0 for all 0 ≤ i ≤ t− 2, 0 ≤ j ≤ t− 2.

Now suppose that

bi,h = bh,j = 0 for all 0 ≤ i ≤ t− 2, 0 ≤ j ≤ t− 2 and 0 ≤ h ≤ k − 1

for some 1 ≤ k ≤ t− 3. As before, we can conclude

0 ≤ rbk,j − (1 + r)bk,j−1 + bk,j−2 for all 2 + k ≤ j ≤ t− 2

0 ≤ −(1 + r)bk,t−2 + bk,t−3

0 ≤ bk,t−2
and

0 ≤ rqbi,k − rbi−1,k for all k + 1 ≤ i ≤ t− 2

0 ≤ −rbt−2,k.

By the same argument as before we see

bi,k = bk,j = 0 for all 0 ≤ i ≤ t− 2, 0 ≤ j ≤ t− 2,

concluding the induction. �

Theorem 1.1 has an arithmetic version:

Theorem 2.3. Suppose X is a martingale such that

P(Xt = 2k − t) =

(
t

k

)
2−t for all 0 ≤ k ≤ t.

Then X is a simple symmetric random walk.

The proof of the Theorem 1.1 can be adapted to this case. However, we present here a very short and
clever argument due to Chris Rogers [19]:
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Proof. First, note that the given law of Xt implies E(Xt) = 0 and E(X2
t ) = t. Furthermore, since X is a

square-integrable martingale, its increments are uncorrelated. In particular, the Pythagorean formula says

E(X2
t ) =

t∑
s=1

E[(Xs −Xs−1)2].

This implies E[(Xt −Xt−1)2] = 1 for all t ≥ 1.
However, since the random variables Xt and Xt−1 take values in the disjoint sets {t, t−2, . . . , 2−t,−t} and

{t−1, t−3, . . . , 3−t, 1−t} respectively, we conclude that |Xt−Xt−1| ≥ 1 a.s. But since E[(Xt−Xt−1)2] = 1,
we have Xt−Xt−1 ∈ {−1, 1} a.s. By the same argument as the proof of Lemma 2.1, the martingale property
of X implies that X is a random walk. �

3. Asymptotic uniqueness of the Black–Scholes model

In this section we will prove Theorem 1.2. However, rather than launching directly into the proof, we
begin with a definition:

Definition 3.1. An α-fake Brownian motion is a continuous local martingale X with respect to a right-
continuous complete filtration such that

Xt + α〈X〉t ∼ N(αt, t) for all t ≥ 0.

To see why it is convenient to offer Definition 3.1, note that if S = S0e
σX−σ2〈X〉/2 is a continuous

martingale such that

log

(
St
S0

)
= σX − σ2〈X〉/2 ∼ N(−σ2t/2, σ2t) for all t ≥ 0,

as in the hypothesis of Theorem 1.2, then X is an −σ/2-fake Brownian motion.
The notion of fake Brownian motion was introduced recently by Oleszkiewicz [18], corresponding to a 0-

fake Brownian motion in the terminology above. (Actually, Oleszkiewicz also insisted that a fake Brownian
motion not be a true Brownian motion, while our definition of α-fake Brownian motion does not.) A natural
question is whether there are non-Brownian α-fake Brownian motions. Hamza and Klebaner [10] gave several
constructions for discontinuous martingales with the same marginal laws as Brownian motion, but it seems
that Albin [1] was the first to give a construction of a non-Brownian 0-fake Brownian motion. Also see
Oleszkiewicz’s paper for several other intuitive constructions, again when α = 0. Unfortunately, we do not
know if there are non-Brownian examples when α 6= 0.

We now derive some properties of α-fake Brownian motions, which may have some independent interest.
Since we are concerned with the case when α 6= 0, the following lemma shows that we need only consider
α = 1.

Lemma 3.2. Let X be an α-fake Brownian motion with respect to a filtration (Ft)t≥0. If α 6= 0, then the

process X̂ given by

X̂t = αXt/α2

is a 1-fake Brownian motion with respect to (Ft/α2)t≥0.

Remark 3.3. Recall that our aim is to prove Theorem 1.2. In particular, the claim that t−1/4−ε(Xt−Wt)→ 0

for some Brownian motion W is equivalent to that t−1/4−ε(X̂t − Ŵt) → 0 for the Brownian motion Ŵt =
αWt/α2 . In particular, there is no loss assuming that α = 1.

Proof. Since Xs + α〈X〉s ∼ N(αs, s) by definition, α(Xs + α〈X〉s) ∼ N(α2s, α2s). The proof is concluded

by noting that X̂t + 〈X̂〉t = αXs + α2〈X〉s where t = α2s. �

The following lemma has an elementary proof, but is the key result underlying this study:

Lemma 3.4. Suppose X is a 1-fake Brownian motion. Then for all λ < 1/2 we have

E[eλ〈X〉t ] ≤ e
λ

1−2λ t

for all t ≥ 0.
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Proof. For all θ ∈ R we have

E[eθ(Xt+〈Xt〉)] = e(θ
2/2+θ)t

for all t ≥ 0 since Xt ∼ N(t, t). Also, since eθXt−θ
2〈X〉t/2 defines a positive local martingale, and hence a

supermartingale, we have

E[eθXt−θ
2〈X〉t/2] ≤ 1

for all θ ∈ R and t ≥ 0. Hence, by Hölder’s inequality

E[eλ〈X〉t ] = E
[
(e

2λ
1−2λ (Xt+〈Xt〉))

1−2λ
2−2λ (e−2λXt−(2λ)

2〈X〉t/2)
1

2−2λ

]
≤ E

[
e

2λ
1−2λ (Xt+〈Xt〉)

] 1−2λ
2−2λ E

[
e−2λXt−(2λ)

2〈X〉t/2
] 1

2−2λ

≤ e
λ

1−2λ t.

�

Lemma 3.4 yields a useful quantitative estimate:

Lemma 3.5. Suppose X is an 1-fake Brownian motion. Then for all δ ≥ 0 the inequality

P(|〈X〉t − t| > δ) ≤ 2e−
δ2

8(t+δ)

holds for all t ≥ 0.

Proof. By Lemma 3.4 and Markov’s inequality we have for 0 ≤ λ < 1/2 the bound

P(〈X〉t − t > δ) ≤ E(eλ〈X〉t)e−λ(t+δ)

≤ e−λ(t+δ−
t

1−2λ )

= e−(
√
t+δ−

√
t)2/2

for all t > 0 and δ ≥ 0, where in the last line we have set λ = 1
2

(
1−

√
t
t+δ

)
.

Similarly, we have

P(t− 〈X〉t > δ) ≤ E(e−λ〈X〉t)eλ(t−δ)

≤ eλ(t−δ−
t

1+2λ )

= e−(
√
t−
√
t−δ)2/2

for all 0 ≤ δ < t, where now λ = 1
2

(√
t
t−δ − 1

)
> 0.

Hence

P(|〈X〉t − t| > δ) ≤ e−(
√
t+δ−

√
t)2/2 + e−(

√
t−
√
t−δ)2/2

≤ 2e−
δ2

8(δ+t) .

since
√
t−
√
t− δ ≥

√
t+ δ −

√
t ≥ δ

2
√
t+ δ

.

�

Corollary 3.6. If X is a 1-fake Brownian motion then

〈X〉t
t
→ 1 a.s. as t ↑ ∞.

Proof. Fix a δ > 0 and note that Lemma (3.5) says

P
(∣∣∣∣ 〈X〉nn − 1

∣∣∣∣ > δ

)
≤ 2e−n

δ2

8(1+δ) .
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Since the right-hand side is summable, the first Borel–Cantelli lemma implies that

lim sup
n

∣∣∣∣ 〈X〉nn − 1

∣∣∣∣ ≤ δ a.s.

and since δ > 0 is arbitrary,
〈X〉n
n
→ 1 a.s.

Now, for n ≤ t ≤ n+ 1 we have

〈X〉n
n

(
n

n+ 1

)
≤ 〈X〉t

t
≤
〈X〉(n+1)

(n+ 1)

(
n+ 1

n

)
a.s.

so that
〈X〉t
t
→ 1 a.s.

as claimed. �

The pointwise estimate of Lemma 3.5 can be strengthened to a uniform estimate:

Lemma 3.7. Suppose X is an 1-fake Brownian motion. Then for all δ ≥ 0 the inequality

P( max
0≤t≤T

|〈X〉t − t| > δ) ≤ 2(1 + 2T/δ)e−
δ2

32(T+δ)

hold for all T > 0.

Proof. Now note that ⋂
0≤k≤T/δ+1

{|〈X〉kδ − kδ| ≤ δ} ⊆ { max
0≤t≤T

|〈X〉t − t| ≤ 2δ}

since if kδ ≤ t ≤ (k + 1)δ and 〈X〉(k+1)δ − (k + 1)δ ≤ δ then

〈X〉t − t ≤ 〈X〉(k+1)δ − kδ ≤ 2δ

and if 〈X〉kδ − kδ ≥ −δ then

〈X〉t − t ≥ 〈X〉kδ − (k + 1)δ ≥ −2δ.

Therefore, we have the estimate

P( max
0≤t≤T

|〈X〉t − t| > 2δ) ≤
∑

0≤k≤T/δ+1

P(|〈X〉kδ − kδ| > δ)

≤ 2(1 + T/δ)e−
δ2

8(T+2δ)

where we have used Lemma 3.5 and bounded the sum by the largest term. �

Proof of Theorem 1.2. Let X be a 1-fake Brownian motion. By Corollary 3.6, we have 〈X〉t/t→ 1 a.s. and
in particular 〈X〉t → +∞ a.s. The Dambis–Dubins–Schwarz theorem yields the existence of a Brownian
motion W such that Xt = W〈X〉t .

Fix ε > 0. Our goal is to show that for all k > 0 the probabilities

P(n−1/4−ε max
n≤t≤n+1

|Xt −Wt| > k)

are summable. Indeed, by the first Borel–Cantelli lemma we would then have

n−1/4−ε max
n≤t≤n+1

|Xt −Wt| → 0 a.s. as n ↑ ∞

proving the first claim.
Now note that

P(n−1/4−ε max
n≤t≤n+1

|Xt −Wt| > k) ≤P( max
0≤t≤n+1

|〈X〉t − t| > n1/2+ε)

+ P(n−1/4−ε max
n≤t≤n+1

|Xt −Wt| > k, max
0≤t≤n+1

|〈X〉t − t| ≤ n1/2+ε).

10



We can use Lemma 3.7 to bound the first term by

P( max
0≤t≤n+1

|〈X〉t − t| > n1/2+ε) ≤ 2e
−n2ε 1

32(1+2n−1/2+ε)

which is summable. The second term is bounded by

P(n−1/4−ε max
n≤t≤n+1

|W〈X〉t −Wt| > k, max
0≤t≤n+1

|〈X〉t − t| ≤ n1/2+ε) ≤ P(n−1/4−ε max
n≤t≤n+1

|s−t|≤n1/2+ε

|Ws −Wt| > k).

The right-hand side is bounded by

P( max
0≤t−n≤1

|Wt −Wn| > n1/4+εk/2) + P( max
|s−n|≤n1/2+ε+1

|Ws −Wn| > n1/4+εk/2).

It is clear that the second term dominates the first. By the stationarity of the increments of Brownian
motion, the second term is bound by

2P( max
0≤s≤4n1/2+ε

|Ws| > n1/4+εk/2) = 2P( max
0≤s≤1

|Ws| > nε/2k/4)

by Brownian scaling. The right-hand side decays like e−n
εC for some constant C > 0, and in particular, is

summable. The proof that Xt = Wt + o(t1/4+ε) a.s. is concluded.
As for the second claim, we first show that the finite-dimensional distributions of Xn

t = n−1/2Xnt converge
to those of Brownian motion. Let

Yt = (t+ 1)−1/2(Xt −Wt)

so that Yt → 0 a.s. as t ↑ ∞. Then

Xn
t = Wn

t +
√
t+ 1/nYnt

where Wn
t = n−1/2Wnt is a Brownian motion. For any t1, . . . , tk we have

(Xn
t1 −W

n
t1 , . . . , X

n
tk
−Wn

tk
) = (

√
t1 + 1/nYnt1 , . . . ,

√
tk + 1/nYntk)

→ 0 a.s.

and of course the random vector (Wn
t1 , . . . ,W

n
tk

) has the same law as (Wt1 , . . . ,Wtk). Therefore

(Xn
t1 , . . . , X

n
tk

)→ (Wt1 , . . . ,Wtk) in distribution.

by Theorem 3.1 of Billingsley [2].
Finally, we will show that the laws of the family of processes (Xn)n is tight. Fix a time horizon T > 0

and k > 0 we have the bound

P( max
s,t∈[0,T ],|s−t|≤δ

|Xn
t −Xn

s | > k) ≤P( max
s,t∈[0,T ],|s−t|≤δ

|Wn
t −Wn

s | > k/2)

+ P( max
t∈[0,T ]

(t+ 1/n)1/2|Ynt| > k/2).

We have already shown that the second term on the right vanishes as n ↑ ∞. Hence

lim sup
n↑∞

P( max
s,t∈[0,T ],|s−t|≤δ

|Xn
t −Xn

s | > k) ≤ P( max
s,t∈[0,T ],|s−t|≤δ

|Wt −Ws| > k/2)

→ 0

as δ ↓ 0 by the tightness of Wiener measure. The proof is now complete by Theorem 7.5 of Billingsley [2]. �

4. α-fake miscellany

Now that we have proven the main results, we conclude with some miscellaneous propositions regarding
α-fake Brownian motions. The first shows that the case α = 0 is very different to α 6= 0. In particular, in
place of Corollary 3.6 above we have the following:

Proposition 4.1. There exists a 0-fake Brownian motion X such that

lim inf
t↑∞

〈X〉t
t

= 0 a.s. as t ↑ ∞.
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Proof. This simple construction is due to Oleszkiewicz [18]. Let B and Y be independent Brownian motions
and Z be a N(0, 1) random variable independent of B and Y . Define a continuous process X by

Xt =

{
Yt if 0 ≤ t ≤ 1,

[Y1 cos(Blog t) + Z sin(Blog t)]
√
t if t > 1.

It is straightforward to check that X is a martingale in its own filtration. Since Xt ∼ N(0, t) for all t ≥ 0 is
a 0-fake Brownian motion. Notice that its quadratic variation is given for t ≥ 1 by the formula

〈X〉t = 1 +

∫ t

1

[−Y1 sin(Blog s) + Z cos(Blog s)]
2
ds

= 1 +R2

∫ log t

0

[sin(Bu − θ)]2eudu

where R =
√
Y 2
1 + Z2 and θ = tan−1(Z/Y1). Fix ε > 0 and define a sequence of stopping times by T0 = 0,

and

T2k−1 = inf{u ≥ T2k−2 : | sin(Bu − θ)| < ε/2} for k ≥ 1

T2k = inf{u ≥ T2k−1 : | sin(Bu − θ)| > ε} for k ≥ 1

and note that

e−T2k

∫ T2k

0

[sin(Bu − θ)]2eudu ≤ e−T2k

∫ T2k−1

0

eudu+ e−T2k

∫ T2k

T2k−1

ε2eudu

≤ e−(T2k−T2k−1) + ε2.

By the strong Markov property of Brownian motion, the random variables (T2k − T2k−1)k≥1 are identically
distributed and conditionally independent given θ. Since P(T2 − T1 > N |θ) > 0 a.s. for all N , the second
Borel–Cantelli lemma shows that almost surely

lim inf
t↑∞

〈X〉t
t
≤ lim inf

k↑∞
e−T2k〈X〉eT2k

≤ ε2R2.

Since ε > 0 was arbitrary, we are done. �

The remainder of the article is concerned with the α 6= 0 case. The next result shows that α-Brownian
motions have good integrability properties.

Proposition 4.2. Suppose X is an 1-fake Brownian motion. Then X is a true martingale such that
E[〈X〉pt ] <∞ and E[sup0≤s≤t |Xs|p] <∞ for all t ≥ 0 and p ≥ 1.

Proof. The finite exponential moments of 〈X〉t from Lemma 3.4 implies E[〈X〉pt ] <∞ for all t ≥ 0 and p ≥ 1.
The result follows from the Burkholder–Davis–Gundy inequality. �

In Corollary 3.6 we have proven that 〈X〉t ∼ t for large t. Here we refine this result:

Proposition 4.3. Suppose X is an 1-fake Brownian motion. Then

E(〈X〉t) = t

Var(〈X〉t) ≤ 4t.

Proof. Since Xt + 〈X〉t ∼ N(t, t) by assumption, we know

E(Xt + 〈X〉t) = t.

But by Proposition 4.2 we know that X is not only a local martingale, but a true martingale. Hence
E(Xt) = X0 = 0, and

E(〈X〉t) = t.

Now by Lemma 3.4 the random variable 〈X〉t has a moment generating function which is finite on an
open neighbourhood of the origin. Hence, we can expand both sides of

E[eλ〈X〉t ] ≤ e
λ

1−2λ t

12



in powers of λ and compare terms. Since the λ0 and λ1 terms agree, we can conclude from the coefficient of
λ2 that

E[〈X〉2t ] ≤ t2 + 4t.

�

The next two results lead to sufficient conditions that a 1-fake Brownian motion is is a true Brownian
motion.

Proposition 4.4. Let X be a 1-fake Brownian motion. Then

Var(〈X〉t) = −2

3
E(X3

t ).

In particular, X is a true Brownian motion if and only if E(X3
t ) ≥ 0 for all t ≥ 0.

Remark 4.5. Theorem 4.1 of [22] can be rephrased as follows: if X is a 1-fake Brownian motion such that the
conditional distribution of the increments Xt −Xs given Fs is symmetric for all 0 ≤ s ≤ t, then X is a true
Brownian motion. Notice that Proposition 4.4 above is a generalisation of this result, replacing conditional
symmetry of the increments with marginal symmetry of Xt. In particular, if X is both a 1- and a 0-fake
Brownian motion then X is a true Brownian motion. This fact already has been noted in [23].

In fact, by Lemma 3.2, we can rewrite Proposition 4.4 for a general α-fake Brownian motion Y as

E(Y 3
t ) = −3

2
αVar(〈Y 〉t).

Johannes Ruf has observed that the above equality implies that if Y is both an α1- and an α2-fake Brownian
motion, for α1 6= α2, then Y is a true Brownian motion.

Proof. Since Xt + 〈X〉t ∼ N(t, t), we have

E[(Xt + 〈X〉t)2] = t+ t2

and hence
E(〈X〉2t ) = t+ t2 − 2E[Xt〈X〉t]− E(X2

t ).

Since X is a square-integrable martingale with X0 = 0, Lemma 4.3 yields

E(X2
t ) = E(〈X〉t) = t

so that

Var(〈X〉t) = E(〈X〉2t )− E(〈X〉t)2

= −2E[Xt〈X〉t].
On the other hand, Itô’s formula yields the identity

(11) X3
t − 3Xt〈X〉t = 3

∫ t

0

(X2
s − 〈X〉s)dXs.

Since the expected quadratic variation of the stochastic integral above can be bounded as follows

E
[∫ t

0

(X2
s − 〈X〉s)2d〈X〉s

]
≤ 2E

[∫ t

0

(X4
s + 〈X〉2s)d〈X〉s

]
≤ 2E[〈X〉t sup

0≤s≤t
X4
s + 〈X〉3t ]

≤ 2E[〈X〉2t ]1/2E[ sup
0≤s≤t

X8
s ]1/2 + 2E[〈X〉3t ]

and both expectations appearing on the last line above are finite by Proposition 4.2, the right-hand side of
equation (11) is a square-integrable martingale, and in particular

E(X3
t ) = 3E(Xt〈X〉t).

Notice that if E(X3
t ) = 0 for all t ≥ 0 then 〈X〉t = t a.s. for all t ≥ 0, and the conclusion follows from

Lévy’s characterisation of Brownian motion. �

The next proposition gives bounds on the joint moment generating function of (Xt, 〈X〉t) near the origin.
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Proposition 4.6. Suppose X is an 1-fake Brownian motion. Fix t ≥ 0 and (θ, φ) such that 2|φ| < θ2 < 1.
Then

E[eθXt+φ〈X〉t ] ≤ e(θ
2/2+φ)t if θ > 0

E[eθXt+φ〈X〉t ] ≥ e(θ
2/2+φ)t if θ < 0

There is equality in either of the above inequalities if and only if 〈X〉t = t a.s.

Proof. Note that since θ2/2 < 1/2 we can deduce that E[eθ
2〈X〉t/2] <∞ by Lemma 3.4. In particular,

E[eθXt−θ
2〈X〉t/2] = 1

by Novikov’s criterion.
When θ > 0, Hölder’s inequality yields

E[eθXt+φ〈X〉t ] = E
[
(eθ(Xt+〈X〉t))

θ2+2φ
θ(2+θ) (eθXt−θ

2〈X〉t/2)
2(θ−φ)
θ(2+θ)

]
≤ E

[
eθ(Xt+〈Xt〉)

] θ2+2φ
θ(2+θ) E

[
eθXt−θ

2〈X〉t/2
] 2(θ−φ)
θ(2+θ)

= e(θ
2/2+φ)t.

Similarly, when θ < 0 Hölder’s inequality once more implies

1 = E[eθXt−θ
2〈X〉t/2]

= E
[
(eθXt+φ〈X〉t)

(2−|θ|)|θ|
2(|θ|+φ) (eθ(Xt+〈X〉t))

θ2+2φ
2(|θ|+φ)

]
≤ E

[
eθXt+φ〈X〉t

] (2−|θ|)|θ|
2(|θ|+φ) E

[
eθ(Xt+〈X〉t)

] θ2−2φ
2(|θ|+φ)

= E
[
eθXt+φ〈X〉t

] (2−|θ|)|θ|
2(|θ|+φ)

(
e−(θ

2/2+φ)t
) (2−|θ|)|θ|

2(|θ|+φ)
.

Notice that in both cases above, there is equality if and only if 〈X〉t is a.s. constant by the criterion for
equality in Hölder’s inequality. But Lemma 4.3 says E[〈X〉t] = t, and hence 〈X〉t is a.s. constant if and only
if 〈X〉t = t a.s. �

Remark 4.7. The same argument as in Proposition 4.6 can be used to bound the moment generating function
of X further from the origin. For instance, the inequality

E[eθXt ] = E
[
(eθ(Xt+〈Xt))

θ
2+θ (eθXt−θ

2〈X〉t/2)
2

2+θ

]
≤ E

[
eθ(Xt+〈Xt〉)

] θ
2+θ E

[
eθXt−θ

2〈X〉t/2
] 2

2+θ

≤ eθ
2t/2.

holds for all θ ≥ 0. In particular, for all x ≥ 0 and θ ≥ 0 we have

P(Xt > x) ≤ E[eθXt ]e−θx

≤ eθ
2t/2−θx

= e−
1
2tx

2

where we have let θ = x/t in the last line.

Proposition 4.8. Let X be a 1-fake Brownian motion with respect to a probability measure P. Define a
locally equivalent measure Q by

dQ
dP
|Ft = e−2Xt−2〈X〉t .

Then Q is a probability measure under which the process

Yt = Xt + 2〈X〉t
is a −1-fake Brownian motion.
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Proof. Let

Mt = e−2Xt−2〈X〉t .

Since Xt + 〈X〉t ∼ N(t, t) under P, we have

EP[Mt] = E[e−2(Xt+〈X〉t)] = 1

so that Q is a probability measure. Also, since

Mt = e−2Xt−(−2)
2〈X〉t/2,

Girsanov’s theorem implies that Y = X + 2〈X〉 is a Q-local martingale. Finally, since for all θ ∈ R we have
the calculation

EQ[eθ(Yt−〈Y 〉t)] = EP[e(θ−2)(Xt+〈X〉t)]

= e(θ
2/2−θ)t

we see that Yt − 〈Y 〉t ∼ N(−t, t) under Q for all t ≥ 0, concluding the proof. �
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