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Abstract. A simple discrete-time financial market model is introduced. The market par-
ticipants consist of a collection of noise traders as well as a distinguished agent who uses
the price information as it arrives to update her demand for the assets. It is shown that
the distinguished agent’s demand converges, both almost surely and in mean square, to a
demand consistent with the rational expectations hypothesis, and the rate of convergence
is calculated explicitly. Furthermore, the convergence of the standardised deviations from
this limit is established. The rate of convergence, and hence the efficiency of this market,
is an increasing function of both the risk-free interest rate and the relative number of noise
traders in the market. An efficient market, therefore, measured in terms of a high propor-
tion of informed traders, seems incompatible with the notion that efficient markets converge
quickly.

1. Introduction

This short note introduces a simple discrete-time model of a market. As in many economic
models, the market consists of assets and agents, and the transaction price of the assets each
period is determined by equating the aggregate demand of the agents with the total supply.
An important feature of the model is that there is one distinguished agent who uses the
market information as it arrives to update her demand for the assets. The remaining agents
are noise traders. We will see that in this simple model, the distinguished agent’s demand
converges to a demand consistent with the rational expectations hypothesis. This conver-
gence is in both the almost sure and the mean square sense. Furthermore, in this model,
the rate of convergence can be calculated explicitly. The rate depends on two parameters:
the risk-free interest rate and the relative size of the distinguished agent in the market. We
further investigate the convergence of the standardised deviations from this limit.

Although most models do not require that all investors be rational or well informed, a
reasonable intuition about an efficient market is that a majority of agents are indeed rational
and also that prices adjust rapidly. One of our contributions to the literature is to show that
the higher the proportion of noise traders, the faster the rate of convergence to rational
expectations equilibria. This conclusion seems at odds with the previous held intuition.

The notion that market efficiency is tied to the speed at which markets incorporate new
information is fundamental. Indeed, Fama [10, p. 39] states that “on the average the full
effects of new information on intrinsic values will be reflected nearly instantaneously in actual
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prices”. Chordia et al [6] provide empirical evidence on the speed of convergence on the New
York stock exchange. They do this by examining patterns of serial dependence over different
time intervals. This approach has been followed by subsequent authors.

A closely related concept, that of price discovery, is defined by Lehmann [12, p. 259] as
“the efficient and timely incorporation of the information implicit in investor trading into
market prices.” Similar notions include such ideas as information efficiency which refers to
the ability of a market to incorporate new information into equilibrium prices in a timely
manner.

There is an existing literature on the rate of convergence based on learning models in
rational expectations which have some similarities to our work. For instance, the papers of
Bray [1] and of Margaritis [13] establish almost convergence in models with least squares
learning. In some cases, researchers have resorted to simulation to assess rates of conver-
gences; see Bray & Savin [2] for example. We note the paper of Chevillon & Mavroeidis
[5] where explicit rates of convergence are calculated. See also the paper of Vives [14] who
provides references to earlier work.

There are many papers that capture features of our market structure. There are a number
of models that provide evidence on the necessity in an efficient market for the presence of
both informed traders and noise traders, an interesting early reference being Cornell & Roll
[8]. We assume our distinguished agent is a Bayesian. A similar approach was adopted by
Chakrabarti & Roll [3]. Many features of our structure bear resemblance to the work of De
Long et al [9].

The remainder of the paper is organised as follows. In section 2 the modelling framework
and notation is established. In section 3 the main mathematical results are presented. In
particular, we show that when an agent adaptedly calculates her demand for a risky asset
by a Bayesian updating rule, the posterior mean converges to the rational expectation.
Furthermore, the rate of convergence is calculated explicitly, highlighting the role of the
model parameters. Finally, the convergence of the standardised deviations from the limit
is established. In section 4 the proofs of the main results are presented along with some
interesting auxiliary results. Section 5 concludes.

2. The model set-up

In this section, the modelling framework is established and the notation is introduced.

2.1. The assets. We work in a discrete-time financial market consisting of two traded assets,
a bond and a stock.

The first asset is a risk-free bond. It pays an interest payment of r units of money at the
end of each period, where the positive constant r is known to all market participants. This
asset is effectively of infinite supply, so that there is no constraint on the number of shares
of this asset available to trade in the market. In particular, we assume that the price in
each period is a constant, which we take to be one unit of money. These assumptions are
intended to model a very large, safe borrower such as the US Treasury.

The second asset is a risky stock. In principle, the riskiness of this asset comes from two
sources: both the future dividend payouts and the future stock prices appear random to the
market participants. Indeed, unlike the safe asset, we assume that the stock is of finite net
supply of exactly K shares. In particular, the price is set each period in such a way that
total demand equals total supply. We will let Pt denote its price at time t. To simplify the
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analysis, we focus our attention on the randomness arising from these price movements and
we assume that the dividend payment is actually a constant d which is known to the market
participants.

2.2. The agents. In this market, we introduce a collection of agents. We will soon specialise
to the case where there are two representative agents. The first is a distinguished agent,
labelled L, who we assume models the market, and tries to learn the parameters of her
model by a simple Bayesian updating of her prior beliefs as market information arrives.
The second is the rest of the market, labelled R, whose demand function we will model
exogeneously.

We first model the agents individually. Each agent must decide how many shares of the
risky asset to hold during each period. In order to specify each agent’s demand function,
we assume that at time t agent i models the price Pt+1 as a random variable with mean µt,i
and variance σ2

i . In particular, we allow the agent’s subjective conditional expectation µt,i
of the future price Pt+1 to depend on the current calendar date t, but we insist for the sake
of simplicity that the subjective conditional variance σ2

i be independent of time t.
To model the agents’ demand for the stock, we assume that she tries to maximise the

mean–variance objective

Et,i(Xt+1)−
γi
2

Vart,i(Xt+1)

where γi is a positive constant measuring agent i’s risk aversion, Xt+1 is the value of her
portfolio at time t + 1 and Et,i and Vart,i denote the time t her subjective conditional
expectation and variance, respectively. Note that with zero cost an agent can borrow Pt
shares of the bond at time t and simultaneously buy one share of the stock. This portfolio
is worth

d+ Pt+1 − (1 + r)Pt

which is simply the dividend payment plus the resale value of the risky asset minus the
return on the bond. Hence she picks her holding Ht to maximise

[d+ µt,i − (1 + r)Pt]Ht −
γi
2
σ2
iH

2
t .

Maximising the quadratic yields

H∗t =
1

γiσ2
i

[d+ µt,i − (1 + r)Pt].

We rewrite the above equation in terms of the agent’s demand function Dt,i(·). In particular,
if the stock price at time t equals p, the agent would want to hold Dt,i(p) shares where

Dt,i(p) =
1

γiσ2
i

[d+ µt,i − (1 + r)p].

As mentioned above, we distinguish one agent, labelled L, and aggregate the demand of the
rest of the market, labelled R, to arrive at

(1) Dt,i(p) = αi[d+ µt,i − (1 + r)p]
3



where i is either L or R, and the effective parameters are calculated as

αL =
1

γLσ2
L

(2)

αR =
∑
i 6=L

1

γiσ2
i

(3)

and

(4) µt,R =
1

αR

∑
i 6=L

1

γiσ2
i

µt,i

We consider the parameters αL as a quantification of agent L’s risk tolerance. Note that it
increases when either her risk aversion γL or her subjective variance σ2

L of the risky asset
return decreases. Since this model allows us to aggregate sub-agents into agents by aggre-
gating their risk tolerances, we can interpret, assuming that each sub-agent has control over
the same amount of investible wealth, that the parameters αL and αR are proxies for the
market share of agents L and R respectively.

To further specify the model, we need to know how the agents form their expectations µt,i
of future prices as time progresses. As mentioned above, we will assume that the subjective
expectation µt,R of the rest of the market is exogeneously given. We suppose that there
exists an objective probability measure P, and that each µt,R is a random variable. The idea
is that we will focus on the distinguished agent L, and do not explicitly model how the rest
of the market formulates its expectations of the evolution of the stock price. By introducing
randomness, we also allow for the trading that is a result of tax policies, natural disasters,
inside information, intuition and other complications.

On the other hand, how the distinguished agent calculates her subjective expectation µt,L
is the subject of section 2.3 below.

2.3. Bayesian learning. We now consider the problem from the point of view of the dis-
tinguished agent labelled L. In order to specify her demand function Dt,L(·) at time t, we
need to model her subjective mean µt,L of the future stock price. We assume that she has
a statistical model for the sequence of prices (Pt)t≥1. Since at time t she can observe the
prices (Ps)1≤s≤t she will use these data to estimate the parameters of her model.

For the sake of tractability, we suppose that under the agent’s subjective probability dis-
tribution, the sequence (Pt)t≥1 is independent and identically distributed N(µ, σ2

L) random
variables. The agent knows the variance parameter σ2

L with certainty, but is possibly uncer-
tain about the mean µ. Her prior (time-0) distribution for µ is N(µ0,L, v0) where µ0,L and
v0 are fixed parameters.

After observing P1, . . . , Pt her posterior distribution of µ is N(µt,L, vt) where

(5) µt,L =

∑t
u=1 Pu + aµ0,L

t+ a

and

(6) vt =
σ2
L

a+ t
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where

(7) a =
σ2
L

v0
is the ratio of the variance of stock price to variance of the prior distribution for the mean of
the stock price for agent L. It is important to notice that agent L uses a deterministic rule
to convert the observed market prices into an estimate of the mean of future price.

2.4. Price formation via market clearing. We assume that prices are set by market
clearing, and hence total demand must equal total supply:

Dt,L(Pt) +Dt,R(Pt) = K,

where K is the total number of shares of the risky asset. Substituting the assumed form of
the demand functions from equation (1) yields

(8) Pt =
1

1 + r
[θµt,L + (1− θ)µt,R + d− k]

where

(9) k =
K

αL + αR

is the total supply normalised by a measure of the total market risk tolerance and

(10) θ =
αL

αL + αR

measures the risk tolerance of the distinguished agent L relative to the aggregate risk toler-
ance of the entire market. As we discussed earlier, the parameters αi can be interpreted as
the risk-tolerance weighted market share of each agent i, and hence θ is the relative market
share of agent L.

2.5. Summary of parameters. Before continuing to the analysis of this model, we pause
briefly to list the model parameters and their significance. Our analysis will depend on the
following effective parameters

• µ0,L, agent L’s initial estimate of the mean of next period’s stock price,
• a, the ratio of agent L’s variance of next period’s stock price to her initial uncertainty

of its mean,
• θ, the risk-tolerance weighted relative market share of agent L,
• r, the risk-free interest rate,
• d, the constant stock dividend,
• k, a normalised total supply of the stock,
• the distribution of the random variables µt,R, agent R’s subjective mean of next

period’s stock price.

These parameters can be built out of more fundamental parameters. For instance,

• σ2
L, agent L’s subjective variance of next period’s stock price,

• v0, the variance of agent L’s prior distribution for the subjective mean,

and the effective parameter a is defined by a = σ2
L/v0.

Similarly, with the more fundamental parameters

• γi, agent i’s risk aversion parameter,
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• σ2
i , agent i’s subjective variance of next period’s stock price,

• K, the total number of shares of stock outstanding

we can define the parameters αL = 1/(γLσ
2
L), and αR =

∑
i 6=L 1/(γiσ

2
i ), as well as k =

K/(αL + αR) and θ = αL/(αL + αR).

3. The main results

In this section we present our main results concerning the long time behaviour of this
model. All proofs will be given in Section 4 below.

Recall that randomness enters the model exogeneously via the sequence (µt,R)t≥1 of sub-
jective means of the noise traders. Our results will depend on the distributional properties
of this sequence under the objective probability measure. Henceforth, we will operate under
the following additional assumption:

Assumption 3.1. The random variables (µt,R)t≥1 are independent, identically distributed
with mean E(µR) and finite variance Var(µR) with respect to the objective probability mea-
sure P.

3.1. Convergence to rational expectations. A natural notion of rationality in this con-
text is when an agent’s subjective conditional expectation of next period’s stock price agrees
with the objective conditional expectation. In particular, we will say that agent i is rational
if

µt,i = Et(Pt+1) for all t ≥ 1

where Et denotes the conditional expectation computed with respect to the objective proba-
bility measure P given the price history P1, . . . , Pt. This notion of rationality is very strong,
and there is no a priori reason to hope that is should hold for any agent in this model.

However, there is another, weaker notion of rationality which is appropriate here. We will
say that agent i is asymptotically rational if

|µt,i − Et(Pt+1)| → 0 as t→∞
in some sense. We will see that the distinguished agent L is indeed asymptotically rational
in a strong sense. The first result in this direction is the following proposition:

Proposition 3.2. We have

µt,L − Et(Pt+1) = ε

(
1 +

1− ε
t+ a+ ε

)
(µt,L − µ̄)

for all t ≥ 0, where

(11) µ̄ =
(1− θ)E(µR) + d− k

1 + r − θ
.

and

(12) ε = 1− θ

1 + r
.

Note that since the risk-tolerance weighted market share θ of agent L is less than one
and the interest rate r is positive, the parameter ε is positive, and in particular, not zero.
As a consequence, the rationality or asymptotic rationality of agent L is determined by the
difference µt,L − µ̄. Therefore, the message of Proposition 3.2 is that our investigation of
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the asymptotic rationality should focus on the long time behaviour of µt,L. We will see that
the parameters µ̄ and ε are key to our analysis. We will explore their economic significance
below.

Remark 1. Before proceeding, we recall various notions of convergence of random variables.
We are given a sequence (Xt)t≥0 of random variables and a random variable X. Perhaps the
most intuitive notion of convergence is that of almost sure convergence. We say Xt → X
almost surely if P(Xt → X) = 1. That is, for almost every outcome ω in the sample space
Ω, the sequence of real numbers Xt(ω) converges to the real number X(ω).

Another notion of convergence is convergence in L2 or mean-square. We say Xt → X in
L2 if E(X2) < ∞ and E(|Xt − X|2) → 0. Unlike the notion of almost sure convergence,
convergence in L2 involves averaging over the sample space. In fact, these two notions of
convergence are not directly comparable in the sense that one does not necessarily imply the
other.

For instance, let A1, A2, . . . be a decreasing sequence of events, in the sense that At+1 ⊆ At.
Suppose that P(At) = 1/t and that Xt =

√
t1At , where 1A denotes the indicator of the event

A. Then Xt → 0 almost surely, but since E(X2
t ) = 1 for all t, the sequence (Xt)t≥1 does not

converge in L2.
Now let A1, A2, . . . be independent events with P(At) = 1/t, and let Xt = 1At . Since

E(X2
t ) = 1/t → 0, we see that Xt → 0 in L2. However, since

∑
t≥1 P(At) = +∞, we have

P(Xt = 1 infinitely often) = 1 by the second Borel–Cantelli lemma, and hence (Xt)t≥1 does
not converge almost surely.

Finally, we say Xt → X in distribution if Ft(x) → F (x) for all points x of continuity
of F , where Ft and F are the cumulative distribution functions of Xt and X, respectively.
This notion of convergence is weaker than the other two, in the sense that if Xt → X either
almost surely or in L2, then Xt → X in distribution.

On the other hand, if Xt → X in distribution, it does not necessarily follow that Xt → X
either almost surely or in Lp. For instance, let A be an event with P(A) = 1/2, and let
Xt = 1A for all t ≥ 1 and X = 1 − 1A = 1Ac . Then Xt and X have the same distribution
and hence Xt → X in distribution. But since |Xt −X| = 1, the sequence (Xt)t≥1 does not
converge in either of the stronger senses described above.

We can now state our main result on asymptotic rationality. It is in the spirit of similar
results of Bray [1] and Margaritis [13] for models of least squares learning.

Theorem 3.3. We have

µt,L → µ̄ almost surely and in L2

at t→∞.

The convergence in L2 is interesting mathematically, but the real economic interest of
Theorem 3.3 is the almost sure convergence. Indeed, an economic agent only experiences one
history of the world ω, which in this model can be identified with the sequence (µt,R(ω))t≥1
of realised subjective means of the noise trader. The almost sure convergence implies that
with probability one, for this particular outcome ω, the sequence (µt,L(ω))t≥1 of agent L’s
realised subjective means converges to a constant µ̄ which does not depend on ω.
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We now comment on the economic significance of the limit µ̄. Note that

µ̄ =
d− k
r

+
1− θ

1 + r − θ

(
E(µR)− d− k

r

)
.

We can interpret the quantity (d−k)/r as the common subjective mean such that all market
participants are rational. Indeed, note that E(µR) = (d− k)/r if and only if µ̄ = (d− k)/r.
In this sense, we may regard (d − k)/r as the universal rational expectation. In particular,
the limit µ̄ is the sum of the universal rational expectation plus a term reflecting the bias of
the noise traders away from this universal rational expectation. The coefficient 1−θ

1+r−θ of this
bias term is a decreasing function of the parameter θ, the risk-tolerance weighted relative
market share. In particular, as θ increases to one, the effect of the noise traders on the limit
µ̄ vanishes.

Recall that the parameter k can be expressed as

k =
K∑
i

1
γiσ2

i

.

Note that k is increasing in the risk aversion parameters γi and the subjective variances σ2
i ,

and in particular, that k = 0 if γi = 0 or σ2
i = 0 for some agent i. Therefore we may regard

d− k as a risk-adjusted dividend, and since we have the identity

d− k
r

=
∞∑
t=1

(d− k)(1 + r)−t

the universal rational expectation (d− k)/r is the present discounted value of the stream of
risk-adjusted dividend payments.

3.2. The Rate of convergence. An interesting feature of our analysis is that the rate
of convergence to rationality can be calculated explicitly. We will see that the rate of
convergence is determined by the parameter ε defined by equation (12). Note that ε relates
the relative market share θ of agent L to the interest rate r on the risk-free bond. Note
that since r > 0 and 0 < θ < 1, we have the bound 0 < ε < 1. Furthermore, note that
ε increases with r but decreases with θ. We will see that the long time behaviour is very
different, depending on whether 0 < ε < 1/2, ε = 1/2 or 1/2 < ε < 1.

To state our next result, let

(13) ς
(ε)
t =


t−ε if 0 < ε < 1/2
t−1/2

√
log t if ε = 1/2

t−1/2
√
2ε−1 if ε > 1/2.

Theorem 3.4. We have

E(µt,L) = µ̄+O(t−ε)

and

Var(µt,L) = O((ς
(ε)
t )2)

as t→∞.

We note that the computation of the variance in Theorem 3.4 above is a special case of a
result of Chevillon & Mavroeidis [5, Theorem 2].
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An intuitive explanation for why the Bayesian trader’s subjective expectation may con-
verge to the rational expectation µ̄ more slowly than the usual t−1/2 rate is that the agent’s
own trading dilutes the signal encoded in the prices. For instance, when θ is close to one,
meaning that the risk tolerance of agent L is large relative to the market, then a great deal
of the price movement can be explained by agent L’s trading activity. Therefore, it is not
surprising that it takes a long time for her to learn the parameters of the noise traders’
random demand. Similarly, when the risk-free interest rate r is small, the trader is induced
to have a comparatively larger holding of the risky asset, and this trading activity has a
larger impact on the prices.

The rate of convergence is maximal whenever ε > 1/2. Expressing this inequality in terms
of the relative market share θ and interest rate r yields

2θ < 1 + r.

When expressed in terms of the more fundamental risk aversion parameters γi and subjective
variances σ2

i we have that the convergence happens at the maximal rate if

1− r
γLσ2

L

<
∑
i 6=L

1 + r

γiσ2
i

.

3.3. Deviations from the limit. Now that we have established the limit and the rate of
convergence, we focus our attention on the sequence of standardised deviations from the
limit

(14) ∆t =
µt,L − µ̄
ς
(ε)
t

.

The next theorem establishes the convergence of the sequence (∆t)t≥1 to some random vari-
able ∆. This convergence validates the approximation

µt,L ≈ µ̄+ ς
(ε)
t ∆,

which in light of Proposition 3.2 implies

µt,L − Et(Pt+1) ≈ ες
(ε)
t ∆

for t large. However, the interpretation of the above approximations depends crucially on
the mode of convergence. We will see that the cases 0 < ε < 1/2 and 1/2 ≤ ε < 1 are very
different in this respect.

Theorem 3.5. If 0 < ε < 1/2 then there is a random variable ∆ such that

∆t → ∆ almost surely and in L2

as t→∞. The mean of ∆ is

E(∆) =
Γ(a+ ε)

Γ(a)
(µ0,L − µ̄)

where Γ is the Gamma function, and the variance is

Var(∆) =

(
1− θ
1 + r

)2

Var(µR)

(
Γ(a+ ε)

Γ(a)

)2 ∞∑
t=1

(
(a+ ε− 1)t

(a)t

)2

where (x)n = x(x+ 1) · · · (x+ n− 1) is the Pochhammer symbol.
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If 1/2 ≤ ε < 1 then there is a normal random variable ∆ such that

∆t → ∆ in distribution

as t→∞. The mean of ∆ is

E(∆) = 0

and the variance is

Var(∆) =

(
1− θ
1 + r

)2

Var(µR).

Remark 2. The Gamma function Γ is defined by the integral

Γ(x) =

∫ ∞
0

sx−1e−sds

for positive real x. Recall that the hypergeometric function 3F2 is defined by the series

3F2(p, q, r; s, t; z) =
∞∑
n=0

(p)n(q)n(r)n
(s)n(t)nn!

zn.

Hence, for 0 < ε < 1/2, the variance can be expressed equivalently as

Var(∆) =

(
Γ(a+ ε)(1− θ)
Γ(a+ 1)(1 + r)

)2

Var(µR) 3F2(1, a+ ε, a+ ε; a+ 1, a+ 1; 1).

Note that when 0 < ε < 1/2, the convergence of the normalised difference ∆t is in a very
strong sense. However, the limit ∆ depends on agent L’s prior beliefs through the parameters
µ0,L and a = σ2

L/v0.
On the other hand, when 1/2 ≤ ε < 1, the convergence, as reported in Theorem 3.4, of

the standardised difference is a much weaker sense. In this case, we have a central limit-
type result, with the limit having mean zero and a variance that does not depend on the
agent’s prior beliefs. Furthermore, the limit distribution is always normal, regardless of the
distribution of the noise traders subjective means µt,R.

One may ask when 1/2 ≤ ε < 1, is it possible to replace the convergence in distribution
to a stronger notion of convergence. The answer turns out to be no:

Proposition 3.6. Suppose 1/2 ≤ ε < 1. If Var(µR) > 0 then the sequence (∆t)t≥1 does not
converge almost surely nor does the sequence converge in L2.

Similarly, one may ask when 0 < ε < 1/2 if the limit random variable is normally dis-
tributed. The answer depends on the noise traders subjective means µt,R:

Proposition 3.7. Suppose 0 < ε < 1/2. Then the limit ∆ is normally distributed if and
only if µt,R is normally distributed for each t ≥ 1.

3.4. Prices decorrelate asymptotically. In the previous section, we have studied the
price process as it relates to to agent L’s subjective expectations. In this section, we present
results concerning the convergence of the mean and autocovariance of the price process itself.
In fact, a related result for stationary but not necessarily independent sequences has been
provide by Chevillon & Mavroeidis [5, Theorem 2].
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Theorem 3.8. As t→∞ we have

E(Pt) = µ̄+O(t−ε)

and

Var(Pt) =
(1− θ)2

(1 + r)2
Var(µR) +O((ς

(ε)
t )2)

where ς
(ε)
t is defined by equation (13). Furthermore, for fixed u ≥ 1 as t→∞ we have

Cov(Pt, Pt+u) = O((ς
(ε)
t )2)

and for fixed t ≥ 1 as u→∞ we have

Cov(Pt, Pt+u) = O(u−ε).

The rate of convergence of the objective mean E(Pt) to the rational mean µ̄ is not sur-
prising in light of Proposition 3.2 and Theorem 3.4. Possibly of more interest is when we
consider prices at two dates t and t + u separated by u periods; then the prices decorrelate
asymptotically. In fact, the decorrelation appears in two different asymptotic regimes. The
first regime is when the number u of periods is fixed and we let t → ∞, in which case the
autocovariance decays at a rate which depends on the parameter ε. Recall that we have
assumed that agent L believes that, conditional on the value of the true mean µ, the ran-
dom variables (Pt)t≥1 are independent N(µ, σ2

L). We see that this Bayesian trader operates
under incorrect assumptions, as it is generally not the case that the prices are indepen-
dent in this model. Nevertheless, Theorem 3.8 shows that these assumptions become more
plausible asymptotically since the mean and variance are converging to constants and the
autocovariance is converging to zero.

The second regime is when the date t is fixed and we let the number of periods u → ∞.
In this case the autocovariance decays precisely at rate ε. Note that the price process
in this model exhibits long memory since ε < 1. It is interesting that the long memory
property arises naturally from the modelling assumptions with the rate of decay of the
autocovariance determined endogeneously, despite the assumption that the dynamics are
driven by an independent and identically distributed sequence of exogeneously given random
variables (µt,R)t≥1.

3.5. Second moment rationality. So far we have used a standard notion of rationality,
which we could call rationality in mean or first moment rationality. We could go further.
Agent i is second moment rational if she is both first moment rational and that

σ2
i = Vart(Pt+1),

where Vart is the conditional variance with respect to the objective probability measure P
given the history P1, . . . , Pt. As before, we can also consider the notion of second moment
asymptotic rationality as first moment asymptotic rationality plus the requirement that

|σ2
i − Vart(Pt+1)| → 0

in some sense. We will see that Vart(Pt+1) is not random in our model, so there is no issue
with modes of convergence to address.
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Proposition 3.9. We have

Vart(Pt+1) =
(1− θ)2

(1 + r)2
Var(µR)

(
1 +

1− ε
t+ a+ ε

)2

.

In particular, agent L is second moment asymptotically rational if and only if

(15) σ2
L =

(1− θ)2

(1 + r)2
Var(µR)

Unfortunately, equation (15) is problematic. Indeed, the right-hand side depends on the
market size parameter θ, which in turn depends on the demand sensitivity parameter αL,
which finally depends on the subjective variance σ2

L. More explicitly, we can rewrite equation
(15) as

(1 + r)2σ2
L

(∑
i

1

γiσ2
i

)2

=

(∑
i 6=L

1

γiσ2
i

)2

Var(µR).

In particular, there is no a priori reason to assume that agent L’s subjective variance would
satisfy equation (15) and hence, in general, second moment asymptotic rationality does not
hold for this model.

4. The proofs

Our analysis of this model begins by relating the sequence (µt,L)t≥1 of agent L’s subjective
means in terms of the sequence (µt,R)t≥1 of subjective means of the rest of the market.

Proposition 4.1. For t ≥ 0, we have

(16) µt+1,L =
t+ a

t+ a+ ε
µt,L +

(1− θ)µt+1,R + d− k
(1 + r)(t+ a+ ε)

where ε is given by equation (12).

Proof. Note that by equation (5) we have

µt+1,L =

∑t+1
u=1 Pu + aµ0,L

t+ a+ 1
.

Combining the above expression with equation (5) yields

(t+ a+ 1)µt+1,L − (t+ a)µt,L = Pt+1.

The result follows from inserting this formula into equation (8). �

Note that equation (12) expresses agent L’s subjective mean recursively. The equation
is of the form of a time-inhomogeneous auto-regression where the driving noise term is a
function of the subjective means of the noise traders.

Proof of Proposition 3.2. From equations (8) and (19) we see that the sigma-field generated
by the random variables P1, . . . , Pt and that generated by µ1,R, . . . , µt,R agree. Hence, from
equation (8) we have

Et(Pt+1) =
1

1 + r
(θEt(µt+1,L) + (1− θ)E(µR) + d− k)

= εµ̄+ (1− ε)Et(µt+1,L)(17)

12



where we have used the assumption that the sequence (µt,R)t≥1 is independent. Furthermore,
by equation (16) we have

(18) Et(µt+1,L) =
(t+ a)µt,L + εµ̄

t+ a+ ε
.

Combining equations (17) and (18) yields the conclusion. �

We omit the proof of Proposition 3.9 as the computation is similar to the above proof.
We will make use of the fact that equation (16) can be solved. The following expression

is crucial for our asymptotic analysis. It expresses the current subjective mean µt,L as a
time-dependent weighted sum of the initial subjective mean µ0,L and the shocks arising from
the noise traders.

Proposition 4.2. The solution to equation (16) is given by

(19) µt,L = µ̄+
(a)t

(a+ ε)t

(
µ0,L − µ̄+

1− θ
1 + r

t∑
s=1

(a+ ε)s−1
(a)s

[µs,R − E(µR)]

)
where µ̄ is defined by equation (11) and (x)n = x(x + 1) · · · (x + n − 1) is the Pochhammer
symbol.

Proof. The claimed solution can be verified by induction. �

Now we are ready to prove the main convergence results.

Proof of Theorems 3.3, 3.4 and 3.5. Note that

(x)n =
Γ(x+ n)

Γ(x)

and that by Stirling’s formula

Γ(s) =
√

2πss−1/2e−s(1 +O(s−1))

as s→∞, for any constants b and c we have

(b)t
(c)t

=
Γ(c)

Γ(b)
tb−c(1 +O(t−1)).

as t→∞.
In particular, we have by Proposition 4.2 the calculation

E(µt,L) = µ̄+O(t−ε)

Similarly, upon expanding the variance of the sum by the assumed independence of the
random variables (µt,R)t≥1, we have

Var(µt,L) = O(t−2ε)
n∑
s=1

s2ε−2(1 +O(s−1))

Also, by comparing the sum to the appropriate integral, we have the approximation

t∑
s=1

sp =


tp+1

p+1
+O(tp) if p > 0

tp+1

p+1
+O(1) if − 1 < p ≤ 0

log t+O(1) if p = −1
O(1) if p < −1

13



from which we conclude

Var(µt,L) = O((ς
(ε)
t )2).

Finally, since

E[(µt,L − µ̄)2] = Var(µt,L) + (E[µt,L − µ̄])2

we have proven that µt,L → µ̄ in L2. To establish almost sure convergence and the further
asymptotic results, we split our work into cases.

First we suppose 0 < ε < 1/2. Let

(20) Mt =
t∑

s=1

(a+ ε)s−1
(a)s

[µs,R − E(µR)].

Note that (Mt)t≥1 is a martingale in its own filtration, and since it is L2 bounded

sup
t≥1

E[M2
t ] = Var(µR)

∞∑
s=1

(a+ ε)2s−1
(a)2s

<∞.

The martingale convergence theorem (see Williams [15, Section 12.1]) asserts the existence
of a square integrable random variable M such that

Mt →M almost surely and in L2.

This proves that µt,L → µ̄ almost surely, and further that

∆t →
Γ(a+ ε)

Γ(a)

(
µ0,L − µ̄+

1− θ
1 + r

M

)
almost surely and in L2.

Since E(M) = 0 and Var(M) = supt≥1 E(M2
t ), we have established the given formulae for

E(∆) and Var(∆).
Now we turn our attention to the case 1/2 ≤ ε < 1. Since the martingale (Mt)t≥1 has

independent increments and

E(M2
t ) = O(t2ε(ς

(ε)
t )2)

we appeal to the martingale strong law of large numbers (see Williams [15, Section 12.14])
to conclude that

Mt

t2ε(ς
(ε)
t )2

→ 0 almost surely.

Since tε(ς
(ε)
t )2 → 0 we have µt,L → µ̄ almost surely. Finally, to establish the convergence

to the normal distribution, we appeal to Lindeberg’s central limit theorem. (See Çinlar [7,
Theorem 8.13].) �

Proof of Proposition 3.6. Recall that a sequence (Xt)t≥1 converges to a random variable X
in probability if P(|Xt − X| > ε) → 0 for all ε > 0. Convergence in probability is implied
by either almost sure convergence or by L2 convergence. Hence, it is enough to show that
(∆t)t≥1 does not converge in probability. Note that lim supt≥1 ∆t is measurable with respect
to the tail sigma-field. By Kolmogorov’s zero-one law, the tail sigma-field is trivial, and
hence lim supt≥1 ∆t is necessarily equal to a constant almost surely. But since the limit
distribution is normal with positive variance, we must have

lim sup
t≥1

∆t = +∞ almost surely.
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Hence, convergence in probability is impossible. See Exercise 5.8 in the book of Chaumont
& Yor [4] for further details in a very similar setting. �

Proof of Proposition 3.7. Suppose ∆ is normally distributed, which implies that M is nor-
mal, where M is the limit of the martingale defined by equation (20). By Cràmer’s char-
acterisation of the normal distribution (see Feller [11, Section XV.8]) if X + Y = M and if
X and Y are independent then X and Y are normal. The conclusion now follows from the
identity

M =
µ1,R − E(µR)

a
+
∞∑
s=2

(a+ ε)s−1
(a)s

[µs,R − E(µR)].

�

Proof of Theorem 3.8. Note that we can combine equations (19) and (8) to write the price
Pt as a linear combination of the constant µ0,L and the random variables (µs,R)1≤s≤t. Hence
the mean and autocovariance can be computed explicitly in terms of the mean E(µR), the
variance Var(µR) and the Gamma function. The asymptotic analysis of these formulae
involves Stirling’s formula and the approximation of a sum by an integral just as in the proof
of Theorem 3.4. The details are omitted. �

5. Conclusion

Our paper derives the rate of convergence to rational expectations equilibrium in a simple
economy where the distinguished agent is a Bayesian and where the rate of convergence can
be described in terms of the proportions of informed and noise traders. Furthermore, the
precise mode of convergence of the distinguished agent’s subjective expectations to ratio-
nality, and the standardised deviations from this limit, are established. We find that the
rate of convergence is fastest when the proportion of noise traders is highest. This results
suggests that the notion of an efficient market incorporating the speed of adjustment is not
necessarily compatible with the idea that an efficient market contains a high proportion of
informed traders.
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