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Abstract. Let (St)t≥0 be a d-dimensional semimartingale market model. We define a
forward utility of investment and consumption as a pair of functions UX and UC such that
(1) UX(t, ·, ω) and UC(t, ·, ω) are increasing and concave,
(2) for all 0 ≤ t ≤ T and x, we have

UX(t, x) ≥ E

[
UX(T,Xπ,C

T ) +
∫ T

t

UC(s, Cs)ds|Ft

]
for all strategies π and C, where Xπ,C

T = x +
∫ T

t
πs · dSs −

∫ T

t
Cs ds, and

(3) equality holds in (2) for some pair π∗ and C∗.
We characterize these functions in terms of their convex dual functions. We also show
that under additional smoothness assumptions (on both the market and the utilities) such
forward utility functions satisfy a certain random PDE whose solutions have an integral
representation. This article is a sequel to ‘A characterization of forward utility functions’
by the authors and L.C.G. Rogers.

1. Introduction

There has been recent interest in the financial mathematics literature in the notion of
dynamically consistent utility functions. Motivated by the classical pure-investment Merton
problem, Musiela and Zariphopoulou in [11, 12, 13, 14, 15] have introduced and analyzed the
idea of a forward utility function as a way to quantify the dynamically changing preferences of
an investor. Independently, Henderson in [6] defined and Henderson and Hobson [7] studied
a very similar object called a horizon-unbiased utility, while working in the context of finding
the optimal time to sell an indivisible asset. In this paper, we broaden their definitions by
introducing consumption into the story: our agent does not only invest in a financial market,
but also consumes a part of her wealth at each instant.

Indeed, in the classical lifetime portfolio selection problem of Merton [10], an agent invests
in a financial market and consumes part of her wealth up to an horizon T , which can be
interpreted as her retirement date. The utility derived by the agent is the sum of her
consumption utility between time 0 and time T and of her terminal wealth’s utility. Solving
the investment/consumption problem consists then in looking for the optimal investment
strategy π and consumption rate C as to maximize the total expected utility

E
[
UX

(
T, Xπ,C

T

)
+

∫ T

0

UC

(
s, Cs

)
ds
]
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where Xπ,C
T is the agent’s wealth at time T . Merton studied this problem in the case where

the assets price were modelled as geometric Brownian motions by appealing to the dynamic
programming principle and solving the associated Hamilton–Jacobi–Bellman equation. In
doing so, he noted that if the functions UX and UC are “not of the iso-elastic family, sys-
tematic effects of age will appear in the optimal decision making.” See the paper of Choulli,
Stricker, and Li [4] for further elaboration on this point.

However, there are problems of interest where the introduction of an horizon time T seems
rather artificial. For instance, a fund manager may just aim at having her portfolio’s value
grow gradually as time passes, and consume a part of it (e.g. for her salary), but without
having any terminal date T in mind. In such a case, it may be better to have a framework
in which no horizon date T plays a particular role nor affects the problem’s solution.

Indeed, if we consider our fund manager’s problem, we see easily that a priori (unless the
functions UX and UC have some particular time consistency properties), the choice of the
horizon date T would affect the solution. For instance, if our fund manager was to solve the
investment-consumption problem from year to year, each time fixing T one year ahead, or if
she was to solve the problem by periods of two years at a time, she would probably end up
taking different decisions.

The idea of a forward utility function is to take the dynamic programming equation as the
definition of the utility functions. In this way, the optimal controls will not depend on the
planning horizon by construction. To be precise, we fix a probability space (Ω,F , P) equipped
with a filtration (Ft)t≥0, and we define a forward utility of investment and consumption as
a pair of functions UX and UC on [0,∞)× R× Ω such that

(1) UX(t, ·, ω) and UC(t, ·, ω) are increasing and concave,
(2) for all 0 ≤ t ≤ T and Ft-measurable x, we have

UX(t, x) ≥ E
[
UX(T,Xπ,C

T ) +

∫ T

t

UC(s, Cs)ds|Ft

]
for all admissible investment and consumption strategies π and C,

(3) equality holds in (2) for some pair π∗ and C∗.

We further assume that for each c ≥ 0 the random variable UC(t, c) is Ft-measurable. This
definition naturally extends the definitions appearing in [12] and [7]. Indeed, the original
notion of forward utility corresponds to UC = 0.

An example of a forward utility pair arises from the infinite horizon Merton problem.
Indeed, consider a function UC with the property that for all (t, x) there exists an investment
policy π∗ and consumption rate C∗ such that

E
[∫ ∞

t

UC(s, C∗
s )ds|Ft

]
≥ E

[∫ ∞

t

UC(s, Cs)ds|Ft

]
for all admissible strategies π, C. Letting

UX(t, x) = E
[∫ ∞

t

UC(s, C∗
s )ds|Ft

]
,

it is straightforward to check that UX , UC is a forward utility of investment and consumption
pair. However, the reverse question is more subtle: Given a utility function UX , when
does there exist a utility of consumption function UC such that UX , UC is a forward utility
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pair? The purpose of this paper is to present a characterization of all forward utility pairs.
Unsurprisingly, the key relationships will be presented in terms of convex duality.

This paper is organized as follows: In section 2 we introduce the technical assumptions
on the market model and on the utility functions. In section 3 we state and prove the
main result of this paper, necessary and sufficient conditions for a pair of functions to be
forward utilities for a locally bounded semimartingale market. In 4, we also show, under
additional smoothness assumptions on both the market and the utilities, that the convex
conjugate functions satisfy a linear PDE whose solutions can be described by the integral
representation of the excessive functions for space-time Brownian motion. These results
extend the pure-investment forward utility characterization found in [2].

2. Set-up and notation

2.1. Utility functions and their conjugates. We now introduce some assumptions on
utility functions and their convex conjugates which we will need in what follows.

Assumption 2.1. The function u : R → R ∪ {−∞} satisfies

(1) u(x) > −∞ for all x > 0
(2) u is twice-continuously differentiable, increasing and strictly concave on (0,∞)
(3) limx↓0 u′(x) = ∞ and limx↑∞ u′(x) = 0.

If u satisfies Assumption 2.1, then we use the notation û to denote the convex conjugate
function defined by

û(y) = sup
x>0

u(x)− xy.

There should be no confusion when the ˆ notation is used for functions of more than one
argument, as the convex conjugation is taken with respect to the wealth variable.

Note that for all x, y > 0 we have Fenchel’s inequality:

u(x) ≤ û(y) + xy.

The case of equality is equivalent to any of the following:

(1) y = u′(x),
(2) x = −û′(y), and
(3) u(x) = û(y) + xy.

Finally, we can recover u from û by

u(x) = inf
y>0

û(y) + xy.

2.2. The market. We consider a market with d + 1 traded assets, such that at least one
asset has a strictly positive nominal price. By expressing all prices relative to the price
of this numéraire asset, we model the (discounted) prices of the remaining d assets as a
d-dimensional locally bounded càdlàg semimartingale (St)t≥0 defined on a probability space
(Ω,F , P) with filtration (Ft)t≥0 satisfying the usual conditions with F0 trivial. We assume
that there exists at least one probability measure locally equivalent to P under which the
price process is a local martingale, ruling out arbitrage in the market.

The investor in this market chooses an S-integrable portfolio process π and a positive
adapted càdlàg consumption rate process C so that starting from an Ft-measurable initial
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wealth x at time t, the investor’s wealth (in terms of the traded numéraire) at time T is
given by

Xπ,C
T = x +

∫ T

t

πs · dSs −
∫ T

t

Cs ds

Since we are working with utility functions which are finite only on a half-line, we enforce
the usual admissibility condition that the investor’s wealth remain bounded from below by
a constant.

3. A general characterization

We now present the main characterization theorem for forward utility functions. To sim-
plify the formulae, we use the notation U ′ for ∂

∂x
U and Û ′ for ∂

∂y
Û .

Theorem 3.1. Suppose that UX(t, ·, ω) and UC(t, ·, ω) satisfies Assumption 2.1 for all (t, ω).
Then the following are equivalent:

(1) UX , UC is a forward utility pair.
(2) For all Ft-measurable y > 0 there exists an equivalent martingale density Z such that

for all 0 ≤ t ≤ T the following hold true:

• ÛX(t, y) = E
[
ÛX

(
T, yZT

Zt

)
+
∫ T

t
ÛC

(
u, yZu

Zt

)
du|Ft

]
• Û ′

X(t, y) = E
[

ZT

Zt
Û ′

X

(
T, yZT

Zt

)
+
∫ T

t
Zu

Zt
Û ′

C

(
u, yZu

Zt

)
du|Ft

]
• −Û ′

X

(
T, yZT

Zt

)
−
∫ T

t
Û ′

C

(
u, yZu

Zt

)
du is attainable from −Û ′

X (t, y) .

Remark 1. Since the techniques of convex duality are well-developed in analyzing utility
maximization problems in finance, the appearance of the dual functions ÛX and ÛC should
come as no surprise. Schachermayer [16] introduced of the dynamic form of the dual problem
in the anaylsis of the supermartingale property of the optimal wealth process in a locally
bounded semimartingale market with utility finite on the entire real line. Biagini and Fritelli
[3] extended this analysis to the not-locally-bouned case, showing that the optimal wealth is
attainable if the min-max σ-martingale measure is equivalent to P.

We begin with a little lemma that shows that the optimal controls do not depend on the
horizon as claimed in Section 1. This fact demands a proof as our definition of forward
utility seems to leave open the possibility that the optimal portfolio and consumption rate
may depend on T .

Lemma 3.2. Let UX , UC be a forward utility pair. Then, for any fixed t ≥ 0 and Ft-
measurable x > 0, there exists admissible trading strategy (π∗u)u≥t and consumption process
(C∗

u)u≥t such that

UX(u, X∗
u) = E

[
UX(T,X∗

T ) +

∫ T

u

UC(s, C∗
s ) ds|Fu

]
for all t ≤ u ≤ T , where X∗

u = Xπ∗,C∗
u .

Proof Lemma 3.2. Fix 0 ≤ t ≤ u ≤ T and Ft-measurable initial wealth x > 0. By assump-
tion, there exists admissible strategy π∗, C∗, possibly depending on T , such that

UX(t, x) = E
[
UX(T,X∗

T ) +

∫ T

t

UC(s, C∗
s )ds|Ft

]
4



Notice by the definition of forward utility

(*) E
[
UX(T,X∗

T ) +

∫ T

u

UC(s, C∗
s )ds|Fu

]
≤ UX(u, X∗

u).

Applying the tower property of conditional expectations we have

UX(t, x) = E
[
UX(T,X∗

T ) +

∫ T

t

UC(s, C∗
s )ds|Ft

]
= E

{
E
[
UX(T,X∗

T ) +

∫ T

u

UC(s, C∗
s )ds|Fu

]
+

∫ u

t

UC(s, C∗
s )ds|Ft

}
≤ E

[
UX(u, X∗

u) +

∫ u

t

UC(s, C∗
s )ds|Ft

]
.

Again by the definition of forward utility, the inequality above can only be an almost sure
equality and we see that the controls π∗, C∗ are optimal over the subinterval [t, u]. Further-
more, inequality (*) must hold with equality almost surely, proving the claim. �

Proof of Theorem 3.1. (2) ⇒ (1). We begin with the easier direction. Fix t ≥ 0 and a
Ft-measurable x > 0. Let y = U ′

X(t, x) and let (Zt)t≥0 be the density of the corresponding

martingale measure. If XT = x+
∫ T

t
πs ·dSs−

∫ T

t
Csds is attainable from x then the following

inequality holds

UX(T, XT ) +

∫ T

t

UC(s, Cs)ds ≤ ÛX

(
T, y

ZT

Zt

)
+ y

ZT

Zt

XT +

∫ T

t

(
ÛC

(
s, y

Zs

Zt

)
+ y

Zs

Zt

Cs

)
ds

= ÛX

(
T, y

ZT

Zt

)
+

∫ T

t

ÛC

(
s, y

Zs

Zt

)
ds

+y
ZT

Zt

(
x +

∫ T

t

πs · dSs

)
+

∫ T

t

y
(Zs − ZT )

Zt

Csds

by the definition of convex conjugate. Since the portfolio process is admissible, the stochastic
integral is bounded from below, and hence is a supermartingale for the martingale measure
with density process Z. Taking conditional expectations yields

E
[
UX(T, XT ) +

∫ T

t

UC(s, Cs)ds|Ft

]
≤ E

[
ÛX

(
T, y

ZT

Zt

)
+

∫ T

t

ÛC

(
s, y

Zs

Zt

)
ds|Ft

]
+ xy

= ÛX(t, y) + xy

= UX(t, y)

where the last line follows from the choice of y.
Now by choosing the consumption rate as

C∗
s = −Û ′

C

(
s, y

Zs

Zt

)
and the portfolio strategy by

x +

∫ T

t

π∗s · dSs = −Û ′
X

(
T, y

ZT

Zt

)
+

∫ T

t

C∗
s ds,
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which is attainable by assumption, we see that we have equality in the above inequalities.
This completes the proof that UX , UC is a forward utility pair.

(1) ⇒ (2). Suppose UX , UC is a forward utility pair. Fix t ≥ 0 and Ft-measurable y > 0,

let x = −Û ′
X(t, y), and let (X∗

u, C∗
u)u≥t be the optimal wealth and consumption process with

X∗
t = x. Let (Zs)s∈[0,t] be the density of any equivalent martingale measure on the interval

[0, t], and let

Zu =
U ′

X(u, X∗
u)Zt

y
for u ≥ t.

Now, we must show that (Zu)u≥t is the density of an equivalent martingale measure. Fix
t ≤ u < T and let (πs)s∈[u,T ] be an admissible trading strategy such that (Xs)s∈[u,T ] is
bounded, where Xs = Xu +

∫ s

u
πτ · dSτ and Xu > 0. Then εXT + X∗

T is attainable from
εXu + X∗

u for all ε ∈ R. Hence

E[UX(T, εXT + X∗
T )− UX(T,X∗

T )|Fu] ≤ UX(u, εXu + X∗
u)− UX(u, X∗

u).

Dividing by ε and letting ε ↓ 0 yields

E[U ′
X(T,X∗

T )XT |Fu] ≤ U ′
X(u, X∗

u)Xu

by the monotone convergence theorem and the concavity of U . Similarly, letting ε ↑ 0 yields
the reverse inequality, so that by linearity

E[ZT XT |Fu] = ZuXu

for all bounded XT attainable from Xu. In particular, letting the wealth Xu = XT = 1 shows
that (Zu)u≥t is a martingale. Similarly, letting Xs = Si

s∧τN
for some i ∈ {1, . . . , d} where

τN = inf{s ≥ u : |Ss| ≥ N} shows that the equivalent measure Q induced by the martingale
Z is such that the discounted prices are local martingales.

Now, writing X∗
s = ξs−

∫ s

t
C∗

τ dτ where ξs = x+
∫ s

t
π∗τ ·dSτ is bounded from below, we can

repeat the above argument by taking Xs = εξs. Note that we have dropped the assumption
that the wealth process is bounded since (1+ε)ξT is attainable from (1+ε)ξu for any ε > −1.
We can conclude that (ξu)u≥t is a martingale under Q.

Now let (Cu)u≥t be a bounded càdlàg process. Again, by optimality, we have

E
{

UX

(
T, X∗

T − ε

∫ T

t

Cudu

)
− UX(T,X∗

T ) +

∫ T

t

[UC(u, C∗
u + εCu)− UC(u, C∗

u)]du|Ft

}
≤ 0

By dividing by ε and then taking ε ↓ 0 (and then ε ↓ 0) we have by the same argument as
before:

E
{∫ T

t

[U ′
X(T, X∗

T )− U ′
C(u, C∗

u)]Cudu|Ft

}
= 0.

Since the perturbation was arbitrary, we have

U ′
C(u, C∗

u) = E[U ′
X(T, X∗

T )|Fu] = y
Zu

Zt

for Lebesgue almost all u ∈ [t, T ]. In particular, C∗
u = −Û ′

C

(
u, yZu

Zt

)
. Therefore, we can

conclude that

−Û ′
X

(
T, y

ZT

Zt

)
−
∫ T

t

Û ′
C

(
u, y

Zu

Zt

)
du = ξT
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is attainable from its conditional mean EQ[ξT |Ft] = x.
Finally, we have

E
[
ÛX

(
T, y

ZT

Zt

)
+

∫ T

t

ÛC

(
u, y

Zu

Zt

)
du|Ft

]
= E +

{
UX (T, X∗

T )− y
ZT

Zt

X∗
T∫ T

t

[
UC (u, C∗

u) du− y
Zu

Zt

C∗
T

]
|Ft

}
= UX(t,X∗

t )− yX∗
t

= ÛX (t, y) .

�

We state the following corollary, which easily follows from the Fenchel inequality:

Corollary 3.3. If UX , UC is a forward utility pair then

ÛX(t, y) ≤ E
[
ÛX

(
T, y

ZT

Zt

)
+

∫ T

t

ÛC

(
u, y

Zu

Zt

)
du|Ft

]
for all equivalent martingale measure densities Z.

From this theorem, we may construct a family of examples such that UX(0, x, ω) = u(x)
for a given (nonrandom) utility function u.

Corollary 3.4. Let u satisfy Assumption 2.1. Assume there exists an equivalent martingale
measure with density process (Z∗

t )t≥0 such that 1/Z∗
T is attainable for all T ≥ 0. Then the

functions UX , UC defined by

UX(t, x, ω) = F̄ (t)u

(
xZ∗

t (ω)

F̄ (t)

)
, UC(t, c, ω) = f(t)u

(
cZ∗

t (ω)

f(t)

)
,

is a forward utility pair where f > 0 is a probability density on [0,∞) and F̄ (t) =
∫∞

t
f(s)ds

is its complementary distribution function.

Remark 2. The wealth process (X∗
t )t≥0 above is called the numéraire portfolio process and

was characterized by Becherer in [1] as the optimizer of the standard Merton pure investment
problem under logarithmic utility. In the continuous price setting, the equivalent martingale
measure corresponding to the martingale (Z∗

t )t≥0 is called the Föllmer–Schweizer minimal
martingale measure. The striking feature of Corollary 3.4 is that the optimal investment
behavior for an agent using this forward utility with arbitrary initial indirect utility u is
exactly the same as for an agent maximizing expected logarithmic utility.

4. Smoothness in time

In this section, we explore the consequence of an additional assumption that t 7→ U(t, x, ω)
is smooth in time. Just in the case of the pure problem studied in [2], this assumption greatly
restricts the possibilities, though not nearly to the same extent.
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4.1. Motivation. To motivate this study, we note that the strategy of investing no money
π = 0 in the risky assets and consuming a constant amount c > 0 is admissible for each
intial wealth x > 0, we have

E[UX(T, x) +

∫ T

t

UC(s, c)ds|Ft] ≤ UX(t, x).

If the forward utility of consumption UC is a non-negative process, then the process (UX(t, x))t≥0

is a super-martingale. That is, the forward utility of wealth decreases on average. If we as-
sume that t 7→ UX(t, x) is differentiable, then the utility must, in fact, decrease almost
surely. Models in this section, therefore, have the feature that the investor is worse off with
probability one by not investing in the market.

4.2. Further assumptions on the market model. For the rest of this section, we restrict
the class of market models from those with locally bounded prices to those with continuous
prices. We will assume that the prices have the decomposition

dSi
t = Si

t

(
µi

t dt +
d∑

j=1

σi,j
t dW j

t

)
for i ∈ {1, . . . , d} and previsible processes (µt)t≥0 and (σt)t≥0 and k-dimensional Brownian
motion W = (Wt)t≥0. We assume that the Brownian motion is (Ft)t≥0-adapted, but we do
not necessarily assume that the market is complete, i.e. (Ft)t≥0 may be strictly larger than
(FW

t )t≥0, the filtration generated by W .
For each (t, ω) we let Θt(ω) be the k-dimensional vector of smallest Euclidean norm such

that
σt(ω)Θt(ω) = µt(ω).

Note that the vector Θt(ω) is in the orthogonal complement of the kernel of the matrix σt(ω);
in other words, Θt(ω) is in the range of the transpose matrix σt(ω)T. We let (σT

t )−1Θt denote
the solution λ of σT

t λ = Θt, though we do not necessarily assume that σt is invertible.
We let

Z∗
t = exp

(
−
∫ t

0

Θu · dWu −
1

2

∫ t

0

|Θu|2du

)
and assume that E(Z∗

t ) = 1 for all t ≥ 0 so that (Z∗)t≥0 is the density process of the minimal
martingale measure. Of course, because of the possibility of incompleteness, there may exist
plenty of other equivalent martingale measures.

To prove the main result of this section, we must make the following assumptions on the
market.

Assumption 4.1. The market price of risk process (Θt)t≥0 is continuous, bounded uniformly
in (t, ω) ∈ [0,∞)× Ω, and satisfies the non-degeneracy conditions

(1) Θt 6= 0 almost surely for all t ≥ 0, and
(2)

∫∞
0
|Θu|2 du = ∞ almost surely.

Assumption 4.1 will be in force throughout the remainder of this section.
In what follows, we will use the notation

At =

∫ t

0

|Θs|2 ds
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to denote the mean-variance tradeoff process. We will also use the notation E(·) for the
Dooléans–Dade stochastic exponential, so that, for instance,

Z∗
t = E

(
−
∫ t

0

Θu · dWu

)
.

4.3. The main results. We are now ready to state and prove the main result of this section.
We will need an extra assumption.

Assumption 4.2. (1) The functions UX(t, ·, ω) and UC(t, ·, ω) satisfy Assumption 2.1,
for all t ≥ 0 and almost all ω ∈ Ω.

(2) The function UC and the partial derivatives ∂2UX

∂t∂x
= ∂2UX

∂x∂t
, ∂3UX

∂x3 , and ∂UC

∂x
are contin-

uous on [0,∞)× (0,∞) almost surely.
(3) For each T > 0, there are constants C > 0 and k > 0 such that

lim sup
x↑∞

xk ∂UX

∂x
≤ C

for all t ∈ [0, T ] almost surely.

Theorem 4.3. Under Assumption 4.2 the following are equivalent:

(1) UX , UC is a forward utility pair

(2)
∂UX

∂t
− |Θt|2

2

(
∂UX

∂x

)2
∂2UX

∂x2

+ ÛC

(
t,

∂UX

∂x

)
= 0

(3)
∂ÛX

∂t
+
|Θt|2

2
y2∂2ÛX

∂y2
+ ÛC = 0

Proof of Theorem 4.3. Since the equivalence of (2) and (3) is easily verified under the as-
sumption of the Inada condition by the chain rule of calculus, we need only show (1) ⇒ (2)
and (3) ⇒ (1).

(1) ⇒ (2) Fix t > 0 and an Ft-measurable x > 0. Recall that the variation of our agent’s
wealth, taking into account the budget and self-financing constraints, is equal to

dXπ,C
u = σT

u Πu ·
[
Θudu + dWu

]
− Cu du

where we are now using the notation Πu = diag(Su)πu.
By the assumed differentiability in time, the semimartingale (UX(t, x))t≥0 has no local-

martingale part. Hence, by the generalized Itô formula (see Theorem 3.3.1 of Kunita’s book
[9], for instance), we have the decomposition

UX(T,Xπ,C
T ) = UX(t, x) +

∫ T

t

∂UX

∂x
σT

u Πu · dWu

+

∫ T

t

(
∂UX

∂t
+

∂UX

∂x
(σT

u Πu ·Θu − Cu) +
1

2

∂2UX

∂x2
|σT

u Πu|2
)

du.

where the partial derivatives in the integral are evaluated at (u, Xπ,C
u ).

Since the processes
(
UX(u, Xπ,C

u ) +
∫ u

t
UC(s, Cs)ds

)
u≥t

is a super-martingale for all admis-

sible controls π, C we have

(1)

∫ T

t

(
∂UX

∂t
+

∂UX

∂x
σT

u Πu ·Θu +
1

2

∂2UX

∂x2
|σT

u Πu|2 + UC − Cu
∂UX

∂x

)
du ≤ 0,

9



with equality for the optimal controls π∗, C∗.
Let π∗, C∗ be an optimal strategy as in Lemma 3.2, and let X∗

u = Xπ∗,C∗
u be the associated

optimal discounted wealth. By the concavity of UX and Fenchel’s inequality we have∫ T

t

(
∂UX

∂t
− 1

2
|Θu|2

(
∂UX

∂x

)2
∂2UX

∂x2

+ ÛC

)
du =

1

2

∫ T

t

−1
∂2UX

∂x2

∣∣∣∣∂UX

∂x
Θu +

∂2UX

∂x2
σT

u Π∗
u

∣∣∣∣2 du

+

∫ T

t

(
ÛC − UC + C∗

u

∂UX

∂x

)
du

≥ 0

where the partial derivatives of UX are evaluated at (u, X∗
u) and ÛC is evaluated at (u, ∂UX

∂x
).

Since the wealth process is continuous and the consumption is right-continuous, and the
partial derivatives of the utility functions are continuous, we may take the limit as T ↓ t to
conclude that

∂UX

∂t
≥ 1

2
|Θt|2

(
∂UX

∂x

)2
∂2UX

∂x2

− ÛC

almost surely for all x > 0 and t ≥ 0.
We now define a locally optimal controls π+ and C+ by taking, for times u between t and

T :

π+
u = −1{X+

u ≥0}

∂UX

∂x
∂2UX

∂x2

(t, x) (σT
u )−1Θu

and

C+
u = −1{X+

u ≥0}
∂ÛC

∂y

(
t,

∂UX

∂x
(t, x)

)
with corresponding wealth X+

u = Xπ+,C+

u . This investment/consumption strategy is admis-
sible thanks to the indicator function.

By equation (1) we have

0 ≥
∫ T

t

[
∂UX

∂t
(u, X+

u )− |Θu|2

2

(
∂UX

∂x

)2
∂2UX

∂x2

(t, x)1{X+
u ≥0}

(
2

∂UX

∂x
(u, X+

u )
∂UX

∂x
(t, x)

−
∂2UX

∂x2 (u, X+
u )

∂2UX

∂x2 (t, x)

)]
du

+

∫ T

t

(
UC(u, C+

u )− C+
u

∂UX

∂x
(t,X+

u )

)
du

Again, taking the limit T ↓ t we conclude that

∂UX

∂t
≤ 1

2
|Θt|2

(
∂UX

∂x

)2
∂2UX

∂x2

− ÛC ,

completing the proof.
(3) ⇒ (1) We need only check that the three conditions appearing in Theorem 3.1 hold.

But by the generalized Itô formula, we have

ÛX(t, y) = ÛX

(
T, y

Z∗
T

Z∗
t

)
+

∫ T

t

ÛC

(
u, y

Z∗
u

Z∗
t

)
du +

∫ T

t

∂ÛX

∂y

(
u, y

Z∗
u

Z∗
t

)
y
Z∗

u

Z∗
t

Θu · dWu

By the assumption that the process Θ is bounded and the assumed growth bound on the
utility functions (see Ekeland and Taflin [5]), the above stochastic integral is a martingale
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and the first condition of Theorem 3.1 follows on taking conditional expectations on both
sides. Now, the convexity and the assumed differentiability of ÛX(t, .) and ÛC(t, .) allow
us to differentiate the first condition of Theorem 3.1 with respect to y, and applying the
monotone convergence theorem yields the second condition.

Finally, applying again the generalized Itô formula, we get

∂ÛX

∂y
(t, y) =

∂ÛX

∂y

(
T, y

Z∗
T

Z∗
t

)
+

∫ T

t

∂ÛC

∂y

(
u, y

Z∗
u

Z∗
t

)
du

+

∫ T

t

∂2ÛX

∂y2

(
u, y

Z∗
u

Z∗
t

)
y
Z∗

u

Z∗
t

Θu · (dWu + Θu du).

proving the attainability condition of Theorem 3.1. �

Remark 3. From this theorem, we can construct many examples of forward utility pairs. For
instance, one can check that the pair

UX(t, x) =
1

1−R
(x1−Re

1
2
(1−R−1)At − 1)e−QAt

and

UC(t, x) =
1

1−R
(x1−Re

1
2
(1−R−1)At − 1)Q|Θt|2e−QAt

satisfy the nonlinear primal PDE, hence are a forward utility pair for R > 0 and Q > 0.
Since the dual PDE is linear, one can build futher examples by convex combinations of the
above solutions. Indeed, if

ÛX(t, y) =

∫
(0,∞)×[0,∞)

1

1− r
(1− e

1
2
r(1−r)Aty1−r)e−qAtν(dr, dq)

and

ÛC(t, y) =

∫
(0,∞)×[0,∞)

1

1− r
(1− e

1
2
r(1−r)Aty1−r)q|Θt|2e−qAtν(dr, dq)

for a finite measure ν with compact support, then UX , UC is a forward utility pair.

How much further can the idea in the above remark be taken? By making the substitution
z = log y − 1

2
At and letting H(t, z) = − ∂

∂y
Û(t, zeAt/2) we have

∂HX

∂t
+

1

2
|Θt|2

∂2HX

∂z2
= −HC .

Since y 7→ Û(t, y) is decreasing, we see that HX is positive and

∂HX

∂t
+

1

2
|Θt|2

∂2HX

∂z2
≤ 0.

That is to say, HX is, up to scaling, an excessive function for space-time Brownian motion.
Such functions have an integral representation in terms of extremal excessive functions. In
the case of space-time Brownian motion, these functions are known explicitly in terms of the
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Brownian transition kernel; see the chapter of Sieveking [17] from 1968 or the more recent
article of Janssen [8]. In particular, we find that

ÛX(t, y) =

∫ ∞

u=t

∫ ∞

z=−∞
ÛC(u, ye−

1
2
(Au−At)+

√
Au−Atz)

e−z2/2

√
2π

dz du

+

∫
(0,∞)

1− e
1
2
r(1−r)Aty1−r

1− r
ν(dr)

for a finite measure ν. Note that the second term appeared in [2] in the integral representation
of pure investment forward utilities. Just as an excessive function has a Riesz decomposition
as the sum of a potential and a harmonic function, we can interpret the above representation
to say that the convex conjugate of a forward utility of wealth is the sum of the conjugates
of a forward utility arising from an infinite horizon optimal consumption problem and a
pure investment problem. However, note that the left-hand side of the above equation is Ft-
measurable, implying that the right-hand side cannot be chosen arbitrarily. One choice that
satisfies the measurability conditions is given below. Let VX and VC be two deterministic
functions on [0,∞)× R satisfying the dual Inada conditions and

VX(t, y) =

∫ ∞

h=0

∫ ∞

z=−∞
VC(t + h, ye−

1
2
h+

√
hz)

e−z2/2

√
2π

dz dh

Then UX , UC is a forward utility pair where

ÛX(t, y, ω) = VX(At(ω), y) and ÛC(t, y, ω) = |Θt(ω)|2VC(At(ω), y)

Note that we have

ÛX(t, y) = E
[∫ ∞

t

ÛC

(
u, y

Z∗
u

Z∗
t

)
du|Ft

]
if the increasing process A and the Brownian motion W are independent, but the above
formula fails to hold in general.

From the proof of Theorem 4.3 we have the following ‘mutual fund theorem’:

Corollary 4.4. If UX , UX is a forward utility pair satisfying Assumption 4.2, then for every
(t, x) ∈ [0,∞)× (0,∞) the optimal strategy π∗ satisfies

Π∗
u = cu(σ

T
u )−1Θu

for u ≥ t, where cu is a positive scalar-valued random variable.

Finally we can refine Corollary 3.3 in the case of forward utilities satisfying the additional
smoothness assumption.

Corollary 4.5. If UX , UX is a forward utility pair satisfying Assumption 4.2, then the convex
conjugate function Û satisfies

ÛX(t, y) = E
[
ÛX

(
T, y

Z∗
T

Z∗
t

)
+

∫ T

t

ÛC

(
T, y

Z∗
u

Z∗
t

)
du
∣∣Ft

]
.
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