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Abstract. Recently, a notion of dynamically consistent utility functions has appeared in
the mathematical finance literature. In this paper, we call a function U : [0,∞)×R×Ω →
R ∪ {−∞} a forward utility if
(1) x 7→ U(t, x, ω) is increasing and concave,
(2) U(t, x) ≥ E[U(T,X)|Ft] for all attainable X, and
(3) there exists an attainable X∗ such that U(t, x) = E[U(T,X∗)|Ft]

Working in a fairly general semimartingale market, we present a complete characterization of
the forward utility functions in terms of their convex conjugate functions. In the case when
the forward utility is further assumed to be decreasing in time and the asset prices continuous
(though the market may be incomplete), we present an explicit integral representation of
their convex conjugate functions. As a corollary, we prove that a function u : R → R∪{−∞}
can be extended to a decreasing forward utility U with U(0, x, ω) = u(x) if and only if
z 7→ (u′)−1(ez) is the Laplace transform of a finite measure.

1. Introduction

Consider a market with d+1 assets. We assume that one asset has a strictly positive price
for all time, and that the prices of the other d assets, when discounted by this numéraire
asset, is modelled as a d-dimensional semimartingale (St)t≥0 defined on a probability space
(Ω,F , P) with a filtration (Ft)t≥0 satisfying the usual conditions and such that F0 is trivial.
For a given t ≥ 0, a positive Ft-measurable random variable Xt will be called a t-wealth,
as such random variables will model the wealth of an investor in this market. Given a t-
wealth Xt, an admissible trading strategy is a d-dimensional predictable S-integrable process
(Hu)u>t such that

Xt +

∫ T

t

Hu · dSu > 0 almost surely for all T ≥ t.

We say a T -wealth XT is attainable from the t-wealth Xt if there exists an admissible

trading strategy (Hu)u∈(t,T ] such that XT = Xt +
∫ T

t
Hu · dSu. Let Z be the set of positive

supermartingales (Zu)u≥0 such that Z0 = 1 and

E(ZT XT |Ft) ≤ ZtXt almost surely

for every 0 ≤ t ≤ T and every T -wealth XT attainable from the t-wealth Xt. We assume
that the set Z is not empty, implying that the market model is arbitrage-free.

We call a function U : [0,∞)× R× Ω → R ∪ {−∞} a random utility function iff

(1) x 7→ U(t, x, ω) is increasing, concave, and finite valued on (0,∞) for all (t, ω) ∈
[0,∞)× Ω,

Key words or phrases. forward utility, performance criteria, horizon-unbiased utility, minimal martingale
measure, space-time harmonic functions
* Corresponding author. PRELIMINARY VERSION: Please do not circulate.

1



(2) ω → U(t, x, ω) is Ft-measurable for all (t, x) ∈ [0,∞)× R,
(3) if the T -wealth XT is attainable from the t-wealth Xt for some 0 ≤ t ≤ T , then

E[U(T,XT )+|Ft] < ∞ almost surely.

Motivated by the papers of Musiela and Zariphopoulou [10] and Henderson and Hobson [4],
we will say that U is a forward utility iff

(1) if the T -wealth XT is attainable from the t-wealth Xt for some 0 ≤ t ≤ T then

U(t,Xt) ≥ E[U(T, XT )|Ft] almost surely,

(2) for each 0 ≤ t ≤ T and t-wealth Xt there exists an attainable T -wealth X∗
T such that

U(t,Xt) = E[U(T, X∗
T )|Ft] almost surely.

Remark 1. At this stage, the reader may be worried about measurability issues. However,
since U(t, ·, ω) is concave and finite valued on (0,∞), it is continuous. Now, if X is a
positive Ft-measurable random variable, then there exists a sequence of positive simple Ft-
measurable random variables (Xn)n such that Xn(ω) → X(ω) for each ω ∈ Ω and hence
U(t,Xn(ω), ω) → U(t,X(ω), ω). But if Xn is of the form

∑
j xj1Aj

where xj > 0 and

Aj ∈ Ft, then ω → U(t,Xn(ω), ω) =
∑

j U(t, xj, ω)1Aj
(ω) is Ft-measurable. Therefore,

ω → U(t,X(ω), ω) is also measurable.
Furthemore let us remark on the notion of conditional expectations appearing in the

definition of a random utility and forward utility. Recall that the conditional expectation
of a non-negative random variable X given a sub-sigma-field G can always be defined as
E(X|G) = supn E(X ∧ n|G). With this notion of conditional expectation, we have a condi-
tional monotone convergence theorem: If 0 ≤ Xn ↑ X then E(Xn|G) ↑ E(X|G).

For general random variables, the conditional expectation is defined by linearity. In par-
ticular, we let

E[U(T,XT )|Ft] = E[U(T,XT )+|Ft]− E[U(T, XT )−|Ft]

as usual. Note that condition (3) leaves open the possibility that the conditional expectation
E[U(T,XT )|Ft] takes the value −∞ with positive probability.

To demonstrate that the concept of a forward utility is not vacuous, we now exhibit a
large class of examples:

Example 1. Let u : R → R∪ {−∞} be increasing, concave, and finite-valued on (0,∞). Fix
a supermartingale Z ∈ Z, and a trading strategy H̄ admissible for the 0-wealth X̄0 = 1, and
suppose that

E(ZT X̄T |Ft) = ZtX̄t

for all 0 ≤ t ≤ T , where

X̄t = 1 +

∫ t

0

H̄u · dSu.

Now let

U(t, x, ω) = Zt(ω)X̄t(ω) u

(
x

X̄t(ω)

)
.
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We claim that U is a forward utility. Indeed, fix a t-wealth Xt and a T -wealth attainable
from Xt. Then by the conditional Jensen inequality

E[U(T,XT )|Ft] = E
[
ZT X̄T u

(
XT

X̄T

)
|Ft

]
≤ E[ZT X̄T |Ft]u

(
E[ZT XT |Ft]

E[ZT X̄T |Ft]

)
≤ ZtX̄t u

(
Xt

X̄t

)
= U(t,Xt).

Finally, note that X∗
T = XtX̄T /X̄t is attainable from Xt with the trading strategy H∗

u =
XtH̄u/X̄t, and the claim is proven.

We now give one possible motivation for the definition of forward utility. In the classi-
cal Merton problem of optimal investment without consumption, we are given the agent’s
initial wealth X0 > 0, investment horizon T > 0, and a (possibly random) utility function
U(T, ·), and we are asked to find the attainable X∗

T which maximizes the expected utility
of terminal wealth E[U(T, XT )]. A typical application of the Merton problem is in mod-
elling the decision making of an investor planning for retirement. There are some cases of
interest, however, in which the introduction of a terminal date seems rather artificial and
may not necessarily reflect the considerations of an agent. This is the case, for instance, if
we consider a fund manager whose aim is to make her fund’s money grow without having
any particular investment horizon. Indeed, for this application, one might like a random
utility function U with the following time-consistency property: if the strategy (H1

t )t∈(0,1]

maximizes E[U(1, X1)] then there exists a strategy (H2
t )t∈(0,2], with H1

t = H2
t for t ∈ (0, 1],

which maximizes E[U(2, X2)]. If U is a forward utility, then this time-consistency property
is ensured by Lemma 2.4 below.

In section 2 we give a complete characterization of forward utility functions in terms of
their convex conjugate functions. As an application, we arrive at a simple characterization
of forward utility functions in complete markets.

As the example above shows, the definition of forward utility does not impose very much
structure. Indeed, any increasing concave function u can serve as the initial indirect utility
u(x) = U(0, x, ω) and essentially any trading strategy H̄ can serve, up to scaling, as the
optimal strategy.

In order to impose more structure, we note that for each real x > 0, the process (U(t, x))t≥0

is a supermartingale. Therefore, in section 3 we then proceed to study the case when the
market prices are assumed continuous and the the forward utility function is assumed to be
almost surely decreasing in time. In this case things are quite different. In particular, we
find that all forward utilities, subject to some mild regularity conditions, are of the form
U(t, x, ω) = u(At(ω), x) where the increasing process (At)t≥0 depends only on the model
parameters and the deterministic function (τ, x) 7→ u(τ, x) is the concave dual u(τ, x) =
infy>0 v(τ, x) + xy of a function v of the form

v(τ, x) =

∫
(0,∞)

1

1− r
(1− yr−1er(1−r)τ/2)ν(dr)
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for a finite measure ν. In particular, the initial indirect utility u0(x) = U(0, x, ω) must be
such that z 7→ (u′0)

−1(ez) is the Laplace transform of a finite measure. Furthermore, the
optimal trading strategy of an investor maximizing E[U(T, XT )], where U is a decreasing
forward utility, is the same, up to a scalar multiple, as that of an investor maximizing
E[log(XT )]. These results complement the sufficient conditions found in the recent papers
of Musiela and Zariphopoulou [11, 12, 13] and of Henderson and Hobson [5].

2. A general characterization

2.1. Utility functions and their conjugates. To get started, we now introduce some
notation for utility functions and their convex conjugates which we will need in what follows.

Definition 2.1. Let U be the set of functions u : R → R ∪ {−∞} with the following
properties:

(1) u(x) > −∞ for all x > 0
(2) u is twice-continuously differentiable, increasing and strictly concave on (0,∞)
(3) limx↓0 u′(x) = ∞ and limx↑∞ u′(x) = 0.

Definition 2.2. Let V be the set of functions v : R → R∪{+∞} with the following properties:

(1) v(y) < ∞ for all y > 0
(2) v is twice-continuously differentiable, decreasing and strictly convex on (0,∞)
(3) limy↓0 v′(y) = −∞ and limy↑∞ v′(y) = 0.

We use the notation û to denote convex conjugate function of u defined by

û(y) = sup
x>0

u(x)− xy.

It is easy to see that if u ∈ U then the convex conjugate function û ∈ V . There should be no
confusion when theˆnotation is used for functions of more than one argument, as the convex
conjugation is taken with respect to the wealth variable.

Similarly, we use the notation

v̌(x) = inf
y>0

v(y) + xy

so that if v ∈ V then v̌ ∈ U . Furthermore, the operatorsˆandˇare inverses in that

ˇ̂u = u and ˆ̌v = v

for functions in U and V respectively.
Note that for all x, y > 0 we have Fenchel’s inequality:

u(x) ≤ û(y) + xy.

The case of equality in the above inequality has three equivalent formulations:

(1) y0 = u′(x0),
(2) x0 = −û′(y0), and
(3) u(x0) = û(y0) + x0y0.

4



2.2. The main results. We now present the main characterization theorem for forward
utility functions. To simplify the formulae, we use the notation U ′ for ∂

∂x
U and Û ′ for ∂

∂y
Û .

Theorem 2.3. Let U be a random utility function such that U(t, ·, ω) ∈ U for all (t, ω) ∈
[0,∞) × Ω. If U has the property that for all t ≥ 0 and Ft-measurable positive Yt, there
exists a Z ∈ Z such that for all T ≥ t the following hold true:

(1) E
[
Û
(
T, Yt

ZT

Zt

) ∣∣Ft

]
= Û(t, Yt),

(2) E
[

ZT

Zt
Û ′
(
T, Yt

ZT

Zt

) ∣∣Ft

]
= Û ′(t, Yt), and

(3) the T -wealth −Û ′
(
T, Yt

ZT

Zt

)
is attainable from the t-wealth −Û ′(t, Yt).

then U is a forward utility.
Suppose U is a forward utility with the property that for all 0 ≤ t ≤ T and t-wealth Xt,

the corresponding X∗
T is such that

E[U(T, X∗
T /2)−|Ft] < ∞ almost surely.

Then for all Ft-measurable positive Yt, there exists a Z ∈ Z such that properties (1), (2),
and (3) hold true.

We begin by proving a lemma, which shows that if U is a forward utility, then the optimal
wealth process is independent of the horizon T in a sense to be made precise.

Lemma 2.4. Let U be a forward utility. Then, for any fixed t ≥ 0 and t-wealth Xt, there
exists an admissible trading strategy (H∗

u)u>t such that

U(u, X∗
u) = E [U(T,X∗

T )|Fu]

for all t ≤ u ≤ T , where X∗
u = Xt +

∫ u

t
H∗

s · dSs.

Proof Lemma 2.4. Fix 0 ≤ t ≤ u ≤ T and t-wealth Xt. By assumption, there exists admis-
sible strategy H∗, possibly depending on T , such that

U(t,Xt) = E [U(T,X∗
T )|Ft] .

Notice by the definition of forward utility

(*) E [U(T,X∗
T )|Fu] ≤ U(u, X∗

u)

as X∗
T is attainable from X∗

u.
Similarly, since since X∗

u is attainable from Xt, we have by the tower property of conditional
expectations

E [U(u, X∗
u)|Ft] ≤ U(t,Xt)

= E [U(T,X∗
T )|Ft]

= E {E [U(T,X∗
T )|Fu]Ft}

≤ E [U(u, X∗
u)|Ft] .

Hence, inequality (*) must hold with almost sure equality, proving the claim. �
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Proof of Theorem 2.3. Fix t ≥ 0 and a t-wealth Xt. Let Yt = U ′(t,Xt) and let Z ∈ Z be the
associated supermartingale. If XT is attainable from Xt then

E[U(T,XT )|Ft] ≤ E
[
Û

(
T, Yt

ZT

Zt

)
+ Yt

ZT

Zt

XT

∣∣Ft

]
≤ Û(t, Yt) + YtXt

= U(t,Xt).

Finally, we set

X∗
T = −Û ′

(
T, Yt

ZT

Zt

)
,

which is attainable by assumption. Substituting X∗
T for XT above, we see that the first line

is actually an equality by Fenchel’s inequality, and since E[X∗
T ZT |Ft] = XtZt by assumption,

the second line is also an equality. Therefore, U is a forward utility.

Now, conversely, suppose U is a forward utility function. Fix t ≥ 0 and Ft-measurable
positive Yt, let Xt = −Û ′(t, Yt), and let (X∗

u)u≥t be the wealth process starting from X∗
t = Xt

such that

U(u, X∗
u) = E[U(T,X∗

T )|Fu]

for all t ≤ u ≤ T . Pick an arbitrary Z̄ ∈ Z and Zs = Z̄s for all 0 ≤ s ≤ t and let

Zu =
U ′(u, X∗

u)Zt

Yt

for u ≥ t. Notice that by construction the random variable−Û ′
(
T, Yt

ZT

Zt

)
= X∗

T is attainable

from Xt.
Now, we must show that Z as constructed is in Z. Fix t ≤ u < T and a u-wealth Xu, and

let XT be attainable from Xu. Then εXT + X∗
T is attainable from εXu + X∗

u for all ε > 0.
Hence

E[U(T, εXT + X∗
T )− U(T,X∗

T )|Fu] ≤ U(u, εXu + X∗
u)− U(u, X∗

u).

Since

0 <
U(T, εXT + X∗

T )− U(T,X∗
T )

ε
↗ U ′(T, X∗

T )XT

as ε ↓ 0 because U is increasing and concave, the conditional monotone convergence theorem
implies

E[U ′(T,X∗
T )XT |Fu] ≤ U ′(u, X∗

u)Xu.

Therefore Z ∈ Z as claimed, and thus condition (3) is verified.
Now we let Xu = X∗

u in the above argument. Note that (1 + ε)X∗
T is attainable from

(1 + ε)X∗
u for any ε > −1. Since

2[U(T,X∗
T )− U(T,X∗

T /2)] ≥ U(T, (1 + ε)X∗
T )− U(T, X∗

T )

ε
↘ U ′(T,X∗

T )X∗
T

as ε ↑ 0, the conditional monotone convergence theorem implies

E[U ′(T, X∗
T )X∗

T |Fu] ≥ U ′(u, X∗
u)X∗

u.

Therefore, condition (2) is verified.
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Finally

E
[
Û

(
T, Yt

ZT

Zt

) ∣∣Ft

]
= E

[
U(T, X∗

T )− Yt
ZT

Zt

X∗
T

∣∣Fu

]
= U(t,Xt)− YtXt

= Û (t, Yt)

by the condition of equality in Fenchel’s inequality. This calculation verifies condition (1)
and we are done. �

In a complete market, one can describe all forward utilities as follows:

Corollary 2.5. Suppose that the market is complete in the sense that Z contains a single
element Z and every T -wealth XT is attainable from the t-wealth Xt = E(ZT XT |Ft)/Zt,
whenever Xt is finite-valued.

Suppose U is a random utility with U(t, ·, ω) ∈ U . Then the following are equivalent:

(1) U is a forward utility
(2) (V (t, y))t≥0 is a family of generalized1 martingales such that V (t, ·, ω) ∈ V and

U(t, x, ω) = V̌ (t, Zt(ω)x, ω).

Proof. (1) ⇒ (2) Suppose U is a forward utility, and let V (t, y, ω) = Û(t, y/Zt(ω), ω) for
each y > 0. Condition (1) of Theorem 2.3, together with the fact that Z is unique, imply
that (V (t, y))t≥0 is a family of martingales valued in V .

(2) ⇒ (1) Now given the family (V (t, y))t≥0 of martingales, note that for all y > 0 and
T ≥ 0

0 >
V (T, y + ε)− V (T, y)

ε
↘ V ′(T, y)

as ε ↓ 0, by the convexity of y 7→ V (T, y), so we have

E[V ′(T, y)|Ft] = lim
ε↓0

E
[
V (T, y + ε)− V (T, y)

ε
|Ft

]
= lim

ε↓0

V (t, y + ε)− V (T, y)

ε

= V ′(t, y)

by the conditional monotone convergence theorem.
Let U(t, x, ω) = V̌ (t, Zt(ω)x, ω) so that Û(t, y) = V (t, y/Zt) and Û ′(t, y) = V (t, y/Zt)/Zt.

Then for any Ft-measurable positive Yt, we have

E
[
Û

(
T, Yt

ZT

Zt

) ∣∣Ft

]
= E

[
V

(
T,

Yt

Zt

) ∣∣Ft

]
= V

(
t,

Yt

Zt

)
= Û(t, Yt)

1A generalized martingale M is such that E(Mt|Fs) = Ms in the generalized sense for all 0 ≤ s ≤ t. In
particular, the integrability condition E(|Mt − Ms|) < ∞ is replaced with E(|Mt − Ms|

∣∣Fs) < ∞ almost
surely.
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Similarly,

E
[
ZT

Zt

Û ′
(

T, Yt
ZT

Zt

) ∣∣Ft

]
= E

[
1

Zt

V ′
(

T,
Yt

Zt

) ∣∣Ft

]
=

1

Zt

V ′
(

t,
Yt

Zt

)
= Û ′(t, Yt).

Finally, −Û ′
(
T, Yt

ZT

Zt

)
is attainable from the t-wealth −Û ′(t, Yt), since the market is com-

plete, and we are done by Theorem 2.3. �

As a final application of Theorem 2.3, we can consider the dual problem directly:

Corollary 2.6. If U is a forward utility satisfying with U(t, ·, ω) ∈ U , then the convex

conjugate function Û satisfies

Û(t, y) ≤ E
[
Û

(
y
ZT

Zt

, T

) ∣∣Ft

]
for any Z ∈ Z.

Remark 2. Notice that the forward utility property implies

U(t,Xt) = ess sup E[U(T,XT )|Ft]

where the essential supremum is taken over all XT attainable from Xt. Since the completion
of this paper, Zitkovic [17] has recently taken the above property as the definition of forward
utility, by removing the assumption that the optimal wealth X∗

T exists. He has found that
U is a forward utility if and only if

Û(t, Yt) = ess inf
Z∈Z

E
[
Û

(
T, Yt

ZT

Zt

)
|Ft

]
.

3. Decreasing forward utilities

In this section, we explore the consequence of an additional assumption that t 7→ U(t, x, ω)
is decreasing. It turns out that this assumption greatly restricts the possibilities, and in fact
all decreasing forward utility functions can be explicitly characterized.

3.1. Motivation and assumptions. To motivate this study, we note that the strategy of
investing no money in the risky assets is admissible for each x > 0 and t ≥ 0, we have

E[U(T, x)|Ft] ≤ U(t, x),

and hence that the process (U(t, x))t≥0 is a super-martingale for all x > 0. In particular, if
U(t, x) somehow measures the happiness of the investor who has x units of the numéraire
asset at time t, then the fact that (U(t, x))t≥0 is a super-martingale implies that the investor
is less happy on average if he does not invest. In what follows, we essentially replace the
phrase on average with almost surely and find that the consequences are substantial.

We now introduce a set of time dependent utility functions that will be needed in what
follows. In this section we use a subscript notation to denote partial derivatives, so that
ux = ∂u

∂x
, etc.

8



Definition 3.1. The set U◦ consists of functions u : [0,∞)× R → R ∪ {−∞} such that

(1) u(t, ·) ∈ U , and
(2) the partial derivatives ut, ux, uxx, uxxx, and utx = uxt are defined and continuous on

[0,∞)× (0,∞).

Note that if U is a forward utility function such that U(·, ·, ω) ∈ U◦ then the Doob–Meyer
decomposition

dU(t, x) = Ut(t, x)dt

holds with Ut(t, x) ≤ 0 almost surely.

3.2. Further assumptions on the market model. For the rest of this section, we restrict
the class of market models to those with continuous price trajectories. We will assume that
the prices have the decomposition

dSi
t = Si

t

(
µi

t dt +
d∑

j=1

σi,j
t dW j

t

)
for i ∈ {1, . . . , d} and previsible processes (µt)t≥0 and (σt)t≥0 and k-dimensional Brownian
motion (Wt)t≥0. It is important to note that we do not necessarily suppose that the filtration
(Ft)t≥0 is generated by the Brownian motion, and hence the market may be incomplete.

For each (t, ω) we let Θt(ω) be the k-dimensional vector of smallest Euclidean norm such
that

σt(ω)Θt(ω) = µt(ω).

Note that the vector Θt(ω) is in the orthogonal complement of the kernel of the matrix
σt(ω); in other words, Θt(ω) is in the range of the transpose matrix σt(ω)T. Without loss of
generality we assume (Θt)t≥0 is previsible.

We let

Z∗
t = exp

(
−
∫ t

0

Θu · dWu −
1

2

∫ t

0

|Θu|2du

)
and assume that E(Z∗

t ) = 1 for all t ≥ 0 so that (Z∗)t≥0 is the density process of the minimal
martingale measure. Of course, because of the possibility of incompleteness, the set Z may
contain plenty of other supermartingales.

To prove the main result of this section, we must make the following assumptions on the
market.

Assumption 3.2. The market price of risk process (Θt)t≥0 is continuous, bounded2 uniformly
in (t, ω) ∈ [0,∞)× Ω, and satisfies the non-degeneracy conditions

(1) Θt 6= 0 almost surely for all t ≥ 0, and
(2)

∫∞
0
|Θu|2 du = ∞ almost surely.

Assumption 3.2 will be in force throughout the remainder of this section.
In what follows, we will use the notation

At =

∫ t

0

|Θs|2 ds

2The assumption of boundedness is sufficient, but may be too strong in some cases. In fact, the assumption
we need for our result is E[E

(
k
∫ t

0
Θs · dWs

)
] = 1 for all real k ≥ −1 and t ≥ 0.
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to denote the mean-variance tradeoff process. We will also use the notation E(·) for the
Doléans–Dade stochastic exponential, so that, for instance,

Z∗
t = E

(
−
∫ t

0

Θu · dWu

)
.

Finally, it will be neater to state results in terms of the amount invested in a particular
stock, rather than the number of units. That is, if H is an admissible trading strategy, we
can define a new process π by

πi
t = Si

tH
i
t .

We will also call π a trading strategy whenever no confusion is possible.

3.3. The main results. We are now ready to state and prove the main result of this section.

Theorem 3.3. Let U be a random utility such that U(·, ·, ω) ∈ U◦. Then the following are
equivalent:

(1) The function U is a forward utility.
(2) There exists a constant C ∈ R and a finite Borel measure ν, supported on the interval

[0,∞) with ν{0} = 0 and everywhere finite Laplace transform, such that

(1) Û(t, y, ω) =

∫
(0,∞)

1

1− r

(
1− y1−re

r(1−r)
2

At(ω)
)

ν(dr) + C

almost surely.

We note that the sufficiency of this integral representation was shown by Henderson and
Hobson [5] in the case that the log asset price are geometric Brownian motion. Before we
prove our main theorem, let us state the following interesting corollaries:

Corollary 3.4. Let u : (0,∞) → R be a utility function. There exists a forward utility U
such that U(·, ·, ω) ∈ U◦ and such that U(0, x, ω) = u(x) if and only if there exist a finite
measure ν such that

(u′)−1(y) =

∫
(0,∞)

y−rν(dr),

in which case, the function U is unique and is defined by equation (1).

Remark 3. This corollary is in stark contract to Example 1 and indicates how substantial
the assumption that the forward utility function is decreasing is.

Corollary 3.5. If U is a forward utility with U(·, ·, ω) ∈ U◦, then for every t ≥ 0 and
t-wealth Xt, the optimal trading strategy H∗ is of the form

σT
u π∗u = cuΘu

for u ≥ t, where cu is a positive scalar-valued random variable.

Remark 4. Corollary 3.5 is a mutual fund theorem with the implication that every investor
employing a decreasing forward utility function to decide on optimal asset allocation will
choose a positive multiple of the myopic portfolio of a traditional Merton style investor with
logarithmic utility. Compare this result with the forward utility constructed in Example 1.

Finally we can refine Corollary 2.6 in the case of decreasing forward utilities.
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Corollary 3.6. If U a decreasing forward utility with U(·, ·, ω) ∈ U◦, then the convex con-

jugate function Û satisfies

Û(t, y) = E
[
Û

(
T, y

Z∗
T

Z∗
t

) ∣∣Ft

]
.

Remark 5. Corollary 3.6 says that in our particular setup the dual problem admits an
optimizer which is the density process of the Föllmer–Schweizer [3] minimal martingale
measure. See the paper Kramkov and Schachermayer [7] for the general duality theory for
non-random utility functions when the wealth process is constrained to be positive.

Before proving Theorem 3.3, we exhibit some concrete examples of forward utilities. These
examples are not surprising, as they are essentially the most common utility functions found
in the literature.

Example 2 (Logarithmic Utility). We begin with the simple case where ν = δ1 is the Dirac
point-mass concentrated at 1. This yields

U
(
t, x
)

= log(x)− 1

2
At

Example 3 (CRRA Utility). Now take R > 0, R 6= 1 and ν = δR−1 , the Dirac point-mass at
R−1. This choice yields

U
(
t, x
)

=
1

1−R
x1−R e

(1−R−1)
2

At

Example 4 (Time varying relative risk-aversion). Suppose we look for forward utility func-
tions of the form

U(t, x) = xγtCt

for processes (γt)t≥0 and (Ct)t≥0 with differentiable sample paths. Then (t, ω) 7→ γt(ω) is
constant, and Ct is as in Example 3.

Proof of Theorem 3.3. (1)⇒(2)
We first proof that a decreasing forward utility function U satisfies the following non-linear

random (random) partial differential equation:

Ut(t, x) =
1

2
|Θt|2

U2
x(t, x)

Uxx(t, x)
a.s. for all x > 0 and t ≥ 0.

Indeed, fix x > 0 and t ≥ 0. Let π be an admissible trading strategy, and let Xu =
x +

∫ u

t
πs · (σsdWs + Θsds) be the associated discounted wealth process.

By assumption, for each x > 0, the semimartingale (U(t, x))t≥0 has no local-martingale
part. Hence, by the generalized Itô formula (see Theorem 3.3.1 of Kunita’s book [8], for
instance), we have the decomposition

U(T,XT ) = U(t, x) +

∫ T

t

Ux(u, Xu)σ
T
u πu · dWu

+

∫ T

t

(
Ut(u, Xu) + Ux(u, Xu)σ

T
u πu ·Θu +

1

2
Uxx(u, Xu)|σT

u πu|2
)

du.

11



Since
(
U(u, Xu)

)
u≥t

is a supermartingale, we have

(2)

∫ T

t

(
Ut(u, Xu) + Ux(u, Xu)σ

T
u πu ·Θu +

1

2
Uxx(u, Xu)|σT

u πu|2
)

du ≤ 0 a.s.

with equality for the optimal control π = π∗.
Consider the admissible strategy π+ with corresponding wealth process X+

u defined by

π+
u = −1{X+

u ≥x/2}
Ux(t, x)

Uxx(t, x)
(σT

u )−1Θu.

Using inequality (2), we have

0 ≥
∫ T

t

(
Ut(u, X+

u ) + Ux(u, X+
u )σT

u π+
u ·Θu +

1

2
Uxx(u, X+

u )|σT
u π+

u |2
)

du

=

∫ T

t

[
Ut(u, X+

u )− |Θu|2

2

Ux(t, x)2

Uxx(t, x)
1{X+

u ≥0}

(
2
Ux(u, X+

u )

Ux(t, x)
− Uxx(u, X+

u )

Uxx(t, x)

)]
du

By the assumed continuity of the partial derivatives of the forward utility, we may let T ↓ t
to conclude that the inequality

(3) Ut ≤
1

2
|Θt|2

U2
x

Uxx

holds almost surely for all (x, t) ∈ (0,∞)× [0,∞).
Again, fixing x > 0 and t ≥ 0, we appeal to inequality (2), but in the case of equality, so

that

0 ≥
∫ T

t

(
Ut −

1

2
|Θu|2

U2
x

Uxx

)
du

= −
∫ T

t

(
1

2
Uxx|σT

u π∗u|2 + Uxσ
T
u π∗u ·Θu +

1

2
|Θu|2

U2
x

Uxx

)
du

=

∫ T

t

−1

2Uxx

∣∣UxΘu + Uxxσ
T
u π∗u

∣∣2 du

≥ 0

where the partial derivatives of U are evaluated at (u, X∗
u) in the integrals, proving the claim.

Now, it is easy to verify by implicit differentiation that the convex conjugate Û satisfies a
linear PDE:

Ût +
|Θt|2

2
y2Ûyy.

We can solve this PDE by defining a new function H : [0,∞) × R × Ω → (0,∞) implicitly
by

H

(
1

2
At(ω), log(y)− 1

2
At(ω), ω

)
= −Ûy(t, y, ω).

Note that by Assumption 3.2 the function H is well-defined for almost all ω ∈ Ω. Making
the substitution τ = 1

2
At and z = log(y)− τ , we have H solves the backward heat equation

Hτ + Hzz = 0 a.s.
12



Solutions to the backward heat equation are called often space-time harmonic functions.
Since the function H is strictly positive, we may use the result of Widder [15, 16] from 1963
characterizing positive space-time harmonic functions:

Theorem 3.7 (Widder). Let h : (0,∞)× R → (0,∞) satisfy

hτ + hzz = 0.

Then there exists a positive Borel measure ν on R such that

h(t, x) =

∫
R

e−rx−r2tν(dr).

Hence for almost all ω ∈ Ω, there exists a measure ν(·, ω) such that

Ûy(y, t, ω) = −
∫

R
y−re

r(1−r)
2

At(ω)ν(dr, ω).

But since F0 was assumed trivial, the random variables Ûy(0, y) are almost surely constant

for each y > 0. Since y 7→ Ûy(0, y, ω) is continuous, there exists an almost sure event

Ω0 such that ω 7→ Ûy(0, ·, ω) is constant for each ω ∈ Ω0, and hence we may take ν to
be constant since Laplace transforms characterize measures. Finally, by the dual Inada
conditions limy↓0 Ûy(y, t, ω) = −∞ and limy↑∞ Ûy(y, t, ω) = 0 we can conclude that ν is
supported on the interval [0,∞) with ν{0} = 0.

(2) ⇒ (1) Now to prove the converse. Let ν be a finite measure supported on the interval
[0,∞) with ν{0} = 0 and everywhere finite Laplace transform, and let V : (0,∞)× [0,∞)×
Ω → (0,∞) be defined by

V (t, y) =

∫
(0,∞)

1

1− r

(
1− y1−re

r(1−r)
2

At

)
ν(dr).

Note that y 7→ V (y, t, ω) is strictly decreasing, strictly convex, and t 7→ V (t, y, ω) is decreas-
ing. We need only show that U = V̌ is a forward utility.

First note that by the assumption that (Θt)t≥0 is bounded (or see footnote 3.2) and the

conditional Fubini theorem, we can check that both
(
V
(
u, yZ∗u

Z∗t

))
u≥t

and
(

Z∗u
Z∗t

Vy

(
u, yZ∗u

Z∗t

))
u≥t

are martingales. Finally, we can find an admissible portfolio π such that

XT =

∫
(0,∞)

y−rE
(

r

∫ T

t

Θs · (Θsds + dWs)

)
ν(dr) = −Vy

(
T, y

Z∗
T

Z∗
t

)
is attainable from x = −Vy(t, y). Hence the conclusion follows from Theorem 2.3.

�

Remark 6. After a preliminary version of this paper was written, we discovered that Musiela

and Zariphopoulou [12] have also employed Widder’s theorem to solve the PDE ut = u2
x

2uxx
.

These authors in [13] have also employed the generalized Itô formula to show that any
solution to a certain stochastic partial differential equation is a forward utility.
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