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1 Introduction

We consider the problem of optimal portfolio choice when the traded
instruments are the set of zero-coupon bonds. In particular, we fix a util-
ity function U and a planning horizon T > 0, and consider the functional
J(φ) = EP U(Xφ

T) where Xφ

T is the accumulated wealth at time T generated by
the self-financing trading strategy φ. Our goal is to characterize the strategy that
maximizes J.

This type of utility maximization problem has a long history in financial eco-
nomics. A seminal paper of Merton (13) from 1969 provides a solution in the
case where the investor can trade continuously in a finite set of stocks and the
bank account. In the bond market setting, however, the problem of optimal
portfolio choice presents new challenges.

Indeed, there are bonds of so many maturities available to trade that many
models assume that there exists a continuum of bonds indexed by their maturity
date. Let P(t, T) denote the price at time t of a zero-coupon bond which is worth
one unit of money at the maturity T, where T ≥ t. In the Heath–Jarrow–Morton
(HJM) modeling framework proposed in (10), the price process (P(t, T))t∈[0,T]
is an Itô process for each T ≥ 0. We will study the utility maximization problem
within the HJM framework.

In the original HJM framework, each of the price processes (P(t, T))t∈[0,T] is
driven by the same finite-dimensional Wiener process. This modeling assump-
tion has some shortcomings. For example, in the context of such models, there
are typically many strategies which hedge the same claim, but most of these
hedging strategies are rather unnatural and probably would never be imple-
mented by a bond trader. See (3) for a discussion of this point. Citing such
concerns, as well as the need for models with greater flexibility which can be
parsimoniously parametrized, the original HJM framework has been general-
ized by several authors. For instance, Goldstein (8), Kennedy (12), and Santa-
Clara and Sornette (16) have proposed various HJM-type random field models.
In such models the bond price processes typically satisfy stochastic differential
equations driven by an infinite-dimensional Wiener process. HJM type models
with discountinuous bond price sample paths have also been proposed, but we
do not address this generalization here.

It is important to note that models driven by an infinite-dimensional Wiener
process may be not complete in the usual sense: there typically exist contingent
claims that cannot be exactly replicated by a self-financing strategy, even if the
martingale measure is unique, and even if the notion of strategy is generalized
to allow portfolios of bonds with an infinite number of maturities. The cause of
this new type of incompleteness is that when the prices are driven by an infi-
nite-dimensional Wiener process, the volatility cannot be bounded away from
zero. This lack of completeness in the presence of a unique martingale measure,
though in a slightly different context, has led to the introduction by Björk et al.
(2) of the notion of approximate completeness. The approximate completeness
of bond market models driven by an infinite-dimensional Wiener process has
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been studied by De Donno and Pratelli (6) and Taflin (18) where the portfolios
that investors are allowed to buy correspond to points in the dual of a Banach
space of bond price curves.

The problem of optimal portfolio choice in the bond market has been stud-
ied recently by Ekeland and Taflin (7). They work in an HJM framework and
prove the existence of an optimal portfolio in two cases: when the driving
Wiener process is finite-dimensional and when the Wiener process is infinite-
dimensional but the market price of risk is deterministic. Furthermore, they
give a representation of the optimal portfolio as a sum of two mutual funds.
In this article we build upon the work of Ekeland and Taflin by studying the
Merton problem in the case when the driving Wiener process is infinite-dimen-
sional and the bond prices are Markovian. Using the Clark–Ocone formula
and convex duality, we give sufficient conditions for the existence of an opti-
mal trading strategy. Furthermore, we prove that the optimal portfolio natu-
rally decomposes as a sum of three mutual funds. The first fund is universal
in the sense that each investor in the bond market invests a portion of her
wealth in this portfolio, independently of the details of her utility function
and planning horizon. The second fund consists of the investor’s hedge against
fluctations in the market price of risk. This second fund does not appear in
Ekeland and Taflin’s decomposition since the market price of risk is assumed
deterministic. Lastly, the third fund comes from the self-financing constraint
and hedges against the stochastic discount factor. Because we are maximizing
expected utility of wealth, rather than of discounted wealth, this third fund
is slightly different than the fund that appears in (7). Under natural condi-
tions on the bond price volatilities and market price of risk, we show that at
time t ∈ [0, T], this third portfolio consists of bonds with maturities in the
interval [t, T].

Finally, we examine in detail the optimal portfolio for a class of Gaussian
random field models proposed by Kennedy (12) and studied by Goldstein
(8) and by Santa-Clara and Sornette (16). We assume that the market price
of risk is deterministic so that we may focus our attention on the first fund
of the decomposition. We show that the optimal portfolio in this case can
be identified with the discontinuities of a certain function of the market
parameters.

The outline of the paper is as follows. In Sect. 2 we recall the various notions
that arise in the study of bond markets, including the HJM framework and
the Musiela notation. In Sect. 3 we specify a general Markovian HJM model
of the infinite-dimensional dynamics of the bond prices. In Sect. 4 we intro-
duce the various notions of strategies needed in the context of this model. In
Sect. 5 we present our main results: we solve a Merton utility maximization
problem and analyze the optimal strategy. In Sect. 6, we exhibit a nontrivial
example of an HJM model which satisfies the conditions of Theorem 5.3 and
explicitly construct the optimal portfolio. In Sect. 7, we state some results from
Malliavin calculus, including the Clark–Ocone formula, which are used in the
proofs of the main theorems. In Sect. 8 we present the proofs of the main
results.
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2 The HJM framework

In this section we recall the HJM framework, proposed by Heath et al. (10),
for modeling the bond market. We include this section for motivation and
context; our precise modeling assumptions are spelled out in Sect. 3. We
also use the notation introduced here to describe an example HJM model
in Sect. 6.

Using the parametrization popularized by Musiela (14), let ft(x) denote the
forward rate at time t for time to maturity x. The forward rates are related to
the price P(t, T) at time t of a zero-coupon bond with maturity date T = t + x
by the formula

ft(x) = − ∂

∂x
log P(t, t + x)

whenever the derivative exists. In this framework, the risk-neutral dynamics
formally satisfy the stochastic partial differential equation

dft(x) =
(
∂

∂x
ft(x)+ at(x)

)
dt + bt(x)dWP

t

where the process (WP
t )t≥0 is a Wiener process for the historical measure P. The

drift is given by the famous HJM no-arbitrage condition

at(x) = bt(x)λt + bt(x)

x∫
0

bt(s)ds

where λt is the market price of risk. The random variables bt(x), λt, and WP
t are

allowed to be vector-valued, in which case products are interpreted as standard
Euclidean inner products.

Let Bt = exp
(∫ t

0 rs ds
)

denote the value at time t of the bank account with

initial deposit one dollar, where the short rate is given by rt = ft(0). The dis-
counted bond price P̃t(x) = B−1

t P(t, t + x) in Musiela notation formally satisfies
the stochastic partial differential equation

dP̃t(x) =

 ∂

∂x
P̃t(x)− P̃t(x)

x∫
0

bt(s)ds λt


dt − P̃t(x)

x∫
0

bt(s)ds dWP
t .

Letting σt(x) = −P̃t(x)
∫ x

0 bt(s)ds and rewriting the above SPDE in integral
form, we see that the discounted bond prices satisfy

P̃t(x) = P̃0(t + x)+
t∫

0

σs(x + t − s)λsds +
t∫

0

σs(x + t − s)dWP
s (2.1)

with initial data P̃0(·) = P(0, ·). It is in this form that we specify the HJM model
in the next section.
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3 The model specification

In this section, we specify a general Markovian HJM model of the discounted
bond prices. Following (7), we take the discounted bond price curve P̃t = P̃t(·)
to be the state variable. We will interpret Eq. (2.1) as an evolution equation in
a space F of real-valued functions on R+. We now list the relevant assumptions
on F.

Assumption 3.1 1. The real, infinite-dimensional vector space F is equipped
with a norm ‖ · ‖F for which it becomes a separable Banach space. The
topological dual space of F is denoted F∗. Furthermore, the norm obeys
the parallelogram law so that F is in fact a Hilbert space. We refrain from
introducing a separate notation for the induced inner product.

2. The elements of F are continuous, real-valued functions on R+. In particu-
lar, for every x ∈ R+, the evaluation functional

δx(f ) = f (x)

is well-defined as a continuous functional on F; that is, δx is an element of
F∗ for all x ≥ 0.

3. The semigroup (St)t≥0 is strongly continuous in F, where the left shift oper-
ator St is defined by

(Stf )(x) = f (t + x).

Typical examples of spaces which satisfy Assumption 3.1 are Sobolev spaces.
See (4) or (7) for a detailed discussion. Also see Sect. 6 for an example.

We assume that there is exactly one martingale measure Q equivalent to P;
that is, the market is approximately complete. We therefore specify the model
directly under this measure. We will reserve the expectation notation E for
expectation under Q, while expectation under P will be denoted EP.

We fix a probability space (�, F , Q) and a real, separable, infinite-
dimensional Hilbert space G with inner product 〈· , ·〉G. We let (Wt)t≥0 be a
Wiener process defined cylindrically on G, and let (Ft)t≥0 be the augmentation
of the filtration it generates. Without loss of generality, one could take G = �2

as in (7) as this amounts to choosing an orthonormal basis of G and working
with the coordinates in this basis. We prefer to keep G unspecified. We will
identify the dual G∗ with G without comment.

We now formulate a model of the risk-neutral discounted price dynamics. In
what follows, we let

F+ = {f ∈ F : f (x) > 0}
be the positive cone of F. Also, the notation LHS(G, F) denotes the space of
Hilbert–Schmidt operators from G into F with norm

‖A‖LHS(G,F) =
(∑

n

‖Agn‖2
F

)1/2

for any orthonormal basis (gn)n of G.
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Assumption 3.2 Let σ(·, ·) : R+ × F+ → LHS(G, F) be such that σ(·, f ) is con-
tinuous for all f ∈ F+ and such that σ(t, ·) is globally Lipschitz, uniformly in
t ≥ 0.

Additionally, we assume that for all f ∈ F+ and t ≥ 0 we have

ran(σ (t, f )) = {g ∈ F : g(0) = 0} (3.1)

or equivalently

ker(σ (t, f )∗) = span{δ0} ⊂ F∗

and

‖σ(t, f )∗δx‖G ≤ Cf (x) (3.2)

for some C > 0.

Definition 3.3 We fix an initial discounted bond price curve P̃0 ∈ F+ once and
for all and define the discounted bond price process (P̃t)t≥0 as the continuous
solution to the evolution equation

P̃t = StP̃0 +
t∫

0

St−sσ(s, P̃s)dWs. (3.3)

We use the abbreviation σt = σ(t, P̃t).

That the discounted bond price process is well-defined follows from the
standard existence and uniqueness theorem for mild solutions of the evolution
equation (3.3). See for instance Theorem 7.4 of (5) for a proof.

Remark 3.4 The dynamics of the discounted bond price in this model are genu-
inely infinite-dimensional in the following sense: for every finite set of maturity
dates T1, . . . , Td, the submarket consisting of the bank account and those bonds
with discounted prices (P̃t(T1 − t), . . . , P̃t(Td − t)) is incomplete. Note that this
property crucially depends on the infinite dimensionality of the state space F,
as well as the infinite dimensionality of the driving Wiener process. Indeed, the
rank of the martingale operator σt is infinite.

Notice that our model is not a finite-factor model, where a bond price model is
said to be a finite-factor model if there exist a deterministic function g : Rn → F
and an n-dimensional diffusion (Zt)t≥0 such that P̃t = g(Zt) almost surely for all
t ≥ 0. However, the condition that a model be genuinely infinite-dimensional
in the sense described above is much stronger than not being finite-factor. In-
deed, there exist infinite-factor bond price models driven by a one-dimensional
Wiener process. A discussion of this phenomenon of hypoellepticity in HJM
models can be found in (1).

We will make use of the bounds contained in the following proposition, stated
without proof:
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Proposition 3.5 For every t ≥ 0 and x ≥ 0, the random variable P̃t(x) is strictly
positive and

EP̃t(x)p < +∞
for all real p.

The above proposition allows us to define the bank account by the formula

Bt = P̃t(0)−1.

3.1 The market price of risk

We have specified the dynamics of the discounted bond prices under the risk
neutral measure Q. For the utility maximization problem considered here, we
need to know the dynamics of the bond prices under the equivalent historical
measure P. However, since we are working on the finite time horizon [0, T],
we need only consider the restriction of P to the sub-sigma-algebra FT . We
will also denote this restriction by P. We have by Girsanov’s theorem that the
Radon–Nikodym derivative is of the form

dP

dQ
= exp


−1

2

T∫
0

‖λs‖2
Gds −

T∫
0

λsdWs




where (λt)t∈[0,T] is the G-valued market price of risk process. The process
(WP

t )t∈[0,T] defined by

WP
t = Wt +

t∫
0

λsds

is a cylindrical Wiener process on G under the measure P.
We make the following assumption about the market price of risk:

Assumption 3.6 Let λ(·, ·) : R+ × F+ → G be such that λ(·, f ) is continuous for
all f ∈ F+ and such that λ(t, ·) is bounded and globally Lipschitz uniformly in
t ≥ 0. We let λt = λ(t, P̃t).

We assume that there exist a subset F0+ ⊂ F+ and a measurable function
�(·, ·) : R+ × F0+ → F∗ such that P̃t ∈ F0+ for all t ≥ 0 almost surely and such
that

λ(t, f ) = σ(t, f )∗�(t, f ) (3.4)

for all t ≥ 0 and f ∈ F0+.

The sudden appearance of the subset F0+ will be clarified in the example of
Sect. 6. We will make use of the following bound: For every real p, we have

E

(
dQ

dP

)p

< +∞
which follows from the assumption that (λt)t∈[0,T] is bounded.
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4 Bond portfolios and trading strategies

By way of motivation, consider an investor holding c0 units of cash (that is,
B−1

t c0 units of the bank account) and ci units of the bond with maturity Ti for
i = 1, . . . , N. Her wealth at time t is given by

c0 +
N∑

i=1

ciP(t, Ti) = Bt

(
c0δ0 +

N∑
i=1

ciδTi−t

)
(P̃t) = Bt φt(P̃t),

where we have used the fact that δ0(P̃t) = P̃t(0) = B−1
t . That is, the vector of

portfolio weights (c0, . . . , cN) corresponds to a functional φt ∈ F∗.
It is interesting to note that the evaluation functionals span a dense subspace

of F∗. Indeed, let S be the closure of span{δx, x ≥ 0} in the F∗ norm and let
S⊥ = {f ∈ F : µ(f ) = 0 for all µ ∈ S}. If f ∈ S then f (x) = 0 for all x; that
is, S⊥ = {0} and S = S⊥⊥ = F∗ as claimed. We will call elements of F∗ port-
folios, and processes taking values in F∗ strategies. To be precise, we make the
following definition:

Definition 4.1 An admissible strategy is a progressively measurable F∗-valued
process (φt)t≥0 such that

E

t∫
0

‖σ ∗
s φs‖2

Gds < +∞

for all t ≥ 0.

Remark 4.2 The definition of admissibility given here is well-suited for the
Malliavin calculus techniques we will use. However, there are other ways to
define admissible strategies. Indeed, the integrability condition may seem unnat-
ural in light of the original economic problem. A popular alternative is to con-
sider strategies such that the process (

∫ t
0 σ

∗
s φsdWs)t≥0 is uniformly bounded

from below. As we will see, in the important case where the utility function is
finite only on a half-line, the solution of the utility maximization problem is the
same with either definition of admissibility. However, if the utility function is
finite everywhere, the two definitions of admissibility may give rise to different
solutions.

We now formulate a definition of the self-financing condition. It is equivalent
to that found in (3) and (7).

Definition 4.3 An admissible strategy (φt)t≥0 is self-financing if there exists a
constant X0 ∈ R such that

φt(P̃t)−
t∫

0

σ ∗
s φsdWs = X0

for almost all (t,ω) ∈ R+ × �. The set of admissible self-financing strategies is
denoted A.
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The integrability condition in Definition 4.1 is sufficient for the stochastic
integral in Definition 4.3 to be well-defined.

Note that to each strategy (φt)t≥0 and initial wealth X0 we can associate a
self-financing strategy (ψt)t≥0 by the rule

ψt = φt + Bt


X0 +

t∫
0

σ ∗
s φsdWs − φt(P̃t)


δ0.

The termψt −φt corresponds to the amount of money held in or borrowed from
the bank account.

Definition 4.4 We fix an initial wealth X0 ≥ 0 and associate with each self-financ-
ing strategy (φt)t≥0 the wealth process (Xφ

t )t≥0 given by

Xφ
t = Bt φt(P̃t) = Bt


X0 +

t∫
0

σ ∗
s φsdWs


.

Note that for every self-financing strategy φ, the discounted wealth process
(B−1

t Xφ
t )t≥0 is a martingale for the equivalent martingale measure Q. Hence,

there is no arbitrage in this market.

5 The utility maximization problem

We fix a terminal date T > 0, an initial wealth X0, and a utility function
U : R → R ∪ {−∞} and let

J(φ) = EP U(Xφ

T)

be the expected terminal utility of implementing the strategy φ. The inves-
tor’s goal is then to find an admissible strategy φ ∈ A which maximizes the
functional J.

Following (7) we list our assumptions on the utility function U and the inverse
marginal utility I(y) = (U′)−1(y).

Assumption 5.1 The utility function U : R → R ∪ {−∞} is strictly concave,
finite and twice continuously differentiable on an open interval (x, ∞) for some
x ≤ 0, with the value x = −∞ allowed. Moreover, we assume U′(x) → ∞
as x ↘ x. Letting y = infx>x U′(x) = limx→∞ U′(x), we assume that either
y = 0 or y = −∞. Define the decreasing function I : (y, ∞) → (x, ∞) by
I(y) = (U′)−1(y).

Moreover, we assume that there exists some q > 0 such that the following
growth bounds hold:

|I(y)| ≤ C(|y|q + |y|−q)

and

|I′(y)| ≤ C(|y|q+1 + |y|−q−1).
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Remark 5.2 In (7) the authors list, as condition B, a series of bounds on the util-
ity function from which they derive the above bounds on the inverse marginal
utility.

We have introduced the notations x and y to treat several interesting cases in
a systematic way. For instance, for any increasing utility function we would have
y = 0. Thus for the CARA utility U(x) = −e−γ x we have x = −∞ and y = 0
whereas for the CRRA utility U(x) = xγ /γ we have x = 0 and y = 0. However,
for the quadratic “utility” function U(x) = cx − x2, which is decreasing on the
interval (c/2, ∞), we would have x = −∞ and y = −∞. The above bounds are
written as to handle simultaneously both cases when y = 0 and when y = −∞.

Theorem 5.3 Under Assumptions 3.2 and 5.1, there exists a unique admissible
strategy φ̄ ∈ A which maximizes J.

Furthermore, the optimal portfolio decomposes into a sum of three mutual
funds

φ̄ = �1 +�2 +�3

with the following properties:

1. For every t ∈ [0, T], the normalized random vector �1
t /‖�1

t ‖F∗ ∈ F∗ is a
deterministic function of the market parameters σt and λt, and is independent
of the investor’s initial wealth X0, utility function U, and planning horizon T.

2. If the function λ(t, ·) : F+ → G is constant for all t ≥ 0, then �2 = 0.
3. If for every x ≥ 0, the volatility is such that

σ(t, f )∗δx = σ(t, g)∗δx

whenever f (s) = g(s) for all 0 ≤ s ≤ x, then

supp{�3
t } ⊂ [0, T − t]

for all t ∈ [0, T].
Remark 5.4 The decomposition φ̄ = �1 + �2 + �3 can be given a financial
interpretation. The first fund �1 is universal in the sense that each investor in
this market invests a portion of his wealth in�1. We shall see that it is a multiple
of the familiar Merton ratio σ ∗−1λ. The second fund �2 can be interpreted as
the investor’s hedge against fluctations in the market price of risk. This portfolio
is generally non-zero unless λt is deterministic. The mutual fund�3 is unique to
the bond market setting. It arises because the risk free asset, the bank account,
can be replicated by a portfolio of just-maturing bonds. If the volatility satis-
fies a certain maturity-mixing condition, satisfied by the Gauss–Markov HJM
model for instance, then the portfolio �3 consists of bonds with maturities less
than the terminal date T.

We defer the proof of Theorem 5.3 to Sect. 8. In the next section we explicitly
compute the optimal portfolio for an example HJM model.
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6 A Gauss–Markov example

To fix ideas and to demonstrate that there exist nontrivial models which can be
expressed in the above framework, we offer an example in this section corre-
sponding to a Gauss–Markov HJM random field model proposed by Kennedy
(12) and further studied by Goldstein (8) and by Santa-Clara and Sornette (16).

The model we analyze is determined by three parameters: twice-differentia-
ble functions m : R+ → R and n : R+ → R+, and a positive constant α > 0.

Informally, we consider the Gauss–Markov HJM model given by

dft(x) =
(
∂

∂x
ft(x)+ a(x)

)
dt + b(x)dWP

t .

The function b : R+ → G describes the instantaneous covariance of the forward
rates, and is related to the model parameters by

〈b(x), b(y)〉G = n(x)n(y)e−α|x−y|.

Indeed, let G=L2(R+) and for each x≥0 let b(x) be the element of G given by

b(x, s) = √
2α n(x)1{s≥x}e−α(s−x).

The instantaneous drift a : R+ → R is related to the model parameters by

a(x) = m(x)+ n(x)

x∫
0

n(s)e−α(s−x)ds.

This forward rate model can be put in the framework of the discounted bond
price models discussed above. In what follows, we identify conditions on the
model parameters α, m and n so that there exist functions σ , λ and � satisfying
Assumptions 3.2 and 3.6 for a suitable choice of state space F. Since the model
under consideration is time homogeneous, and since the market price of risk is
constant, in this section we will abuse notation and let σ(f ) = σ(t, f ), λ = λ(t, f )
and �(f ) = �(t, f ). These functions are related to this forward rate model by
the equations

σ(f )∗δx = −f (x)

x∫
0

b(s)ds

(σ (f )λ)(x) = −f (x)

x∫
0

m(s)ds

σ(f )∗�(f ) = λ

for all t ≥ 0 and f ∈ F0+.
We list here the assumptions on the market parameters.

Assumption 6.1 The functions m, m′, m′′, n′ and n′′ decay exponentially at
infinity. Moreover, the function n is bounded from below.
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For the sake of being concrete, we fix β > 0 sufficiently small and let the
state space be

F =

f : R+ → R; lim

x→∞ f (x) = 0 and

∞∫
0

f ′(x)2eβxdx < +∞

,

where f ′ denotes the weak derivative of the absolutely continuous function f .

The space F is a separable Hilbert space for the norm ‖f‖F =(∫∞
0 f ′(x)2eβxdx

)1/2
and satisfies Assumption 3.1. The dual space F∗ is the completion of the space of

finite signed measures µ on R+ for the norm ‖µ‖F∗ = (∫∞
0 µ[0, x)2e−βxdx

)1/2.

Proposition 6.2 For every f ∈ F, the linear operator Kf on G defined by

(Kf g)(x) = −√
2α

∞∫
0


f (x)

s∧x∫
0

n(t)e−α(s−t)dt


g(s)ds

is Hilbert–Schmidt from G into F, and the function σ : F → LHS(G, F) given by

σ(f ) = Kf (6.1)

satisfies Assumption 3.2.

Proof That Kf is Hilbert–Schmidt follows from the computation

‖Kf ‖2
LHS(G,F) = 2α

∞∫
0

∞∫
0


 ∂

∂x


f (x)

s∧x∫
0

n(t)e−α(s−t)dt






2

eβxds dx

≤ 2

∞∫
0

f ′(x)2eβx

x∫
0

x∫
0

n(s)n(t)e−α|t−s|ds dt dx+2

∞∫
0

f (x)2eβxn(x)2dx

≤ (4α−1 + 2β−1)‖f‖2
F

∞∫
0

n(x)2dx,

where we have used the Sobolev-type inequality

f (x)2 =



∞∫
x

f ′(s)ds




2

≤



∞∫
x

e−βsds






∞∫
x

f ′(s)2eβsds


 ≤ β−1e−βx‖f‖2

F
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and for the norm of the integral operator the estimate
∞∫

0

∞∫
0

n(t)n(u)e−α|u−t|dt du ≤ 1
2

∞∫
0

∞∫
0

(n(t)2 + n(u)2)e−α|u−t|dt du

= 2

∞∫
0

∞∫
t

n(t)2e−α(u−t)du dt

= 2α−1

∞∫
0

n(t)2dt.

Furthermore, since σ : F → LHS(G, F) is linear, the above bounds show that σ
is Lipschitz.

We omit the verification of (3.1) and (3.2). ��
Proposition 6.3 Suppose the initial bond price curve P̃0 ∈ F+ satisfies
infx≥0 e3βx/4P̃0(x) > 0. Define the subset F0+ ⊂ F+ by

F0+ =
{

f ∈ F+; inf
x≥0

eβxf (x) > 0
}

.

If (P̃t)t≥0 is the solution to (3.3) with σ given by (6.1), then P̃t ∈ F0+ for all
t ∈ [0, T] almost surely.

Proof By the above Sobolev inequality we have P̃t(x) ≤ β−1/2e−βx/2‖P̃t‖F .
Since

P̃t(x) = P̃0(t + x) exp


−1

2

t∫
0

∥∥∥
t−s+x∫

0

b(u)du
∥∥∥2

ds +
t∫

0

t−s+x∫
0

b(u)du dWs




we have

exp




t∫
0

t−s+x∫
0

b(u)du dWs


 ≤ β−1/2e−βx/2‖P̃t‖FP̃0(t + x)−1 exp


t

∞∫
0

n(s)2ds


.

Now, we may take the probability space� as the canonical space of continuous
functions taking values in a suitable Banach space E, so that the Wiener pro-
cess is the coordinate map Wt(ω) = ω(t), and such that the space G ⊂ E is the
reproducing kernel Hilbert space for the law of W1. With this choice of �, let
P̃−

t be defined as the F-valued random variable given by P̃−
t (ω) = P̃t(−ω). It

follows then that

P̃t(x) ≥ β1/2P̃0(t + x)2eβx/2‖P̃−
t ‖−1 exp


−t

∞∫
0

n(s)2ds




and the conclusion follows. ��
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Proposition 6.4 Let λ ∈ G be defined via

λ(s) = 1√
2α

[
α

m(s)
n(s)

−
(

m(s)
n(s)

)′]
.

Then

(σ (f )λ)(x) = −f (x)

x∫
0

m(s)ds

and there exists a function � : F0+ → F∗ such that σ(f )∗�(f ) = λ.
If the function

R(s) =
(

m(s)
n(s)

)′′ − α2 m(s)
n(s)

n(s)

is of locally bounded variation, then �(f ) ∈ F∗ can be realized as a signed
measure µ on R+ which solves the equation

∞∫
s

f (x)µ(dx) = 1
2α

R(s). (6.2)

Proof With the formulas in hand, the verification is a tedious but straightfor-
ward integration by parts. Assumption 6.1 and Proposition 6.3 guarantee that
the norm ‖�(f )‖F∗ can be controlled. ��
Remark 6.5 Equation (6.2) can be given an financial interpretation: the points
of discontinuity of R correspond to the atoms of the measure µ. In particular,
all optimal investors will hold the bonds of relative maturities given by the
locations of the upward jumps of this function, and will sell short the bonds
given by the downward jumps.

7 Some results from Malliavin calculus

There has been much recent academic interest in financial applications of
Malliavin calculus. Here we present several results without proof. One may
find a more detailed treatment of the following results in Carmona and Tehran-
chi (3) and Nualart (15) among others.

The Malliavian derivative is a linear map from a space of random variables
to a space of processes. We are concerned with the case where the random
variables are elements of L p(�; H) where H is one of the spaces R, F, G, or
the Hilbert–Schmidt operators LHS(F, G). The Malliavin derivative of a random
variable ξ ∈ L p(�; H) is a process Dξ in the space L p(�; L2([0, T]; LHS(G, H))).

The Malliavin derivative operator is unbounded on L p(�; G), so we take the
approach of defining it first on a core and then extending the definition to the
closure of this set in the graph norm topology.
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Definition 7.1 Smooth random variables ξ ∈ L p(�; H) are of the form

ξ = κ




T∫
0

h1(s)dWs, . . . ,

T∫
0

hn(s)dWs


, (7.1)

where h1, . . . , hn ∈ L2([0, T]; G) are deterministic, and where the infinitely differ-
entiable function κ : Rn → H is, along with all its derivatives, polynomially
bounded. The Malliavin derivative of a smooth random variable is defined to be

Dtξ =
n∑

i=1

∂κ

∂xi




T∫
0

h1(s)dWs, . . . ,

T∫
0

hn(s)dWs


⊗ hi(t).

Moreover, if ξ is the L p(�, H)-limit of a sequence (ξn)n≥1 of smooth random vari-
ables such that (Dξn)n≥1 converges in L p(�; L2([0, T]; LHS(G, H))) we define

Dξ = lim
n→∞ Dξn.

We use the notation D1,p(H) to represent the subspace of L p(�; H) where
the derivative can be defined by Definition 7.1. This subspace is a Banach space
for the graph norm

‖ξ‖D1,p(H) =

E‖ξ‖p

H + E




T∫
0

‖Dtξ‖2
LHS(G,H)dt




p/2


1/p

.

Now we come to the Clark–Ocone formula, the crucial result that provides
an explicit martingale representation for random variables in D1,2(R) in terms
of the Malliavin derivative. A proof of the infinite-dimensional version of this
result can be found in (3). Also, an early application of the Clark–Ocone for-
mula to utility maximization problems can be found in the paper of Karatzas
and Ocone (11).

Theorem 7.2 (Clark–Ocone formula) For every FT-measurable random vari-
able ξ ∈ D1,2(R) we have the representation

ξ = E ξ +
T∫

0

E{Dtξ |Ft}dWt.

We close this section with two results that allow us to calculate explicit for-
mulas in what follows. The first one is a generalization of the chain rule in the
spirit of Proposition 1.2.3 of Nualart (15):

Proposition 7.3 Let H1 and H2 be real separable Hilbert spaces and let L(H1, H2)

denote the Banach space of bounded linear operators from H1 into H2. Consider
a random variable ξ ∈ D1, p(H1) and a globally Lipschitz function κ : H1 → H2
with Lipschitz constant C. Then the random variable κ(ξ) is in D1, p(H2) and



568 N. Ringer, M. Tehranchi

there exists a random variable Z satisfying the bound ‖Z‖L(H1,H2) ≤ C almost
surely and such that

Dκ(ξ) = ZDξ .

Remark 7.4 Although the function κ may not be differentiable, there still exists
a random variable Z which plays the role of a derivative in the sense of the chain
rule. Of course if κ is Fréchet differentiable, then Z = ∇κ(ξ) is its Fréchet deriv-
ative evaluated at ξ . In Sect. 8 we use this result in the cases κ = λ(t, ·) : F → G
and κ = σ(t, ·) : F → LHS(G, F).

The second result which we state without proof is the infinite dimensional
analogue of (1.46) of Nualart (15).

Proposition 7.5 If the adapted continuous square-integrable process (αt)t∈[0,T] is
such that for all t ∈ [0, T] the random variable αt ∈ D1, p(LHS(G, H)) is differen-
tiable, for p ≥ 2, then

Dt

T∫
0

αsdWs = αt +
T∫

t

DtαsdWs.

8 Proofs of the main results

In this section we give the proofs of the main results. Recall that the inverse
marginal utility function I = (U′)−1 plays a crucial role in the study of the
optimal investment problem. We begin with a duality lemma.

Let the utility function U : R → R ∪ {−∞} and inverse marginal utility
I : (y, ∞) → (x, ∞) satisfy Assumption 5.1.

Lemma 8.1 Fix X0 > 0. There exists a unique real number z0 such that

EQB−1
T I

(
z0B−1

T
dQ

dP

)
= X0.

Furthermore, for each random variable X with EQ B−1
T X = X0 we have

EP U(X) ≤ EP U ◦ I(η)

where η = z0B−1
T

dQ
dP

.

Proof By Assumption 5.1 there is a constant C>0 such that |I(y)|<C(|y|q+|y|−q),
where again, the bound is designed to handle both cases for y = 0 and y = −∞.

The density dQ/dP and the discounted bond price P̃t(0) have moments of all
negative orders by Proposition 3.5, and in particular

EQB−1
T I

(
zB−1

T
dQ

dP

)
< +∞

for all z ∈ R. Since the function I : (y, ∞) → (x, ∞) is continuous and decreas-

ing, the function z �→ EQB−1
T I(zB−1

T dQ/dP) is continuous and decreasing by
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the monotone convergence theorem, and hence invertible on its range. The
number X0 > 0 is in fact contained in the range since limy→y I(y) = +∞ and
limy→∞ I(y) = x ≤ 0.

Expanding U into a Taylor series about the point I(η) and recalling the
assumption of concavity we have

EPU(X) ≤ EP U ◦ I(η)+ EP η(X − I(η))

= EP U ◦ I(η)+ z0EQ (B−1
T X − B−1

T I(η))

≤ EP U ◦ I(η),

completing the proof. ��
The main theorem is then proven if we can show that there exists an admis-

sible strategy φ̄ such that X φ̄

T = I(η). See the article of Goldys and Musiela (9)
for an analytic approach to this type of question. We approach this question via
the Clark–Ocone formula. To this end, we state the following lemma. We omit
the proof, but the interested reader can find the proof for the case p = 2 in (4),
Lemma 5.3.

Lemma 8.2 For every p ≥ 2 and all t ≥ 0 we have P̃t ∈ D1, p(F).

We now prove a representation formula for the derivative DP̃t. We appeal
to Skorohod’s theory of strong random operators as developed in Skorohod
(17). A strong random operator from F into a separable Hilbert space H is an
H-valued stochastic process (Z(f ))f∈F indexed by F which is linear in f ∈ F.
A strong operator process (Zt(f ))t≥0,f∈F is similarly defined. If such a process
is adapted and if H = LHS(G, F), then by setting


t∫

0

Zs · dWs


 ( f ) =

t∫
0

Zs( f )dWs

we define a strong random operator
∫ t

0 Zs · dWs from F into F.
The following proposition gives a useful representation formula for the

Malliavin derivative of the discounted bond price. See Sect. 5.5.2 of (4) for
a proof.

Proposition 8.3 The Malliavin derivative DP̃t is given by

DsP̃t = Ys,tσ(s, P̃s)

for s ∈ [0, t], where the strong operator process (Ys,t)0≤s≤t is the solution to the
integral equation

Ys,t = St−s +
t∫

s

St−u∇σuYs,u · dWu

for t ≥ s, where ∇σt is that L(F, LHS(G, F))-valued random variable such that
Dσ(t, P̃t) = ∇σtDP̃.
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Corollary 8.4 For every p ≥ 2 we have B−1
T = P̃T(0) ∈ D1, p(R).

Lemma 8.5 For every p ≥ 2 we have dQ/dP ∈ D1, p(R).

Proof Recall that the density is given by the exponential

dQ

dP
= exp


1

2

T∫
0

‖λ(s, P̃s)‖2
Gds +

T∫
0

λ(s, P̃s)dWs


.

Using the boundedness assumption on the function λ we have

Dt
dQ

dP
= dQ

dP


λ(t, P̃t)+

T∫
t

∇λsDtP̃s · (dWs + λ(s, P̃s)ds)


,

where ∇λs is the bounded L(F, G)-valued random variable such that
Dλ(s, P̃s) = ∇λsDP̃s. ��
Corollary 8.6 For every p ≥ 2 we have η = z0B−1

T dQ/dP ∈ D1, p(R).

Lemma 8.7 For every p ≥ 2 we have I(η) ∈ D1, p(R) and DI(η) = I′(η)Dη.

Proof Note that there is nothing to prove if z0 = 0 as I(η) is constant. So
we may assume z0 �= 0. The chain rule is not directly applicable because of
the singularities limy→y I(y) = ∞ and limy→y I′(y) = −∞. We first find a
sequence of Malliavin-differentiable random variables In(η) which converge

to I(η) in L p(�; R) such that E

(∫ T
0 ‖DsIn(η)‖2

Gds
)p/2

is uniformly bounded.

By the growth assumption on the utility function and the moment bounds in
Proposition 3.5 we have

E |I(η)|p ≤ CE (|η|−pq + |η|pq)

= C

(
|z0|−pqE P̃T(0)−pq

(
dQ

dP

)−pq

+ |z0|pqE P̃T(0)pq
(

dQ

dP

)pq
)

< +∞.

We have to consider two cases for the two limiting values of y → y, when
y = 0 and when y = −∞. If y = 0, we let

In( y) =
{

I( y) if y > 1
n

I( 1
n ) if y ≤ 1

n

whereas if y = −∞, we set

In( y) =
{

I( y) if y > −n
I(−n) if y ≤ −n

and noting that |In( y) − I( y)|p < 2pI( y)p since I is decreasing, we have
E|In(η)− I(η)|p → 0 by the dominated convergence theorem.
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Now we show that E

(∫ T
0 ‖DsIn(η)‖2

Gds
)p/2

is uniformly bounded. Since In

is Lipschitz we can apply Proposition 7.3 yielding

E




T∫
0

‖DsIn(η)‖2
G




p/2

ds = E|I′
n(η)|p




T∫
0

‖Dsη‖2
Gds




p/2

≤
(
E|I′

n(η)|2p
)1/2


E




T∫
0

‖Dsη‖2
Gds




p


1/2

where

I′
n( y) =

{
I′( y) if y > 1

n
0 if y ≤ 1

n

or

I′
n( y) =

{
I′( y) if y > −n
0 if y ≤ −n

depending, of course, on the value of y. The uniform bound follows from the
estimate

E|I′
n(η)|2p ≤ C2pE

(
|η|−2p(q+1) + |η|2p(q+1)

)
< +∞.

In fact, for y = 0, for every p ≥ 2 we have DIn(η) → I′(η)Dη in
L p(�, L2([0, T]; G)) since

E




T∫
0

‖DtIn(η)− I′(η)Dtη‖2
Gdt




p/2

= E




T∫
0

‖(I′
n(η)− I′(η))Dtη‖2

Gdt




p/2

= E 1{η≤ 1
n }|I′(η)|p




T∫
0

‖Dtη‖2
Gdt




p/2

converges to zero by the dominated convergence theorem. The same result
clearly holds for y = −∞ since

E




T∫
0

‖DtIn(η)− I′(η)Dtη‖2
Gdt




p/2

= E




T∫
0

‖(I′
n(η)− I′(η))Dtη‖2

Gdt




p/2

= E 1{η≤−n}|I′(η)|p



T∫
0

‖Dtη‖2
Gdt




p/2

also converges to zero by dominated convergence. ��
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Corollary 8.8 We have B−1
T I(η) ∈ D1,2(R) and

DtB
−1
T I(η) = B−1

T ηI′(η)λt − B−1
T ηI′(η)

T∫
t

∇λsDtP̃s(dWs + λsds)

+(I(η)+ ηI′(η))DtP̃T(0).

Combining the previous representation result with the Clark–Ocone formula
yields

B−1
T I(η) = X0 +

T∫
0

EQ{DtB
−1
T I(η)|Ft}dWt

= X0 +
T∫

0

σ ∗
t (�

1
t +�2

t +�3
t )dWt,

where

�1
t = EQ{B−1

T ηI′(η)|Ft}�(t, P̃t),

�2
t = −EQ


B−1

T ηI′(η)
T∫

t

∇λsYt,s · (dWs + λsds)

∣∣∣∣∣∣Ft


,

�3
t = EQ{(I(η)+ ηI′(η)

)
Y∗

t,Tδ0|Ft}.
Finally, by Theorem 5.7 of (3) we have that if for every x ≥ 0, the volatility is
such that

σ(t, f )∗δx = σ(t, g)∗δx

whenever f (s) = g(s) for all 0 ≤ s ≤ x, then

supp{�3
t } ⊂ [0, T − t]

for all t ∈ [0, T].
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Björk, Peter Bank, and Gordan Žitković for valuable suggestions. We would also like to thank the
anonymous referee for useful comments which have greatly improved the exposition.

References

1. Baudoin, F., Teichmann, J.: Hypoellipticity in infinite dimensions and an application in interest
rate theory. Ann. Appl. Probab. 15, 1765–1777 (2005)

2. Björk, T., Di Masi, G., Kabanov, Y., Runggaldier, W.: Towards a general theory of bond markets.
Financ. Stoch. 1, 141–174 (1997)



Optimal portfolio choice in the bond market 573

3. Carmona, R., Tehranchi, M.: A characterization of hedging portfolios for interest rate contin-
gent claims. Ann. Appl. Probab. 14, 1267–1294 (2004)

4. Carmona, R., Tehranchi, M.: Interest Rate Models: An Infinite Dimensional Stochastic Anal-
ysis Perspective. Springer, Berlin Heidelberg New York (2006)

5. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University
Press (1992)

6. De Donno, M., Pratelli, M.: On the use of measure-valued strategies in bond markets. Financ.
Stoch. 8, 87–109 (2004)

7. Ekeland, I., Taflin, E., A theory of bond portfolios. Ann. Appl. Probab. 15, 1260–1305 (2005)
8. Goldstein, R.S.: The term structure of interest rates as a random field. Rev. Financ. Stud. 13,

365–384 (2000)
9. Goldys, B., Musiela, M.: Infinite dimensional diffusions, Kolmogorov equations and interest
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