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Abstract. This short note offers a new proof of the following fact: in a discrete-time
arbitrage-free market model, a contingent claim is attainable if and only if its expected
value is the same under all equivalent martingale measures. The proof is based on Rogers’
proof [9] of the Dalang–Morton–Willinger [1] theorem.

1. Introduction

The purpose of this note is to offer a new proof of the well-known fact that a contingent
claim can be replicated by a self-financing trading strategy if and only if it has a unique
arbitrage-free price. To formulate this statement mathematically, let S = (St)0≤t≤T be a
fixed d-dimensional discrete-time stochastic process defined on a probability space (Ω,F ,P)
and adapted to a filtration (Ft)0≤t≤T , where we assume for simplicity that F0 is trivial and
F = FT . Let

Q = {Q ∼ P : S is a Q-martingale}
be the set of equivalent martingale measures. For a d-dimensional predictable process H =
(Ht)1≤t≤T let

(H · S)t =
t∑

s=1

Hs ·∆Ss

denote the discrete-time stochastic integral, where a · b denotes the standard inner product
of vectors a, b ∈ Rd and where ∆St = St − St−1. Then the well-known fact quoted above
amounts to the following theorem:

Theorem 1.1. Assume that Q is not empty. For a real-valued random variable X, the
following are equivalent:

(1) X = (H · S)T a.s. for some predictable process H.
(2) EQ(X) = 0 for all Q ∈ Q such that EQ(|X|) <∞.

Theorem 1.1 has been in the folklore of financial mathematics for at least a generation. For
instance, Ross [11] in his 1978 paper wrote “. . . if all admissible operators [i.e. expectations
with respect to equivalent martingale measures] lead to the same value, then the return
stream must be spanned by existing assets and the resulting value is the proper one for the
investment criterion.” Indeed, Theorem 1.1 is announced as Corollary (b) of Theorem 2 of
Harrison and Kreps’s [4] 1979 paper.
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To illustrate the issues involved, let us consider the case when T = 1 and the sample space
Ω has n elements. Without loss of generality, we will assume P{ω} > 0 for each ω ∈ Ω. To
switch to linear-algebraic notion, we define a d× n matrix A by

Ai,j = ∆Si1(ωj).

The set
Q̂ = {q ∈ Rn : Aq = 0, qj > 0 for all j, and q1 + . . .+ qn = 1}

corresponds to the set of equivalent martingale measures Q by the identification Q{ωj} = qj.
A scalar random variable X corresponds to a vector x ∈ Rn, so that in this notation Theorem
1.1 says the following are equivalent:

(1) x = ATh for some h ∈ Rd.

(2) q · x = 0 for all q ∈ Q̂.

The direction (1) ⇒ (2) is easy: if x = ATh for some h ∈ Rd, then q · x = (Aq) · h = 0

for all q ∈ Q̂. We now consider the direction (2) ⇒ (1). By the orthogonal decomposition

Rn = Ran AT ⊕Ker A, it is enough to show that if Ax = 0 and q · x = 0 for all q ∈ Q̂ then
x = 0.

Fix an element q0 ∈ Q̂. There exists an ε 6= 0 such that

qε =
εx+ q0

ε(x1 + . . .+ xn) + 1

is an element of Q̂. Indeed, if ε is small enough then

(εx+ q0)j > 0 for all j.

Since q · x = 0 for all q ∈ Q̂, we can conclude that

0 = qε · x = |x|2 ε

ε(x1 + . . .+ xn) + 1

and hence x = 0 as claimed.
When the sample space Ω is infinite, a naive attempt to extend the above proof fails,

even when T = 1. Suppose for simplicity that ∆S1 ∈ L2, and let X ∈ L2 be such that
E(X∆S1) = 0 and EQ(X) = 0 for all Q ∈ Q for which X in integrable. Fix one such
measure Q0 with density

Z0 =
dQ0

dP
.

As before, we can let

Zε =
εX + Z0

εE(X) + 1
.

However, we cannot proceed because there is no guarantee that one can choose an ε 6= 0
small enough such that Zε > 0 a.s. Indeed, it may well be the case that ess infZ0 = 0,
ess infX = −∞, and ess supX =∞.

The problem with the above approach is that the set {Z ∈ L2 : Z > 0} is generally not
open. Indeed, a functional analytic proof of Theorem 1.1, even in the T = 1 case, requires
a more careful choice of topologies. The aim of this note is to offer a proof of Theorem 1.1
that by-passes these considerations. Aside from Jensen’s inequality, the new proof of this
theorem relies on the following representation results for elements of Q:

Theorem 1.2. The following are equivalent:
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(1) (S ·H)T = 0 a.s. for every predictable H such that (S ·H)T ≥ 0 a.s.
(2) The set Q is not empty.
(3) For every random variable X there exist a positive random variable Z, predictable

processes H0 and H1, positive constants C0 and C1, and (not necessarily distinct)
probability measures Q0 and Q1 in Q such that

dQ0

dP
= C0Ze

(H0·S)T and
dQ1

dP
= C1Ze

(H1·S)T +X .

Furthermore, Z can be chosen such that the random variable

max{1, |X|, |(H0 · S)T |, |(H1 · S)T |}max

{
dQ0

dP
,
dQ1

dP

}
is bounded.

The above theorem is a version of the Fundamental Theorem of Asset Pricing. Note that
statement (1) above says that the market modelled by S is free of arbitrage opportunities,
since any trading strategy H whose return (H · S)T is always non-negative, must, in fact,
always return exactly zero. On the other hand, condition (2) says that there exists at least
one equivalent martingale measure. What is significant for us is that condition (2) implies
condition (3): that the existence of one equivalent martingale measure automatically implies
the existence of two martingale measures with densities given by explicit formulae. The idea
of the new proof of Theorem 1.1 is to exploit these formulae when EQ(X) = 0 for Q = Q0

and Q1 to find a representation of X of the form X = (H · S)T . In fact, we can weaken
condition (2) of Theorem 1.1 to

(2′) EQ(X) = 0 for all Q ∈ Q such that max{1, |X|}dQ
dP is is bounded.

since the measures Q0 and Q1 verify this boundedness property.
The equivalence (1) ⇔ (2) in Theorem 1.2 is due to Dalang, Morton, and Willinger [1],

though Harrison and Pliska [5] proved the theorem for the case of a finite sample space
Ω. The above formulation of the Fundamental Theorem of Asset Pricing is implicit in
the papers of Rogers [9, 10]. His proof in the case when T = 1, reproduced in Section 3 is
simple enough to be included in an advanced undergraduate course on financial mathematics.
Indeed, the proof only uses the Bolzano-Weierstrass theorem and the fact that the gradient
of a differentiable function vanishes at its maximum. The same proof can be made to work
for T > 1, but one must take care with the measure-theoretic technicalities.

There are also versions of Theorems 1.1 and 1.2 in continuous time. There is a signifi-
cant difference between the discrete- and continuous-time theory because one has to be very
careful in how to define a class of predictable processes H such that the integral (H · S)
is economically meaningful. Indeed, Harrison and Kreps [4] in 1979 already noticed that
so-called doubling strategies must not be admissible, otherwise the notion of arbitrage be-
comes vacuous. In this setting, Jacka [6] proved the appropriate continuous-time version of
Theorem 1.1, again confirming the folklore that a claim is attainable if and only if it has the
expectation under all equivalent martingale measures. As for the continuous-time version of
the Fundamental Theorem of Asset Pricing, Delbaen and Schachermayer [2] proved that a
market model has no free lunch with vanishing risk if and only if there exists a probability
measure under which the asset prices are σ-martingales. See the recent book of Delbaen
and Schachermayer [3] for a survey of these results. Unfortunately, the method of proof
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detailed below for the discrete-time case does not seem to be directly applicable to the
continuous-time case.

The note is arranged as follows: in Section 2, a proof of Theorem 1.1 is presented, including
the main contribution of this note – a new, short proof of the implication (2)⇒ (1). In Section
3 we provide the details of Rogers’s proof of Theorem 1.2 to keep the note self-contained.

2. A proof of Theorem 1.1

Proof of Theorem 1.1. (1)⇒ (2) LetH be predictable and define a process Y by Yt = (H ·S)t.
Suppose the random variable YT is integrable with respect to some fixed Q for which S
is a martingale. The case T = 1 proceeds exactly as the finite Ω case discussed in the
introduction: E(Y1) = H1 · E(∆S1) = 0 since H1 is not random. However, the case T > 1
takes a modicum of care. It is sufficient to show that Y is a martingale since Y0 = 0.

We would like to show that if Yt is integrable for some 0 < t ≤ T , then E(Yt|Ft−1) = Yt−1.
This would imply Yt−1 is integrable because E(|Yt−1|) ≤ E(|Yt|) <∞. Since YT is integrable
by assumption, this would show that Y is a martingale by (backward) induction.

Fix t, suppose Yt is integrable, and define an increasing sequence of Ft−1-measurable events

An = {|Yt−1| ≤ n, |Ht| ≤ n}

on which both Yt−1 and Ht are bounded. Note the equality

E(1AnYt|Ft−1) = E(1AnYt−1|Ft−1) + E(1AnHt ·∆St|Ft−1)

= 1AnYt−1 + 1AnHt · E(∆St|Ft−1)

= 1AnYt−1

Since Yt is assumed integrable, we can apply the conditional dominated convergence theorem
to send n→∞ to get E(Yt|Ft−1) = Yt−1 as desired.

(2) ⇒ (1) This the main contribution of this note. Assume Q is not empty, and that
EQ(X) = 0 for all Q ∈ Q for which X is integrable. Applying Theorem 1.2, we note that

(1) X = x+ (H · S)T + log

(
dQ1

dQ0

)

for a predictable process H = H0 − H1, probability measures Q0,Q1 ∈ Q, and a constant
x = log(C0/C1). We need to show x = 0 and Q0 = Q1. Again by Theorem 1.2, we know
X and (H · S)T are integrable with respect to both Q0 and Q1. Now by assumption we
have EQ(X) = 0, and by the implication (1) ⇒ (2) of this theorem, proven above, we have
EQ[(H · S)T ] = 0 for both Q = Q0 and Q1.
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Integrating equation (1) and Jensen’s inequality yields

x = −EQ0 log

(
dQ1

dQ0

)
≥ − logEQ0

(
dQ1

dQ0

)
= 0

= logEQ1

(
dQ0

dQ1

)
≥ EQ1 log

(
dQ0

dQ1

)
= x

so that x = 0. But since the logarithmic function is strictly concave, Jensen’s inequality
holds with equality only if dQ1

dQ0
is constant. Since Q0 and Q1 are probability measures, we

must conclude Q0 = Q1 as desired. �

3. Rogers’ proof of the Fundamental Theorem of Asset Pricing

For completeness, we give a proof of Theorem 1.2. We do this in stages.

Proof of Theorem 1.2 (2) ⇒ (1). Suppose that Q is not empty, and that (H · S)T ≥ 0 a.s.
Let Y = (H · S) and fix Q ∈ Q.

To see the structure of the argument, we first consider the case where T = 1. Since
H1 constant, the random variable Y1 = H1 · ∆S1 is integrable. Since Y1 ≥ 0 a.s. but
E(Y1) = H1 · E(∆S1) = 0, we must conclude Y1 = 0 a.s.

Now we consider the case where T > 1. We will first show that Yt ≥ 0 a.s. for all
0 ≤ t ≤ T . We proceed by induction. Suppose Yt ≥ 0 a.s. for some fixed 0 < t ≤ T , and let

An = {|Yt−1| ≤ n, |Ht| ≤ n}.
As before, we have

0 ≤ E(1AnYt|Ft−1) = 1AnYt−1 → Yt−1

as n → ∞, so that Yt−1 ≥ 0 a.s. Since YT ≥ 0 a.s. by assumption, we can conclude Yt ≥ 0
a.s. for all 0 ≤ t ≤ T by induction.

We now show Yt = 0 for all 0 ≤ t ≤ T . Now suppose Yt−1 = 0 a.s. for some fixed
0 < t ≤ T . Then

0 = 1AnYt−1 = E(1AnYt|Ft−1)

for every n. But since 1AnYt ≥ 0 a.s., we must conclude 1AnYt = 0 a.s. Letting n→∞ then
implies Yt = 0 a.s. Since Y0 = 0, the (forward) induction is complete. �

Remark 1. It should be noted that neither the proof of the (1) ⇒ (2) direction of Theorem
1.1 nor the proof of the (2) ⇒ (1) direction of Theorem 1.2 given above are especially new
and are included only for completeness. Similar ideas can be found, for instance, in Jacod
and Shiryaev’s proof [7] of the Fundamental Theorem of Asset Pricing.

Since the (3) ⇒ (2) implication of Theorem 1.2 is self-evident, it only remains to prove
the (1)⇒ (3) direction.
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Remark 2. We now digress from the formal proof to outline the motivation behind the
manipulations that follow. Rogers’s proof consists of two steps. The first step is is to look
at the classical problem of maximizing the expected utility of terminal wealth. Indeed, let
U be a smooth, strictly increasing and concave utility function on R modelling an investor’s
aversion to risk, and consider the problem

maximize E U [(H · S)T ]

over predictable trading strategies H. If there exists a maximizer H∗, then the following
idea is well-known to economists: the marginal utility U ′[(H∗ · S)T ] of the optimal terminal
wealth is proportional to the density of an equivalent martingale measure. To see why, let us
suppose for the moment that the sample space Ω is finite to avoid discussing technicalities,
although it should be stressed that Ω may be infinite in the proof that follows. Now, for any
trading strategy η the function

ε 7→ E U [(H∗ · S)T + ε(η · S)T ]

is maximized at ε = 0, so that

d

dε
E U [(H∗ · S)T + ε(η · S)T ]|ε=0 = E{U ′[(H∗ · S)T ](η · S)T} = 0

by Fermat’s first-order condition for a maximum. Since η was arbitrary, we immediately see
that the probability measure Q∗ with density

dQ∗

dP
=

U ′[(H∗ · S)T ]

E U ′[(H∗ · S)T ]

is an equivalent martingale measure.
By modifying the above argument, we can find other formulae for densities of elements of
Q. Indeed, given random variables X and Z, where Z > 0 a.s., consider the new problem

maximize E{ZU [(H · S)T +X]}.
As before, if there exists a maximizer H? to the problem, then the first-order condition yields
an equivalent martingale measure Q? with density

dQ?

dP
= CZU ′[(H? · S)T + rX]

for a normalizing constant C > 0. It is this modified formulation of the utility maximization
idea that will give us the formulae given by condition (3), where we will take, modulo some
changes of signs, U(x) = −e−x.

The second step of Rogers’s proof of Theorem 1.2 consists of showing the no-arbitrage
condition implies that a well-chosen utility maximization problem always has a solution.

Proof of Theorem 1.2 (1) ⇒ (3). To see the idea of the proof, we first consider the case

where T = 1. Let Z = e−X
2−|∆S1|2 , and consider two functions F0 and F1 on Rd defined by

Fr(h) = E[Zeh·∆S1+rX ].

Note that each Fr is nothing but the moment generating funtion of ∆S1 with respect to
the measure whose density with respect to P is ZerX . Each Fr is everywhere finite-valued,
thanks to the choice of Z, and hence smooth, and in particular

∇Fr(h) = E[Zeh·∆S1+rX∆S1].
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Now, if we can show that there exists vectors hr ∈ Rd which minimize Fr then we are
done. Indeed, we would have

0 = ∇Fr(hr) = E[Zehr·∆S1+rX∆S1]

by the first-order condition for the minimizer of a smooth function, and hence the densities

dQr

dP
= CrZe

hr·∆S1+rX

define equivalent martingale measures, where the Cr > 0 are normalizing constants. Note
that by the choice of Z, the random variable

max{1, X, |h0 ·∆S1|, |h1 ·∆S1|}max

{
dQ0

dP
,
dQ1

dP

}
is bounded.

We now must show show that the minimizers indeed exist. Fix an r ∈ {0, 1}, and drop it
from the notation. Now let (hn)n be a minimizing sequence, so that

F (hn)→ inf
h
F (h).

If (hn)n is bounded, then there exists a convergent subsequence, still denoted (hn)n so that
hn → h∗. But since F is smooth, we have F (hn) → F (h∗) = infh F (h), and hence h∗ is our
desired minimizer.

It remains to rule out the possibility that (hn)n is unbounded. So we now suppose that
(hn)n is unbounded and aim to show that there exists an arbitrage. Let V be smallest
subspace of Rd containing the support of the random vector ∆S1. That is, V is the orthogonal
complement of the subspace

U = {u ∈ Rd : u ·∆S1 = 0 a.s.}.
In particular, we will use the fact that if v ∈ V and v 6= 0 then P(v ·∆S1 = 0) < 1.

Notice that if u ∈ U and v ∈ V then F (u + v) = F (v). Hence, we may suppose the
minimizing sequence is such that hn ∈ V for all n and |hn| → ∞.

Letting ĥn = hn/|hn| and noting that the sequence (ĥn)n is bounded, we can replace our

sequence (hn)n with a subsequence such that ĥn converges to a unit vector ĥ ∈ V . Clearly

ehn·∆S1 = (eĥn·∆S1)|hn| →∞

on the event {ĥ ·∆S1 > 0}, but since we have

E[lim inf
n

Zehn·∆S1+rX ] ≤ lim inf
n

E[Zehn·∆S1+rX ] = inf
h
F (h) ≤ F (0) <∞

by Fatou’s lemma, we must conclude that P(ĥ · ∆S1 > 0) = 0 so that −ĥ · ∆S1 ≥ 0 a.s.

But since ĥ ∈ V and ĥ 6= 0, we must have P(ĥ ·∆S1 = 0) < 1. Hence, −ĥ is an arbitrage,
contradicting the no-arbitrage assumption (1), completing the proof in the T = 1 case.

Now, we consider the case where T > 1. The idea is the same as above, but we now
have to worry about measurability and integrability. We will build up the processes Hr

inductively. Suppose we have constructed the random vectors Hr(t+ 1), . . . , Hr(T ), for both
r ∈ {0, 1}, where we begin the procedure at t = T when nothing has been contructed. We
now construct Hr(t). As before, we introduce a random factor to ensure integrability. Let

Zt = e−X
2−

∑
1≤s≤T |∆Ss|2−

∑
t+1≤s≤T (|H0(s)|2+|H1(s)|2).

7



Fix t and r, and let P be a regular conditional distribution of the random vector(
∆St, X,

∑
t+1≤s≤T

Hr(s) ·∆Ss, Zt

)
given Ft. Now define a function F : Rd × Ω→ R by

F (h, ω) =

∫
zerx+h·w+ydP (w, x, y, z;ω)

= E
[
Zte

rX+h·∆St+
∑

t+1≤s≤T Hr(s)·∆Ss|Ft−1

]
(ω).

Notice that for each ω ∈ Ω, the function F (·, ω) is smooth.
For each ω ∈ Ω, we will find a Hr(t, ω) which minimizes F (·, ω). Let us assume for the

moment that this minimizer exists and is Ft−1 measurable. The first-order condition for a
minimum applies and we have

∇F (Hr(t)) = E
[
Zte

rX+
∑

t≤s≤T Hr(s)·∆Ss∆St|Ft−1

]
= 0

At the end of the induction, we will set

dQr

dP
= CrZ1e

rX+(Hr·S)T

for an appropriate normalizing constant Cr > 0. The above calculation shows that Qr is
indeed an equivalent martingale measure. By the choice of Z = Z1, it satisfies the announced
boundedness property too.

The remaining part of the proof is confirm that an Ft−1-measurable minimizer Hr(t) exists.
As before, we need to consider a minimizing sequence. However, since Ft−1 is generally non-
trivial, we need to take a little care with measurability. We consider a sequence of regularized
objective functions

Fn(h, ω) = F (h, ω) +
1

n
|h|2.

Notice that for all ω ∈ Ω, the function Fn(·, ω) is stictly convex, and that Fn(h, ω)→∞ as
|h| → ∞. Hence there exists a unique minimizer Hn(ω). Since

F (Hn) ≤ Fn(Hn) ≤ Fn(h) = F (h) +
1

n
|h|2

for all h ∈ Rd, we can first take the lim sup as n → ∞ and then take the infimum over
h ∈ Rd to conclude that F (Hn(ω), ω)→ infh F (h, ω) for each ω.

This minimizer Hn is Ft−1-measurable since

{Hn ∈ B} =
⋃
p∈Qd

⋂
q∈Qd

{p ∈ B, q ∈ Bc, Fn(p) < Fn(q)}

for all open balls B ⊂ Rd, where Qd is the countable set of vectors in Rd with rational
coordinates.

Let A be the Ft−1-measurable event

A =
⋃
k

⋂
n

{|Hn| < k}.
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that the sequence (Hn)n is bounded. By Lemma 3.1 below, there an increasing sequence of
measurable indices Nk : A → N such that HNk

(ω) converges to some H(ω) ∈ Rd for each
ω ∈ A. Since FNk

(HNk
)→ F (H) pointwise on A, we see that H = Hr(t) will be our desired

minimizer as long as we show P(A) = 1.
Now, define the subspace U orthogonal to the conditional support of ∆St given Ft−1 by

U(ω) = {u ∈ Rd : P ({w ∈ Rd : u · w = 0}, ω) = 1}.

and let V(ω) = U(ω)⊥. We see that the minimizer Hn(ω) is in V(ω) for each ω since

Fn(u+ v) ≥ Fn(v)

whenever u ∈ U and v ∈ V .
Since (Hn(ω))n is unbounded for each ω ∈ Ac, we can find a measurable sequence of

indices Nk : Ac → N such that |HNk
| → ∞ on Ac, by taking Nk = inf{n : |Hn| > k}. And

since the sequence ĤNk
= HNk

/|HNk
| is bounded on Ac, we can find another measurable

sequence of indices, again by Lemma 3.1, which we continue to denote by Nk, such that
ĤNk

(ω) converges to Ĥ(ω) on Ac. Notice that Ĥ(ω) is a unit vector in V(ω) for each ω ∈ Ac.
We can extend Ĥ to a Ft−1-measurable random vector by setting Ĥ = 0 on A. As before,

eHNk
·∆St = (eĤNk

·∆St)|HNk
| →∞

on the event Ac ∩ {Ĥ ·∆St > 0}. But by Fatou’s lemma we have

E[lim inf
k→∞

eHNk
·∆Stη|Ft−1](ω) ≤ lim inf

k→∞
F (HNk

(ω), ω) = inf
h
F (h, ω) ≤ F (0, ω) <∞

for all ω ∈ Ac where η = Zte
rX+

∑
t+1≤s≤T Hr(s)·∆Ss . Hence P(Ac ∩ {Ĥ · ∆St > 0}) = 0. But

this implies −1AcĤ ·∆St ≥ 0 almost surely. Now, using the no-arbitrage condition (1), we

can conclude that 1AcĤ · ∆St = 0 almost surely. But this means 1AcĤ ∈ U . But since

Ĥ ∈ V = U⊥, we must conclude that P(Ac) = 0, as desired. �

We now state and prove the technical lemma used in the proof above. It is, in a sense, a
measurable version of the Bolzano–Weierstrass theorem. It appears in the paper of Kabanov
and Stricker [8] who thank Engelbert and Weizsäcker for suggesting it.

Lemma 3.1. Consider a sequence of measurable functions ξn : B → Rd such that supn |ξn(ω)| <
∞ for all ω ∈ B. Then there exists an increasing sequence of measurable indices Nk : B → N
such that (ξNk

(ω))k converges for each ω ∈ B.

Proof. We consider the case d = 1 first. Let

Nk = inf{h ≥ 1 : ξh ≥ lim sup
n→∞

ξn − 1/k}.

It is easy to see that the Nk are measurable, so that the ξNk
are also measurable and

ξNk
→ lim supn→∞ ξn pointwise.

For the case d > 1, we simply work component-wise. First let N0
k = k for all k ≥ 1, and

define recursively, for 1 ≤ i ≤ d,

N i
k = inf{h ≥ 1 : ξi

N i−1
h
≥ lim sup

n→∞
ξi
N i−1

n
− 1/k}.

Now take Nk = Nd
k . �
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